Topology

by Munkres James

何诣然

7-405, Sichuan Normal University

2nd semester, 2010-2011

- 2 Lecture 11
 - Separation
 - Separation ← subspace
 - Connected space
 - Properties of connected space
 - Connected ← subspace
 - Connected ← continuous
 - \bullet Connected \leftrightarrow product
 - Connected ← closure, boundary
 - Intermediate value theorem
 - Path connected
 - Connected component

Supplement

• Singleton is connected.

Question

Let τ_1 and τ_2 be two topologies on X. If $\tau_1 \subset \tau_2$, is there any relationship of connectedness in the two topologies?

Supplement

• Singleton is connected.

Question

Let τ_1 and τ_2 be two topologies on X. If $\tau_1 \subset \tau_2$, is there any relationship of connectedness in the two topologies?

Outline

- Lecture 11
 - Separation
 - Separation → subspace
 - Connected space
 - Properties of connected space
 - Connected ← subspace
 - Connected ← continuous
 - \bullet Connected \leftrightarrow product
 - Connected → closure, boundary
 - Intermediate value theorem
 - Path connected
 - Connected component

Let $\{C,D\}$ be a separation of X, Y be a subspace of X. If $C\cap Y\neq\emptyset$ and $D\cap Y\neq\emptyset$, then $\{C\cap Y,D\cap Y\}$ is a separation of Y.

Corollary 12.11

Let $\{C,D\}$ be a separation of X. If Y is a connected subspace of X then either $Y\subset C$ or $Y\subset D$.

社会语言:要守住连通的底线,就一定要站队,不能骑墙

Example 12.12

Let $X = [-3,0) \cup (0,3]$ with the subspace topology inherited from \mathbb{R} . Let Y = [1,2]. Then $\{[-3,0),(0,3]\}$ forms a separation of X.

Let $\{C,D\}$ be a separation of X, Y be a subspace of X. If $C\cap Y\neq\emptyset$ and $D\cap Y\neq\emptyset$, then $\{C\cap Y,D\cap Y\}$ is a separation of Y.

Corollary 12.11

Let $\{C,D\}$ be a separation of X. If Y is a connected subspace of X, then either $Y\subset C$ or $Y\subset D$.

社会语言:要守住连通的底线,就一定要站队,不能骑墙.

Example 12.12

Let $X = [-3,0) \cup (0,3]$ with the subspace topology inherited from \mathbb{R} . Let Y = [1,2]. Then $\{[-3,0),(0,3]\}$ forms a separation of X.

Let $\{C,D\}$ be a separation of X, Y be a subspace of X. If $C\cap Y\neq\emptyset$ and $D\cap Y\neq\emptyset$, then $\{C\cap Y,D\cap Y\}$ is a separation of Y.

Corollary 12.11

Let $\{C, D\}$ be a separation of X. If Y is a connected subspace of X, then either $Y \subset C$ or $Y \subset D$.

社会语言:要守住连通的底线,就一定要站队,不能骑墙.

Example 12.12

Let $X=[-3,0)\cup(0,3]$ with the subspace topology inherited from $\mathbb{R}.$ Let Y=[1,2]. Then $\{[-3,0),(0,3]\}$ forms a separation of X.

Let $\{C, D\}$ be a separation of X, Y be a subspace of X. If $C \cap Y \neq \emptyset$ and $D \cap Y \neq \emptyset$, then $\{C \cap Y, D \cap Y\}$ is a separation of Y.

Corollary 12.11

Let $\{C,D\}$ be a separation of X. If Y is a connected subspace of X, then either $Y\subset C$ or $Y\subset D$.

社会语言:要守住连通的底线,就一定要站队,不能骑墙.

Example 12.12

Let $X = [-3,0) \cup (0,3]$ with the subspace topology inherited from \mathbb{R} . Let Y = [1,2]. Then $\{[-3,0),(0,3]\}$ forms a separation of X.

Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X. If $\bigcap_{\alpha} A_{\alpha} \neq \emptyset$, then $\bigcup_{\alpha} A_{\alpha}$ is connected.

交不空, 并连通

Theorem 12.14 (Exercise 3 on Page 152)

Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a collection of connected subspaces of a topological space X. If

 $\exists \beta \in \Lambda \text{ such that } A_{\alpha} \cap A_{\beta} \neq \emptyset, \forall \alpha \in \Lambda, \text{ then } \bigcup_{\alpha \in \Lambda} A_{\alpha} \text{ is connected in } X.$

Question

Is there any relationship between Theorem 12.13 and Theorem 12.14?

Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X. If $\bigcap_{\alpha} A_{\alpha} \neq \emptyset$, then $\bigcup_{\alpha} A_{\alpha}$ is connected.

交不空,并连通.

Theorem 12.14 (Exercise 3 on Page 152)

Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a collection of connected subspaces of a topological space X. If

 $\exists \beta \in \Lambda \text{ such that } A_{\alpha} \cap A_{\beta} \neq \emptyset, \forall \alpha \in \Lambda, \text{ then } \bigcup_{\alpha \in \Lambda} A_{\alpha} \text{ is connected in } X.$

Question

Is there any relationship between Theorem 12.13 and Theorem 12.14?

Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X. If $\bigcap_{\alpha} A_{\alpha} \neq \emptyset$, then $\bigcup_{\alpha} A_{\alpha}$ is connected.

交不空,并连通.

Theorem 12.14 (Exercise 3 on Page 152)

Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a collection of connected subspaces of a topological space X. If

 $\exists \beta \in \Lambda \text{ such that } A_{\alpha} \cap A_{\beta} \neq \emptyset, \forall \alpha \in \Lambda, \text{ then } \bigcup_{\alpha \in \Lambda} A_{\alpha} \text{ is connected in } X.$

Question

ls there any relationship between Theorem 12.13 and Theorem 12.14?

Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X. If $\bigcap_{\alpha} A_{\alpha} \neq \emptyset$, then $\bigcup_{\alpha} A_{\alpha}$ is connected.

交不空,并连通.

Theorem 12.14 (Exercise 3 on Page 152)

Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a collection of connected subspaces of a topological space X. If $\exists \beta \in \Lambda$ such that $A_{\alpha} \cap A_{\beta} \neq \emptyset, \forall \alpha \in \Lambda$, then $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is

connected in X.

Question

Is there any relationship between Theorem 12.13 and Theorem 12.14?

See Exercise 2 on Page 152.

2. Let $\{A_n\}$ be a sequence of connected subspaces of X, such that $A_n \cap A_{n+1} \neq \emptyset$ for all n. Show that $\bigcup A_n$ is connected.

Question

If A and B are connected in X and $A \cap B \neq \emptyset$, is $A \cap B$ connected

See Exercise 2 on Page 152.

2. Let $\{A_n\}$ be a sequence of connected subspaces of X, such that $A_n \cap A_{n+1} \neq \emptyset$ for all n. Show that $\bigcup A_n$ is connected.

Question

If A and B are connected in X and $A \cap B \neq \emptyset$, is $A \cap B$ connected?

Outline

- Lecture 11
 - Separation
 - Separation → subspace
 - Connected space
 - Properties of connected space
 - Connected ← subspace
 - Connected ← continuous
 - Connected ← product
 - Connected → closure, boundary
 - Intermediate value theorem
 - Path connected
 - Connected component

Let $f: X \to Y$ be continuous. If A is connected in X, then f(A) is connected in Y.

Application

- \bullet (a,b) is connected in \mathbb{R} .
- ullet Topologist's sine curve is connected in \mathbb{R}^2
- Connected ← product (come soon...)

Application (Exercise 1 on Page 157)

As subspaces of \mathbb{R} , (0,1) and (0,1] are not homeomorphic $(\Box \mathbb{R})$

Theorem 12.15既符合理论本身发展的需要,又能够处理以前不能处理或者不容易处理的问题.这就是数学发展的动力源泉和魅力. 我们从中也看到连续映射的妙用.

Let $f: X \to Y$ be continuous. If A is connected in X, then f(A) is connected in Y.

Application

- (a,b) is connected in \mathbb{R} .
- Topologist's sine curve is connected in \mathbb{R}^2 .
- Connected ← product (come soon...)

Application (Exercise 1 on Page 157)

As subspaces of \mathbb{R} , (0,1) and (0,1] are not homeomorphic $(\square \mathbb{R})$

Theorem 12.15既符合理论本身发展的需要,又能够处理以前不能处理或者不容易处理的问题. 这就是数学发展的动力源泉和魅力. 我们从中也看到连续映射的妙用.

Let $f: X \to Y$ be continuous. If A is connected in X, then f(A) is connected in Y.

Application

- (a,b) is connected in \mathbb{R} .
- Topologist's sine curve is connected in \mathbb{R}^2 .
- Connected ← product (come soon...)

Application (Exercise 1 on Page 157)

As subspaces of \mathbb{R} , (0,1) and (0,1] are not homeomorphic(同胚).

Theorem 12.15既符合理论本身发展的需要,又能够处理以前不能处理或者不容易处理的问题. 这就是数学发展的动力源泉和魅力. 我们从中也看到连续映射的妙用.

Let $f: X \to Y$ be continuous. If A is connected in X, then f(A) is connected in Y.

Application

- (a,b) is connected in \mathbb{R} .
- Topologist's sine curve is connected in \mathbb{R}^2 .
- Connected ← product (come soon...)

Application (Exercise 1 on Page 157)

As subspaces of \mathbb{R} , (0,1) and (0,1] are not homeomorphic($\square \mathbb{R}$).

Theorem 12.15既符合理论本身发展的需要,又能够处理以前不能处理或者不容易处理的问题. 这就是数学发展的动力源泉和魅力. 我们从中也看到连续映射的妙用

Question

Let $f:X\to Y$ be continuous. If B is connected in Y and $f^{-1}(B)\neq\emptyset$, is $f^{-1}(B)$ connected in X?

No! $f: \mathbb{R}_{\ell} \to \mathbb{R}$ defined by f(x) = x.

Question

Let $f:X\to Y$ be continuous. If B is connected in Y and $f^{-1}(B)\neq\emptyset$, is $f^{-1}(B)$ connected in X?

No! $f: \mathbb{R}_{\ell} \to \mathbb{R}$ defined by f(x) = x.

Outline

- Lecture 11
 - Separation
 - Separation → subspace
 - Connected space
 - Properties of connected space
 - Connected ← subspace
 - Connected ← continuous
 - \bullet Connected \leftrightarrow product
 - Connected ← closure, boundary
 - Intermediate value theorem
 - Path connected
 - Connected component

X and Y are connected spaces $\iff X \times Y$ is connected.

Proof.

- ⇒ Theorem 23.6: consequence of Theorem 12.15 and Theorem 12.13 (►Figure).
- ← Exercise 17 on Page 124 in the Chinese version.

Application

 \mathbb{R}^n 是连通的, \mathbb{R}^n_ℓ 不是连通的

Proposition 12.17 (Exercise 9 on Page 152)

Let $A \subsetneq X$ and $B \subsetneq Y$. If $X \times Y$ is connected, then so is $(X \times Y) \setminus (A \times B)$.

X and Y are connected spaces $\iff X \times Y$ is connected.

Proof.

- \Rightarrow Theorem 23.6: consequence of Theorem 12.15 and Theorem 12.13 (Figure).
- ← Exercise 17 on Page 124 in the Chinese version.

Application

 \mathbb{R}^n 是连通的, \mathbb{R}^n 不是连通的.

Proposition 12.17 (Exercise 9 on Page 152)

Let $A \subsetneq X$ and $B \subsetneq Y$. If $X \times Y$ is connected, then so is $(X \times Y) \setminus (A \times B)$.

X and Y are connected spaces $\iff X \times Y$ is connected.

Proof.

- ⇒ Theorem 23.6: consequence of Theorem 12.15 and Theorem 12.13 (►Figure).
- ← Exercise 17 on Page 124 in the Chinese version.

Application

 \mathbb{R}^n 是连通的, \mathbb{R}^n_ℓ 不是连通的.

Proposition 12.17 (Exercise 9 on Page 152)

Let $A \subsetneq X$ and $B \subsetneq Y$. If $X \times Y$ is connected, then so is $(X \times Y) \setminus (A \times B)$.

Outline

- Lecture 11
 - Separation
 - Separation → subspace
 - Connected space
 - Properties of connected space
 - Connected ← subspace
 - Connected ← continuous
 - Connected ← product
 - Connected ← closure, boundary
 - Intermediate value theorem
 - Path connected
 - Connected component

Let Y be a connected subspace of X and $B \subset X$. If $Y \subset B \subset \overline{Y}$, then B is connected.

Corollary 12.19

If Y is a connected subspace of X, then so is \overline{Y} .

The converse does not hold: \overline{Y} is connected $\Rightarrow Y$ is connected. (say, $Y=\mathbb{Q}$)

Application

R上所有区间都是连通的

Let Y be a connected subspace of X and $B \subset X$. If $Y \subset B \subset \overline{Y}$, then B is connected.

Corollary 12.19

If Y is a connected subspace of X, then so is \overline{Y} .

The converse does not hold: \overline{Y} is connected $\not\Rightarrow Y$ is connected. (say, $Y=\mathbb{Q}$)

Application

ℝ上所有区间都是连通的.