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Lecture 12 Compact↔metric space

Definition 13.26

Let Y be a topological space and A ⊂ Y . y ∈ A is said to be an
isolated point of A, if there is V ∈ NY (y), V ∩ A = {y}.

Proposition 13.27

Let Y be a topological space. y is an isolated point of Y ⇐⇒ {y}
is open in Y .

Theorem 13.28

Let X be a compact Hausdorff space. If X has no isolated points,
then it is uncountable.

Example 13.29

(1) X := {a, b, c}. τ := {∅, X, {1, 2}}. (2) R.
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Lecture 12 Compact↔metric space

Theorem 13.30

Let X be a metric space. Then the following are equivalent:

(1) X is compact.

(2) For every infinite subset A ⊂ X, A′ 6= ∅. (limit point compact)

(3) Every sequence {xn} ⊂ X has a convergent subsequence.
(sequentially compact)

g´.

(1)⇒(2). If A′ = ∅, then A is closed, and hence compact in X. For
every x ∈ A, ∃U ∈ N (x) such that U ∩ A = {x}. Compactness
enters here...
(2)⇒(3).
(3)⇒(1). Omitted.
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Lecture 13 Countability axioms

Outline
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Separation axioms

Regular space

ÛÅ, (7-405, Sichuan Normal University) Topology 4:10pm May 18, 2011 147 / 153



Lecture 13 Countability axioms

Definition 14.1

A topological space X is said to have a countable basis at x if there
is a countable collection B ⊂ N (x) such that

∀V ∈ N (x),∃U ∈ B such that x ∈ U ⊂ V.

A space that has a countable basis at each of its points is said to
satisfy the first countable axiom, or to be first-countable.
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Lecture 13 Countability axioms

Theorem 14.2 (see Theorem 8.15)

Let X be a topological space. If there exists a sequence {xn} ⊂ A
such that xn → x, then x ∈ A. The converse holds if X is
first-countable.

Corollary 14.3

Let A be a subset in a first-countable space. A is closed ⇐⇒ For
any sequence {xn} ⊂ A, if xn → x, then x ∈ A.

Theorem 14.4

Let X and Y be topology spaces. If f is continuous at x0, then
xn → x0 implies f(xn)→ f(x0). The converse holds if X is
first-countable.

ÛÅ, (7-405, Sichuan Normal University) Topology 4:10pm May 18, 2011 149 / 153



Lecture 13 Countability axioms

Definition 14.5

If a topological space X has a countable basis for its topology, then
X is said to satisfy the second countability axiom, or to be
second-countable.

Definition 14.6

A ⊂ X is said to be dense in X if A = X.

Theorem 14.7

If X is second-countable, then there exist a countable subset of X
that is dense in X.

The latter is just the definition of a separable space.
second-countable ⇒separable.
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Lecture 13 Countability axioms

Example 14.8

R` is separable, but not second-countable.

Proof.

Let B be a basis for R`. For every x ∈ R`, there is Bx ∈ B such
that x ∈ Bx ⊂ [x, x+ 1). Since x = inf Bx, if x 6= y, then Bx 6= By.
Therefore, B is uncountable.

Proposition 14.9

Separable metric space is second-countable.

Corollary 14.10

R` is not metrizable.

(Z���©Ñ5, vk�ñ¡)
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Lecture 13 Separation axioms

Outline
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Lecture 13 Separation axioms

Definition 14.11

A topological space X is said to be regular if for each point x and
each closed set K satisfying x 6∈ K, there exist open sets U and V
such that

x ∈ U,K ⊂ V, and U ∩ V = ∅.

Definition 14.12

A topological space X is said to be normal if for each pair A,B of
disjoint closed sets of X, there exist open sets U and V such that

A ⊂ U,B ⊂ V, and U ∩ V = ∅.
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