2005-2006年度第二学期拓扑学评分细则(试卷一)

- 第 3 题 Suppose that f(X) is not connected. Then there is a separation $f(X) = C \cup D$ ($\emptyset \neq C \subset f(X)$, $\emptyset \neq D \subset f(X)$, C and D are open in f(X), and $C \cap D = \emptyset$). So $X = f^{-1}(C) \cup f^{-1}(D)$. (5 points)

Since C is open in f(X), there is an open set U of Y such that $C = U \cap f(X)$, so $f^{-1}(C)$ equals $f^{-1}(U)$ which is an open set as f is continuous. Similarly, $f^{-1}(D)$ is open in X. (10 points)

Since $f^{-1}(C) \cap f^{-1}(D)$ equals $f^{-1}(C \cap D)$ which is empty, it follows that $f^{-1}(C)$ and $f^{-1}(D)$ constitute a separation of X, contradicting to the assumption that X is connected.(5 points)

第 4 题 (i) By the definition of metric, $x \in B(x, 1)$ for every $x \in X$. If $x \in B(y, r) \cap B(z, t)$ where $y, z \in X$ and r, t > 0, then d(x, y) < r and d(x, z) < t. Take $\delta := \min\{r - d(x, y), t - d(x, z)\}$. Then $\delta > 0$ and $x \in B(x, \delta) \subset B(y, r) \cap B(z, t)$. This verifies (i).(10 points)

(ii) If $x_n \to x$, then for any $\varepsilon > 0$, since $B(x, \varepsilon)$ is a neighborhood of x, there is N such that when n > N, $x_n \in B(x, \varepsilon)$, that is, $d(x_n, x) < \varepsilon$. (5 points)

第 5 题 For every $y \in Y$, $y \neq x$, so there are neighborhoods U_y of x and V_y of y such that $U_y \cap V_y = \emptyset$. (5 points)

Since $Y \subset \bigcup_{y \in Y} V_y$ and Y is compact, there is a finite set $\{y_1, y_2, \ldots, y_n\}$ such that $Y \subset$
$\bigcup_{i=1}^{n} V_{y_i}(10 \text{ points})$
Take $U := \bigcap_{i=1}^{n} U_{y_i}$. Then U is a neighborhood of x and $U \cap V = \emptyset$