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Lecture 11 Connected↔closure, boundary

ê/(Ü�´�Ïn), ØU��(Ø. For example, [a, b) is
connected in R, but not connected in R`. Topologist’s sine curve is
connected in R2.

Proposition 12.20 (Exercise 6 on Page 152)

Let Y be a connected subspace of X and C ⊂ X. If Y ∩ C 6= ∅ and
Y ∩ (X \ C) 6= ∅, then Y ∩ bd(C) 6= ∅.
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Lecture 11 Intermediate value theorem
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Lecture 11 Intermediate value theorem

Theorem 12.21 (Intermediate value theorem)

Let X be a connected space and f : X → R be continuous. If r ∈ R
satisfies f(a) < r < f(b) for two points a, b ∈ X, then there exists
c ∈ X such that f(c) = r.

Corollary 12.22

Let X be a connected subspace of R. Then [a, b] ⊂ X for any
a, b ∈ X with a 6= b. In particular, X is an interval.
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Lecture 11 Path connected
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Lecture 11 Path connected

Definition 12.23

A topological space is said to be path connected if for any x, y ∈ X,
there exist a closed interval [a, b] ⊂ R and a continuous function
f : [a, b]→ X such that f(a) = x and f(b) = y.

Path connected ⇒connected.

Let X be path connected. If it is not connected, assume that {A,B}
is its separation. Let x ∈ A and y ∈ B. Then there exist a closed
interval [a, b] ⊂ R and a continuous function f : [a, b]→ X such that
f(a) = x and f(b) = y. By Theorem 12.15, f([a, b]) is connected in
X. By Corollary 12.11, we assume f([a, b]) ⊂ A. Then
y = f(b) ∈ A, contradicting y ∈ B.

But connected 6⇒ path connected: topologist’s sine curve.
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Lecture 11 Connected component
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Lecture 11 Connected component

Let X be a topological space. Define a relation on X by

x ∼ y ⇐⇒ ∃ a connected subspace Y of X such that x, y ∈ Y.

Then ∼ is an equivalent relation on X. Each of its equivalent class is
called a connected component.
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