Topology by Munkres James

何诣然

7-405, Sichuan Normal University

2nd semester, 2010-2011

- Compact
- Compact \leftrightarrow subspace
- $\bullet \ Compact {\leftrightarrow} Hausdorff \\$
- Compact⇔continuous
- Compact↔product
- Compact ↔ connected
- Finite intersection property
- Compact sets in \mathbb{R}^n
- Extreme value theorem
- Compact↔metric space
 - Lebesgue number lemma

Outline

1 Lee

Lecture 12

- Compact
- Compact↔subspace
- Compact \leftrightarrow Hausdorff
- Compact↔continuous
- Compact↔product

• Compact \leftrightarrow connected

- Finite intersection property
- Compact sets in \mathbb{R}^n
- Extreme value theorem
- Compact↔metric space
 - Lebesgue number lemma

Exercise 11 on Page 171.

Question

What about intersection of compact sets; union of compact sets?

Exercise 11 on Page 171.

Question

What about intersection of compact sets; union of compact sets?

Outline

1 Le

- Compact
- Compact \leftrightarrow subspace
- Compact \leftrightarrow Hausdorff
- Compact↔continuous
- Compact \leftrightarrow product
- Compact↔connected
- Finite intersection property
- Compact sets in \mathbb{R}^n
- Extreme value theorem
- Compact ↔ metric space
 - Lebesgue number lemma

Definition 13.16

Let $\{C_{\alpha} : \alpha \in \Lambda\} \subset 2^X$ be a collection. We say that $\{C_{\alpha} : \alpha \in \Lambda\}$ has finite intersection property if for every finite index set $\mathscr{F} \subset \Lambda$, $\bigcap_{\alpha \in \mathscr{F}} C_{\alpha} \neq \emptyset$.

Theorem 13.17 (有限交蕴含任意交)

X is compact \iff For every collection of closed sets $\{C_{\alpha} : \alpha \in \Lambda\} \subset 2^{X}$, if it has finite intersection property, then $\bigcap_{\alpha \in \Lambda} C_{\alpha} \neq \emptyset$.

Application

 $\{C_n : n \in \mathbb{N}\} \subset 2^X$ and $C_1 \supset C_2 \supset \cdots \supset C_n \supset \cdots$. If X is compact and each C_n is closed, then $\bigcap_{i=1}^{\infty} C_i \neq \emptyset$.

Definition 13.16

Let $\{C_{\alpha} : \alpha \in \Lambda\} \subset 2^X$ be a collection. We say that $\{C_{\alpha} : \alpha \in \Lambda\}$ has finite intersection property if for every finite index set $\mathscr{F} \subset \Lambda$, $\bigcap_{\alpha \in \mathscr{F}} C_{\alpha} \neq \emptyset$.

Theorem 13.17 (有限交蕴含任意交)

X is compact \iff For every collection of closed sets $\{C_{\alpha} : \alpha \in \Lambda\} \subset 2^X$, if it has finite intersection property, then $\bigcap_{\alpha \in \Lambda} C_{\alpha} \neq \emptyset$.

Application

 $\{C_n : n \in \mathbb{N}\} \subset 2^X$ and $C_1 \supset C_2 \supset \cdots \supset C_n \supset \cdots$. If X is compact and each C_n is closed, then $\bigcap_{i=1}^{\infty} C_i \neq \emptyset$.

Definition 13.16

Let $\{C_{\alpha} : \alpha \in \Lambda\} \subset 2^X$ be a collection. We say that $\{C_{\alpha} : \alpha \in \Lambda\}$ has finite intersection property if for every finite index set $\mathscr{F} \subset \Lambda$, $\bigcap_{\alpha \in \mathscr{F}} C_{\alpha} \neq \emptyset$.

Theorem 13.17 (有限交蕴含任意交)

X is compact \iff For every collection of closed sets $\{C_{\alpha} : \alpha \in \Lambda\} \subset 2^{X}$, if it has finite intersection property, then $\bigcap_{\alpha \in \Lambda} C_{\alpha} \neq \emptyset$.

Application

$$\{C_n : n \in \mathbb{N}\} \subset 2^X$$
 and $C_1 \supset C_2 \supset \cdots \supset C_n \supset \ldots$. If X is compact and each C_n is closed, then $\bigcap_{i=1}^{\infty} C_i \neq \emptyset$.

Compact sets in \mathbb{R}^n

Outline

1 Le

- Compact
- Compact \leftrightarrow subspace
- Compact↔Hausdorff
- Compact↔continuous
- Compact↔product
- Compact↔connected
- Finite intersection property
- Compact sets in \mathbb{R}^n
- Extreme value theorem
- Compact↔metric space
 - Lebesgue number lemma

A known fact: Closed interval [a, b] is compact in \mathbb{R} .

Theorem 13.18 In \mathbb{R}^n , Y is compact \iff Y is bounded and closed.

Application Topologist's sine curve.

A known fact: Closed interval [a, b] is compact in \mathbb{R} .

Theorem 13.18 In \mathbb{R}^n , Y is compact \iff Y is bounded and closed.

Application Topologist's sine curve. A known fact: Closed interval [a, b] is compact in \mathbb{R} .

Theorem 13.18 In \mathbb{R}^n , Y is compact \iff Y is bounded and closed.

Application

Topologist's sine curve.

Outline

1

- Compact
- Compact \leftrightarrow subspace
- Compact \leftrightarrow Hausdorff
- Compact↔continuous
- Compact \leftrightarrow product
- Compact \leftrightarrow connected
- Finite intersection property
- Compact sets in \mathbb{R}^n
- Extreme value theorem
- Compact ↔ metric space
 - Lebesgue number lemma

Theorem 13.19

Let $f: X \to \mathbb{R}$ be continuous. If X is compact, then $\exists c, d \in X$ such that

 $f(c) \le f(x) \le f(d), \quad \forall x \in X.$

思路

Let A := f(X). Then A is compact, and hence bounded and closed. Aim to prove $\sup A$ is attained. There is a sequence $\{a_n\} \subset A$ such that $a_n \to a$. Since A is closed, $a \in A$.

Theorem 13.19

Let $f: X \to \mathbb{R}$ be continuous. If X is compact, then $\exists c, d \in X$ such that

 $f(c) \le f(x) \le f(d), \quad \forall x \in X.$

思路.

Let A := f(X). Then A is compact, and hence bounded and closed. Aim to prove $\sup A$ is attained. There is a sequence $\{a_n\} \subset A$ such that $a_n \to a$. Since A is closed, $a \in A$.