Topology by Munkres James

何诣然

7-405, Sichuan Normal University

2nd semester, 2010-2011

- Separation
- Separation ↔ subspace
- Connected space
- Properties of connected space
- $\bullet \ Connected {\leftrightarrow} subspace \\$
- Connected \leftrightarrow continuous
- $\bullet \ Connected {\leftrightarrow} product$
- Connected \leftrightarrow closure, boundary
- Intermediate value theorem
- Path connected
- Connected component

数形结合只是帮助理解, 不能当作结论. For example, [a, b) is connected in \mathbb{R} , but not connected in \mathbb{R}_{ℓ} . Topologist's sine curve is connected in \mathbb{R}^2 .

Proposition 12.20 (Exercise 6 on Page 152)

Let Y be a connected subspace of X and $C \subset X$. If $Y \cap C \neq \emptyset$ and $Y \cap (X \setminus C) \neq \emptyset$, then $Y \cap bd(C) \neq \emptyset$.

Outline

- Separation
- Separation↔subspace
- Connected space
- Properties of connected space
- Connected \leftrightarrow subspace
- Connected↔continuous
- Connected \leftrightarrow product
- Connected↔closure, boundary
- Intermediate value theorem
- Path connected
- Connected component

Theorem 12.21 (Intermediate value theorem)

Let X be a connected space and $f : X \to \mathbb{R}$ be continuous. If $r \in \mathbb{R}$ satisfies f(a) < r < f(b) for two points $a, b \in X$, then there exists $c \in X$ such that f(c) = r.

Corollary 12.22

Let X be a connected subspace of \mathbb{R} . Then $[a,b] \subset X$ for any $a,b \in X$ with $a \neq b$. In particular, X is an interval.

Path connected

Outline

- Separation
- Separation↔subspace
- Connected space
- Properties of connected space
- Connected \leftrightarrow subspace
- Connected \leftrightarrow continuous
- Connected \leftrightarrow product
- Connected⇔closure, boundary
- Intermediate value theorem
- Path connected
- Connected component

Definition 12.23

A topological space is said to be path connected if for any $x, y \in X$, there exist a closed interval $[a, b] \subset \mathbb{R}$ and a continuous function $f : [a, b] \to X$ such that f(a) = x and f(b) = y.

Path connected \Rightarrow connected.

Let X be path connected. If it is not connected, assume that $\{A, B\}$ is its separation. Let $x \in A$ and $y \in B$. Then there exist a closed interval $[a, b] \subset \mathbb{R}$ and a continuous function $f : [a, b] \to X$ such that f(a) = x and f(b) = y. By Theorem 12.15, f([a, b]) is connected in X. By Corollary 12.11, we assume $f([a, b]) \subset A$. Then $y = f(b) \in A$, contradicting $y \in B$.

But connected \Rightarrow path connected: topologist's sine curve.

Definition 12.23

A topological space is said to be path connected if for any $x, y \in X$, there exist a closed interval $[a, b] \subset \mathbb{R}$ and a continuous function $f : [a, b] \to X$ such that f(a) = x and f(b) = y.

Path connected \Rightarrow connected.

Let X be path connected. If it is not connected, assume that $\{A, B\}$ is its separation. Let $x \in A$ and $y \in B$. Then there exist a closed interval $[a, b] \subset \mathbb{R}$ and a continuous function $f : [a, b] \to X$ such that f(a) = x and f(b) = y. By Theorem 12.15, f([a, b]) is connected in X. By Corollary 12.11, we assume $f([a, b]) \subset A$. Then $y = f(b) \in A$, contradicting $y \in B$.

But connected \neq path connected: topologist's sine curve.

Outline

- Separation
- Separation↔subspace
- Connected space
- Properties of connected space
- Connected \leftrightarrow subspace
- Connected \leftrightarrow continuous
- Connected \leftrightarrow product
- Connected↔closure, boundary
- Intermediate value theorem
- Path connected
- Connected component

Let X be a topological space. Define a relation on X by

$x \sim y \iff \exists$ a connected subspace Y of X such that $x, y \in Y$.

Then \sim is an equivalent relation on X. Each of its equivalent class is called a connected component.

Let X be a topological space. Define a relation on X by

 $x \sim y \iff \exists$ a connected subspace Y of X such that $x, y \in Y$.

Then \sim is an equivalent relation on X. Each of its equivalent class is called a connected component.