Topology by Munkres James

何诣然

7-405, Sichuan Normal University

2nd semester, 2010-2011

2

Lecture 12

Compact

- Compact \leftrightarrow subspace
- $\bullet \ Compact {\leftrightarrow} Hausdorff \\$
- Compact \leftrightarrow continuous
- Compact \leftrightarrow product
- Compact \leftrightarrow connected
- Finite intersection property
- Compact sets in \mathbb{R}^n
- Extreme value theorem

Outline

1

Lecture 12

Compact

• Compact \leftrightarrow subspace

$\bullet \ Compact {\leftrightarrow} Hausdorff \\$

- Compact↔continuous
- Compact \leftrightarrow product
- Compact \leftrightarrow connected
- Finite intersection property
- Compact sets in \mathbb{R}^n
- Extreme value theorem

Lemma 13.8

Let X be a Hausdorff space and Y be compact in X. If $x \notin Y$, then there exist open subsets U and V of X such that

 $U \in \mathscr{N}_X(x), Y \subset V$, and $U \cap V = \emptyset$.

Question

If Y is a singleton, who do you find? Could two disjoint compact sets be separated? (Ex.3.)

Lemma 13.8

Let X be a Hausdorff space and Y be compact in X. If $x \notin Y$, then there exist open subsets U and V of X such that

$$U \in \mathscr{N}_X(x), Y \subset V$$
, and $U \cap V = \emptyset$.

Question

If Y is a singleton, who do you find? Could two disjoint compact sets be separated? (Ex.3.)

Let X be a Hausdorff space and Y be compact in X. Then Y is closed.

Revisit Item 6 of Example 13.3.

Example 13.10 ("Hausdorff" cannot be removed) $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, b\}, X\}, \{a\}$ is compact, bu

小结:理清关系越来越不容易."剪不断,理还乱".

Let X be a Hausdorff space and Y be compact in X. Then Y is closed.

Revisit Item 6 of Example 13.3.

Example 13.10 ("Hausdorff" cannot be removed)

 $X=\{a,b,c\},\,\tau=\{\emptyset,\{a\},\{a,b\},X\},\,\{a\}$ is compact, but not closed.

小结:理清关系越来越不容易."剪不断,理还乱".

Let X be a Hausdorff space and Y be compact in X. Then Y is closed.

Revisit Item 6 of Example 13.3.

Example 13.10 ("Hausdorff" cannot be removed) $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, b\}, X\}. \{a\}$ is compact, but not closed.

小结:理清关系越来越不容易。"剪不断,理还乱"。

Let X be a Hausdorff space and Y be compact in X. Then Y is closed.

Revisit Item 6 of Example 13.3.

Example 13.10 ("Hausdorff" cannot be removed)

 $X=\{a,b,c\},\,\tau=\{\emptyset,\{a\},\{a,b\},X\}.$ $\{a\}$ is compact, but not closed.

小结:理清关系越来越不容易."剪不断,理还乱".

Outline

Lecture 12

- Compact
- Compact↔subspace
- Compact \leftrightarrow Hausdorff

• Compact \leftrightarrow continuous

- Compact \leftrightarrow product
- Compact↔connected
- Finite intersection property
- Compact sets in \mathbb{R}^n
- Extreme value theorem

Assume that $f : X \longrightarrow Y$ is continuous on X. If X is compact, then so is f(X).

Theorem 13.12

Let $f : X \longrightarrow Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.

Assume that $f : X \longrightarrow Y$ is continuous on X. If X is compact, then so is f(X).

Theorem 13.12 Let $f: X \longrightarrow Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.

Outline

Lecture 12

- Compact
- Compact \leftrightarrow subspace
- Compact \leftrightarrow Hausdorff
- Compact↔continuous
- Compact \leftrightarrow product
- Compact \leftrightarrow connected
- Finite intersection property
- Compact sets in \mathbb{R}^n
- Extreme value theorem

If X and Y are compact, then so is $X \times Y$.

Lemma 13.14

Let X be a topological space and Y be a compact space. If N is open in $X \times Y$ and $\{x\} \times Y \subset N$, then there is $W \in \mathscr{N}_X(x)$ such that $W \times Y \subset N$.

Example 13.15 ("Compact" cannot be removed) Let $N:=\{(x,y)\in \mathbb{R}^2: 0\leq y\leq rac{1}{x}\},\ \{0\} imes \mathbb{R}_+\subset N.$

Theorem 13.13 If X and Y are compact, then so is $X \times Y$.

Lemma 13.14

Let X be a topological space and Y be a compact space. If N is open in $X \times Y$ and $\{x\} \times Y \subset N$, then there is $W \in \mathscr{N}_X(x)$ such

If X and Y are compact, then so is $X \times Y$.

Lemma 13.14

Let X be a topological space and Y be a compact space. If N is open in $X \times Y$ and $\{x\} \times Y \subset N$, then there is $W \in \mathscr{N}_X(x)$ such that $W \times Y \subset N$.

Example 13.15 ("Compact" cannot be removed) Let $N:=\{(x,y)\in \mathbb{R}^2: 0\leq y\leq rac{1}{x}\}$, $\{0\} imes \mathbb{R}_+\subset N$

If X and Y are compact, then so is $X \times Y$.

Lemma 13.14

Let X be a topological space and Y be a compact space. If N is open in $X \times Y$ and $\{x\} \times Y \subset N$, then there is $W \in \mathscr{N}_X(x)$ such that $W \times Y \subset N$.

Example 13.15 ("Compact" cannot be removed) Let $N := \{(x, y) \in \mathbb{R}^2 : 0 \le y \le \frac{1}{x}\}, \{0\} \times \mathbb{R}_+ \subset N.$