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—. (15 points) (i) State the definition of a topology on a set X. (ii) Let X be a
topological space and K be a subset of X. Assume that for every xe K, there is an

open set U such that Xe U< K. Show that K is open in X.
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—. (15 points) Let f be a continuous map from a topological space X to a topological space Y
and hbea continuous map from Y to a topological space Z. Prove that the composite map
hof is continuous on X.
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—.. (20 points) Let {K_ :a €A} be a collection of connected subspaces of a topological space

X. Prove that if there is S e A such that forall aeA, K, (1K, #4, then U%A K, is

connected in X.
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PU. (20 points) Let Y be a subspace of a Hausdorff topological space X and x
be not in Y. Prove that if Y is compact in X, then there exist disjoint open sets U
and V such that xeU and Yc V.
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1. (30 points) Let (X, d ) be a metric space and K be a subset of X. Prove that
(1) The collection {B(x, r): xe X, >0} is a basis for a topology on X;

(i) X, > X< Ve>0,IN, when n>N, d(X,,X)<¢;

(ii1) X belongs to the closure of K if and only if there exists a sequence of points of
K converging to X.
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