Topology by Munkres James

何诣然

7-405, Sichuan Normal University

2nd semester, 2010-2011

Lecture 2

- Topological Spaces and Continuous Functions
- Basis for a Topology
- Metric and topology
- Subbasis
- Compare different topologies
- 3 Lecture 3
 - Prelude
 - The Subspace Topology
- 4 Lecture 4
 - Closed Sets
 - Closure
- 5 Lecture 5
 - Closure (continued)
 - Limit point
 - Interior

Lecture 6

- Boundary
- Convergence
- Hausdorff Space

7 Lecture 7

8 Lecture 8

- Continuous function: other equivalent statements
- Continuous function: rules
- Continuous↔subspace
- 9 Lecture 9
 - Continuous function (continued)
 - Continuous \leftrightarrow product
 - Homeomorphism
 - Metric space
 - \bullet Metric space \leftrightarrow basis, open set, topology
 - Metric space \leftrightarrow product, subspace

Topology

- Metric space ↔ convergence, closure
- 10 Lecture 10: metric space (continued)
 - Continuity
 - Hausdorff
 - New things

Lecture 11

- Separation
- $\bullet \ Separation {\leftrightarrow} subspace$
- Connected space
- Properties of connected space
- Connected \leftrightarrow subspace
- Connected \leftrightarrow continuous
- Connected \leftrightarrow product
- Connected↔closure, boundary
- Intermediate value theorem
- Path connected

- Connected component
- 2 Lecture 12
 - Compact
 - Compact \leftrightarrow subspace
 - Compact \leftrightarrow Hausdorff
 - Compact \leftrightarrow continuous
 - Compact ↔ product
 - Compact ↔ connected
 - Finite intersection property
 - Compact sets in \mathbb{R}^n
 - Extreme value theorem
 - Compact ↔ metric space
 - Lebesgue number lemma
 - Equivalent characterization of compactness
- 3 Lecture 13
 - Countability axioms
 - Separation axioms

Let Y be a topological space and $A \subset Y$. $y \in A$ is said to be an isolated point of A, if there is $V \in \mathcal{N}_Y(y)$, $V \cap A = \{y\}$.

Proposition 13.27

Let Y be a topological space. y is an isolated point of $Y\iff \{y\}$ is open in Y.

Theorem 13.28 Let X be a compact Hausdorff space. If X has no isolated points, then it is uncountable.

Example 13.29 (1) $X := \{a, b, c\}$. $\tau := \{\emptyset, X, \{1, 2\}\}$. (2)

Let Y be a topological space and $A \subset Y$. $y \in A$ is said to be an isolated point of A, if there is $V \in \mathcal{N}_Y(y)$, $V \cap A = \{y\}$.

Proposition 13.27

Let Y be a topological space. y is an isolated point of $Y \iff \{y\}$ is open in Y.

Theorem 13.28

Let X be a compact Hausdorff space. If X has no isolated points, then it is uncountable.

Example 13.29

(1) $X := \{a, b, c\}, \ \tau := \{\emptyset, X, \{1, 2\}\}.$ (2) \mathbb{R} .

Let Y be a topological space and $A \subset Y$. $y \in A$ is said to be an isolated point of A, if there is $V \in \mathcal{N}_Y(y)$, $V \cap A = \{y\}$.

Proposition 13.27

Let Y be a topological space. y is an isolated point of $Y \iff \{y\}$ is open in Y.

Theorem 13.28 Let X be a compact Hausdorff space. If X has no isolated points, then it is uncountable.

Example 13.29

(1) $X := \{a, b, c\}, \ \tau := \{\emptyset, X, \{1, 2\}\}.$ (2) \mathbb{R} .

Let Y be a topological space and $A \subset Y$. $y \in A$ is said to be an isolated point of A, if there is $V \in \mathcal{N}_Y(y)$, $V \cap A = \{y\}$.

Proposition 13.27

Let Y be a topological space. y is an isolated point of $Y \iff \{y\}$ is open in Y.

Theorem 13.28 Let X be a compact Hausdorff space. If X has no isolated points, then it is uncountable.

Example 13.29 (1) $X := \{a, b, c\}$. $\tau := \{\emptyset, X, \{1, 2\}\}$. (2) \mathbb{R} .

Theorem 13.30

Let X be a metric space. Then the following are equivalent:

- (1) X is compact.
- (2) For every infinite subset $A \subset X$, $A' \neq \emptyset$. (limit point compact)
- (3) Every sequence $\{x_n\} \subset X$ has a convergent subsequence.

思路

(1) \Rightarrow (2). If $A' = \emptyset$, then A is closed, and hence compact in X. For every $x \in A$, $\exists U \in \mathscr{N}(x)$ such that $U \cap A = \{x\}$. Compactness enters here... (2) \Rightarrow (3).

 $(3) \Rightarrow (1)$. Omitted.

Theorem 13.30

Let X be a metric space. Then the following are equivalent:

- (1) X is compact.
- (2) For every infinite subset $A \subset X$, $A' \neq \emptyset$. (limit point compact)
- (3) Every sequence $\{x_n\} \subset X$ has a convergent subsequence. (sequentially compact)

思路

(1) \Rightarrow (2). If $A' = \emptyset$, then A is closed, and hence compact in X. For every $x \in A$, $\exists U \in \mathscr{N}(x)$ such that $U \cap A = \{x\}$. Compactness enters here... (2) \Rightarrow (3). (3) \Rightarrow (1) Omitted

Theorem 13.30

Let X be a metric space. Then the following are equivalent:

- (1) X is compact.
- (2) For every infinite subset $A \subset X$, $A' \neq \emptyset$. (limit point compact
- (3) Every sequence $\{x_n\} \subset X$ has a convergent subsequence.

思路.

(1) \Rightarrow (2). If $A' = \emptyset$, then A is closed, and hence compact in X. For every $x \in A$, $\exists U \in \mathcal{N}(x)$ such that $U \cap A = \{x\}$. Compactness enters here... (2) \Rightarrow (3). (3) \Rightarrow (1). Omitted.

Outline

Lecture 13

Countability axioms

- Separation axioms
 - Regular space

A topological space X is said to have a countable basis at x if there is a countable collection $\mathscr{B} \subset \mathscr{N}(x)$ such that

 $\forall V \in \mathscr{N}(x), \exists U \in \mathscr{B} \text{ such that } x \in U \subset V.$

A space that has a countable basis at each of its points is said to satisfy the first countable axiom, or to be first-countable.

Theorem 14.2 (see Theorem 8.15)

Let X be a topological space. If there exists a sequence $\{x_n\} \subset A$ such that $x_n \to x$, then $x \in \overline{A}$. The converse holds if X is first-countable.

Corollary 14.3

Let A be a subset in a first-countable space. A is closed \iff For any sequence $\{x_n\} \subset A$, if $x_n \to x$, then $x \in A$.

Theorem 14.4

Let X and Y be topology spaces. If f is continuous at x_0 , then $x_n \to x_0$ implies $f(x_n) \to f(x_0)$. The converse holds if X is first-countable.

If a topological space X has a countable basis for its topology, then X is said to satisfy the second countability axiom, or to be second-countable.

Definition 14.6

 $A \subset X$ is said to be dense in X if $\overline{A} = X$.

Theorem 14.7

If X is second-countable, then there exist a countable subset of X that is dense in X.

The latter is just the definition of a separable space. second-countable ⇒separable.

If a topological space X has a countable basis for its topology, then X is said to satisfy the second countability axiom, or to be second-countable.

Definition 14.6

 $A \subset X$ is said to be dense in X if $\overline{A} = X$.

Theorem 14.7

If X is second-countable, then there exist a countable subset of X that is dense in X.

The latter is just the definition of a separable space. second-countable ⇒separable.

If a topological space X has a countable basis for its topology, then X is said to satisfy the second countability axiom, or to be second-countable.

Definition 14.6

 $A \subset X$ is said to be dense in X if $\overline{A} = X$.

Theorem 14.7

If X is second-countable, then there exist a countable subset of X that is dense in X.

The latter is just the definition of a separable space. second-countable \Rightarrow separable.

 \mathbb{R}_{ℓ} is separable, but not second-countable.

Proof.

Let \mathscr{B} be a basis for \mathbb{R}_{ℓ} . For every $x \in \mathbb{R}_{\ell}$, there is $B_x \in \mathscr{B}$ such that $x \in B_x \subset [x, x + 1)$. Since $x = \inf B_x$, if $x \neq y$, then $B_x \neq B_y$. Therefore, \mathscr{B} is uncountable.

Proposition 14.9 Separable metric space is second-countable.

Corollary 14.10 \mathbb{R}_{ℓ} is not metrizable.

 \mathbb{R}_{ℓ} is separable, but not second-countable.

Proof.

Let \mathscr{B} be a basis for \mathbb{R}_{ℓ} . For every $x \in \mathbb{R}_{\ell}$, there is $B_x \in \mathscr{B}$ such that $x \in B_x \subset [x, x+1)$. Since $x = \inf B_x$, if $x \neq y$, then $B_x \neq B_y$. Therefore, \mathscr{B} is uncountable.

Proposition 14.9 Separable metric space is second-countab

Corollary 14.10

 \mathbb{R}_ℓ is not metrizable.

 \mathbb{R}_{ℓ} is separable, but not second-countable.

Proof.

Let \mathscr{B} be a basis for \mathbb{R}_{ℓ} . For every $x \in \mathbb{R}_{\ell}$, there is $B_x \in \mathscr{B}$ such that $x \in B_x \subset [x, x+1)$. Since $x = \inf B_x$, if $x \neq y$, then $B_x \neq B_y$. Therefore, \mathscr{B} is uncountable.

Proposition 14.9

Separable metric space is second-countable.

Corollary 14.10

 \mathbb{R}_{ℓ} is not metrizable.

 \mathbb{R}_{ℓ} is separable, but not second-countable.

Proof.

Let \mathscr{B} be a basis for \mathbb{R}_{ℓ} . For every $x \in \mathbb{R}_{\ell}$, there is $B_x \in \mathscr{B}$ such that $x \in B_x \subset [x, x+1)$. Since $x = \inf B_x$, if $x \neq y$, then $B_x \neq B_y$. Therefore, \mathscr{B} is uncountable.

Proposition 14.9

Separable metric space is second-countable.

Corollary 14.10

 \mathbb{R}_{ℓ} is not metrizable.

 \mathbb{R}_{ℓ} is separable, but not second-countable.

Proof.

Let \mathscr{B} be a basis for \mathbb{R}_{ℓ} . For every $x \in \mathbb{R}_{\ell}$, there is $B_x \in \mathscr{B}$ such that $x \in B_x \subset [x, x+1)$. Since $x = \inf B_x$, if $x \neq y$, then $B_x \neq B_y$. Therefore, \mathscr{B} is uncountable.

Proposition 14.9

Separable metric space is second-countable.

Corollary 14.10

 \mathbb{R}_{ℓ} is not metrizable.

Outline

Lecture 13

- Countability axioms
- Separation axioms
 - Regular space

A topological space X is said to be regular if for each point x and each closed set K satisfying $x \notin K$, there exist open sets U and V such that

 $x \in U, K \subset V$, and $U \cap V = \emptyset$.

Definition 14.12

A topological space X is said to be normal if for each pair A, B of disjoint closed sets of X, there exist open sets U and V such that

 $A \subset U, B \subset V$, and $U \cap V = \emptyset$.