四川师范大学数学与软件科学学院数学与应用数学专业 2005-2006 学年度第二学期期末考试

《拓扑学》 试卷三

答卷说明:本试卷共4页,5个大题,满分100分,120分钟完卷。

题号	-	 =	四	五	总分	总分人
分数						

得分	评卷人

 $\overline{}$. (15 points) (i) State the definition of a topology on a set X. (ii) Let X be a topological space and K be a subset of X. Assume that for every $x \in K$, there is an open set U such that $x \in U \subset K$. Show that K is open in X.

得分	评卷人

=. (15 points) Let f be a continuous map from a topological space X to a topological space Y and h be a continuous map from Y to a topological space Z. Prove that the composite map hof is continuous on X.

得分	评卷人

 \equiv . (20 points) Let $\{K_{\alpha}: \alpha \in \Lambda\}$ be a collection of connected subspaces of a topological space X. Prove that if there is $\beta \in \Lambda$ such that for all $\alpha \in \Lambda$, $K_{\alpha} \cap K_{\beta} \neq \emptyset$, then $\bigcup_{\alpha \in \Lambda} K_{\alpha}$ is connected in X.

得分	评卷人

 \square . (20 points) Let Y be a subspace of a Hausdorff topological space X and x be not in Y. Prove that if Y is compact in X, then there exist disjoint open sets U and V such that $x \in U$ and $Y \subset V$.

得分	评卷人

- $\overline{\pm}$. (30 points) Let (X, d) be a metric space and K be a subset of X. Prove that
- (i) The collection $\{B(x, r): x \in X, r>0\}$ is a basis for a topology on X;
- (ii) $x_n \to x \Leftrightarrow \forall \varepsilon > 0, \exists N$, when n > N, $d(x_n, x) < \varepsilon$;
- (iii) x belongs to the closure of K if and only if there exists a sequence of points of K converging to x.