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—. (15 points) Assume R with the standard topology. Is the set {1/n: n=1,2,...}

open in R? Is the set closed in R? Give your reasons.
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—. (15 points) Let Y be a subspace of a topological space X and KcY. Show that the topology
K inherits as a subspace of Y is the same as the topology K inherits as a subspace of X.
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—. (20 points) Let f be acontinuous map from a topological space X to a topological space
Y. Prove that if X is connected, then f (X) is connected in Y.

Bt A RIS A B S N TR il 52 0 (k4 10



B | HEA

V4. (30 points) Let (X, d ) be a metric space and K be a subset of X. Prove that
(i) The collection {B(x, r): xe X, r>0} is a basis for a topology on X;

(i) x, > X< Ve>0,3IN,whenn>N, d(x,,x)<e;

(iii) x belongs to the closure of K if and only if there exists a sequence of
points of K converging to x.
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1. (20 points) Let Y be a subspace of a Hausdorff topological space X and x be
not in Y. Prove that if Y is compact, then there exist disjoint open sets U and
Vsuchthat xeU andYcV.
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