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Lecture 12 Compact«metric space

Throughout this section, we assume that X is a metric space with
metric d, unless otherwise specified.

Definition 13.20
Let C' be a nonempty subset of X. For x € X,

d(z,C) := inf d(z,y)

yeC

is the distance from z to C.
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Throughout this section, we assume that X is a metric space with
metric d, unless otherwise specified.

Definition 13.20
Let C' be a nonempty subset of X. For x € X,

d(z,C) := inf d(z,y)

yeC

is the distance from z to C.

Proposition 13.21 (Theorem 77)
Let C be a nonempty subset of X. Then d(z,C) =0 <= z € C.

Corollary 13.22
If C is closed in X, then v ¢ C' <— d(z,C) > 0.
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Lecture 12 Compact«metric space

Proposition 13.23
Q [d(z,C) —d(y, O)| < d(x,y), Va,y € X.
@ z+— d(z,C) is a continuous function.
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Lecture 12 Compact«metric space

Proposition 13.23
Q [d(z,C) —d(y, O)| < d(x,y), Va,y € X.
@ z+— d(z,C) is a continuous function.

Lemma 13.24 (Lebesgue number lemma)

Let {A; : 1 < i< n} be an open covering of a compact metric space
X. Then there is 6 > 0 such that for any K C X satisfying
diam(K) < 6,

di,2: K C A,
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Lecture 12 Compact«metric space

Proposition 13.23
Q@ |d(z,C) —d(y,O)| <d(z,y), Yo,y € X.
@ 2z +— d(x,C) is a continuous function.

Lemma 13.24 (Lebesgue number lemma)

Let {A; : 1 < i< n} be an open covering of a compact metric space
X. Then there is 6 > 0 such that for any K C X satisfying
diam(K) < 6,

di,2: K C A,

We may assume that K is a ball of radius 0, say, B(x,d). The
problem reduces to B(xq,d) N C; = 0 for some i, where C; = X \ A;.
d(fL‘o, Cz) > 67
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Lecture 12 Compact«metric space

Proposition 13.23
Q@ |d(z,C) —d(y,O)| <d(z,y), Yo,y € X.
@ 2z +— d(x,C) is a continuous function.

Lemma 13.24 (Lebesgue number lemma)

Let {A; : 1 < i< n} be an open covering of a compact metric space
X. Then there is 6 > 0 such that for any K C X satisfying
diam(K) < 6,

di,2: K C A,

We may assume that K is a ball of radius 0, say, B(x,d). The
problem reduces to B(xq,d) N C; = 0 for some i, where C; = X \ A;.
d(fﬁo, Cz) > 67

o Finite open covering — arbitrary open covering.

@ Remove “compact”, OK?
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Lecture 12 Compact«metric space

Theorem 13.25

Let X and Y be metric spaces and f : X — Y be continuous. If X
is compact, then f is uniformly continuous.
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