Topology by Munkres James

何诣然

7-405, Sichuan Normal University

2nd semester, 2010-2011

Lecture 12

- Compact
- Compact \leftrightarrow subspace
- $\bullet \ Compact {\leftrightarrow} Hausdorff \\$
- Compact↔continuous
- Compact ↔ product
- Compact ↔ connected
- Finite intersection property
- Compact sets in \mathbb{R}^n
- Extreme value theorem
- Compact↔metric space
 - Lebesgue number lemma

Outline

1

Lecture 12

- Compact
- Compact↔subspace
- Compact↔Hausdorff
- Compact \leftrightarrow continuous
- Compact↔product
- Compact↔connected
- Finite intersection property
- Compact sets in \mathbb{R}^n
- Extreme value theorem
- Compact ↔ metric space
 - Lebesgue number lemma

Throughout this section, we assume that X is a metric space with metric d, unless otherwise specified.

Definition 13.20

Let C be a nonempty subset of X. For $x \in X$,

$$d(x,C) := \inf_{y \in C} d(x,y)$$

is the distance from x to C.

Proposition 13.21 (Theorem ??)

Let C be a nonempty subset of X. Then $\operatorname{d}(x,C)=0\iff x\in\overline{C}.$

Corollary 13.22 If C is closed in X, then $x \notin C \iff d(x, C) > 0$. Throughout this section, we assume that X is a metric space with metric d, unless otherwise specified.

Definition 13.20

Let C be a nonempty subset of X. For $x \in X$,

$$d(x,C) := \inf_{y \in C} d(x,y)$$

is the distance from x to C.

Proposition 13.21 (Theorem ??)

Let C be a nonempty subset of X. Then $d(x, C) = 0 \iff x \in \overline{C}$.

Corollary 13.22 If C is closed in X, then $x \notin C \iff d(x, C) > 0$.

- $|\operatorname{d}(x,C) \operatorname{d}(y,C)| \le \operatorname{d}(x,y), \, \forall \, x,y \in X.$
- **2** $x \mapsto d(x, C)$ is a continuous function.

Lemma 13.24 (Lebesgue number lemma)

Let $\{A_i : 1 \le i \le n\}$ be an open covering of a compact metric space X. Then there is $\delta > 0$ such that for any $K \subset X$ satisfying $\operatorname{diam}(K) < \delta$,

$\exists i, \ni : K \subset A_i.$

We may assume that K is a ball of radius δ , say, $\mathbb{B}(x_0, \delta)$. The problem reduces to $\mathbb{B}(x_0, \delta) \cap C_i = \emptyset$ for some i, where $C_i = X \setminus A_i$. $d(x_0, C_i) > \delta$?

- Finite open covering → arbitrary open covering.
- Remove "compact", OK?

$$|\operatorname{d}(x,C) - \operatorname{d}(y,C)| \le \operatorname{d}(x,y), \, \forall \, x, y \in X.$$

2 $x \mapsto d(x, C)$ is a continuous function.

Lemma 13.24 (Lebesgue number lemma)

Let $\{A_i : 1 \le i \le n\}$ be an open covering of a compact metric space X. Then there is $\delta > 0$ such that for any $K \subset X$ satisfying $\operatorname{diam}(K) < \delta$,

$$\exists i, \ni : K \subset A_i.$$

We may assume that K is a ball of radius δ , say, $\mathbb{B}(x_0, \delta)$. The problem reduces to $\mathbb{B}(x_0, \delta) \cap C_i = \emptyset$ for some i, where $C_i = X \setminus A_i$. $d(x_0, C_i) > \delta$?

- Finite open covering → arbitrary open covering.
- Remove "compact", OK?

$$|\operatorname{d}(x,C) - \operatorname{d}(y,C)| \le \operatorname{d}(x,y), \, \forall \, x, y \in X.$$

2 $x \mapsto d(x, C)$ is a continuous function.

Lemma 13.24 (Lebesgue number lemma)

Let $\{A_i : 1 \le i \le n\}$ be an open covering of a compact metric space X. Then there is $\delta > 0$ such that for any $K \subset X$ satisfying $\operatorname{diam}(K) < \delta$,

$$\exists i, \ni : K \subset A_i.$$

We may assume that K is a ball of radius δ , say, $\mathbb{B}(x_0, \delta)$. The problem reduces to $\mathbb{B}(x_0, \delta) \cap C_i = \emptyset$ for some i, where $C_i = X \setminus A_i$. $d(x_0, C_i) > \delta$?

■ Finite open covering → arbitrary open covering.

Remove "compact", OK?

$$|\operatorname{d}(x,C) - \operatorname{d}(y,C)| \le \operatorname{d}(x,y), \, \forall \, x, y \in X.$$

2 $x \mapsto d(x, C)$ is a continuous function.

Lemma 13.24 (Lebesgue number lemma)

Let $\{A_i : 1 \le i \le n\}$ be an open covering of a compact metric space X. Then there is $\delta > 0$ such that for any $K \subset X$ satisfying $\operatorname{diam}(K) < \delta$,

$$\exists i, \ni : K \subset A_i.$$

We may assume that K is a ball of radius δ , say, $\mathbb{B}(x_0, \delta)$. The problem reduces to $\mathbb{B}(x_0, \delta) \cap C_i = \emptyset$ for some i, where $C_i = X \setminus A_i$. $d(x_0, C_i) > \delta$?

- Finite open covering \rightarrow arbitrary open covering.
- Remove "compact", OK?

Theorem 13.25

Let X and Y be metric spaces and $f : X \to Y$ be continuous. If X is compact, then f is uniformly continuous.