Topology by Munkres James

何诣然

7-405, Sichuan Normal University

2nd semester, 2010-2011

Separation

- Separation↔subspace
- Connected space
- Properties of connected space

Aim: extend the intermediate value theorem from $\ensuremath{\mathbb{R}}$ to topological space.

Outline

Lecture 11

Separation

- Separation↔subspace
- Connected space
- Properties of connected space

Definition 12.1

Let X be a topological space and $C, D \subset X$. $\{C, D\}$ is said to be a separation of X if the following hold

●
$$C \cap D = \emptyset, C \cup D = X;$$
 (不重复、无遗漏)

- $C \neq \emptyset, D \neq \emptyset;$
- \bigcirc C and D are open.

Remark 12.2

 $\{C, D\}$ is a separation of $X \iff$ The following hold

- $O \ C \cap D = \emptyset, \ C \cup D = X;$
- $C \neq \emptyset, D \neq \emptyset;$
- \bigcirc C and D are closed.

Remark 12.3

 $\{C, D\}$ is a separation of $X \iff$ The following hold • $C \cap D = \emptyset, C \cup D = X;$ • $C \neq \emptyset, D \neq 0;$

O is both open and closed.

Definition 12.1

Let X be a topological space and $C, D \subset X$. $\{C, D\}$ is said to be a separation of X if the following hold

●
$$C \cap D = \emptyset, C \cup D = X;$$
 (不重复、无遗漏)

- $C \neq \emptyset, D \neq \emptyset;$
- \bigcirc C and D are open.

Remark 12.2

 $\{C,D\}$ is a separation of $X\iff$ The following hold

$$2 C \neq \emptyset, D \neq \emptyset;$$

O and D are closed.

Remark 12.3

 $\{C, D\}$ is a separation of $X \iff$ The following hold • $C \cap D = \emptyset, C \cup D = X;$ • $C \neq \emptyset, D \neq \emptyset;$ • C is both open and closed.

Definition 12.1

Let X be a topological space and $C, D \subset X$. $\{C, D\}$ is said to be a separation of X if the following hold

●
$$C \cap D = \emptyset, C \cup D = X;$$
 (不重复、无遗漏)

- $C \neq \emptyset, D \neq \emptyset;$
- \bigcirc C and D are open.

Remark 12.2

 $\{C, D\}$ is a separation of $X \iff$ The following hold

$$2 \ C \neq \emptyset, D \neq \emptyset;$$

O and D are closed.

Remark 12.3

 $\{C, D\}$ is a separation of $X \iff$ The following hold

$$O \cap D = \emptyset, \ C \cup D = X;$$

$$2 C \neq \emptyset, D \neq \emptyset;$$

Separation

Question

In the following cases, is $\{C,D\}$ a separation of X?

•
$$X = \mathbb{R}, C = (-\infty, 1), D = (1, +\infty).$$

2
$$X = \mathbb{R}, C = (-\infty, 1), D = [1, +\infty).$$

③
$$X = \mathbb{R}_{\ell}$$
, $C = (-\infty, 1)$, $D = [1, +\infty)$.

- X = (0, 1) (the subspace topology inherited from \mathbb{R}), C = (0, 1/2), D = [1/2, 1).
- $X = \mathbb{Q}, C = (-\infty, \alpha) \cap \mathbb{Q}, D = (\alpha, +\infty) \cap \mathbb{Q}$, where $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. How about $\alpha \in \mathbb{Q}$?

Question

Let $X = \{1, 2, 3\}$ and $\tau = \{\emptyset, X, \{1, 2\}, \{3\}\}$. Is there a separation of X?

Separation

Question

In the following cases, is $\{C, D\}$ a separation of X?

③
$$X = \mathbb{R}_{\ell}$$
, $C = (-\infty, 1)$, $D = [1, +\infty)$.

- X = (0, 1) (the subspace topology inherited from \mathbb{R}), C = (0, 1/2), D = [1/2, 1).
- **5** $X = \mathbb{Q}, C = (-\infty, \alpha) \cap \mathbb{Q}, D = (\alpha, +\infty) \cap \mathbb{Q},$ where $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. How about $\alpha \in \mathbb{Q}$?

Question

Let
$$X = \{1, 2, 3\}$$
 and $\tau = \{\emptyset, X, \{1, 2\}, \{3\}\}$. Is there a separation of X ?

Outline

Lecture 11

- Separation
- Separation \leftrightarrow subspace
- Connected space
- Properties of connected space

Let Y be a subspace of X and $C, D \subset Y$. Then $\{C, D\}$ is a separation of $Y \Leftrightarrow$

$$\begin{cases} C \cap D = \emptyset, C \cup D = \not X Y; \\ C \neq \emptyset, D \neq \emptyset; \\ C \text{ and } D \text{ are open in } Y. \end{cases} \iff \begin{cases} C \cap D = \emptyset, C \cup D = \not X Y; \\ C \neq \emptyset, D \neq \emptyset; \\ C \cap \overline{D} = \emptyset \text{ and } \overline{C} \cap D = \emptyset \end{cases}$$

Revisit Item 4 of Question 3.

Let Y be a subspace of X and $C, D \subset Y$. Then $\{C, D\}$ is a separation of $Y \Leftrightarrow$

$$\begin{cases} C \cap D = \emptyset, C \cup D = \not X Y; \\ C \neq \emptyset, D \neq \emptyset; \\ C \text{ and } D \text{ are open in } Y. \end{cases} \iff \begin{cases} C \cap D = \emptyset, C \cup D = \not X Y; \\ C \neq \emptyset, D \neq \emptyset; \\ C \cap \overline{D} = \emptyset \text{ and } \overline{C} \cap D = \emptyset \end{cases}$$

Revisit Item 4 of Question 3.

X has a separation \iff X has a nonempty proper subset which is both open and closed in X.

Revisit Question 3.

Other concern. separation⇔product topology separation⇔continuous function

We will discuss these topics in the framework of connected space.

X has a separation \iff X has a nonempty proper subset which is both open and closed in X.

Revisit Question 3.

Other concern.

separation \leftrightarrow product topology separation \leftrightarrow continuous function

We will discuss these topics in the framework of connected space.

Outline

Lecture 11

- Separation
- Separation↔subspace
- Connected space
- Properties of connected space

Connected space

Definition 12.6

A topological space X is said to be **connected** if there does NOT exist a separation of X.

Connected space

Definition 12.6

A topological space X is said to be connected if there does NOT exist a separation of X.

Example 12.7

Is the following topological space connected?

•
$$X = \{1, 2, 3\}$$
 with $\tau = \{\emptyset, X, \{1, 2\}, \{3\}\}.$

2 \mathbb{R}_{ℓ} .

3 R.

\mathbb{R} is connected.

If not, there is a separation $\{C, D\}$ of \mathbb{R} . Let $a \in C$ and $b \in D$. Set $A := C \cap [a, b]$ and $B := D \cap [a, b]$. Let $x := \sup A$. Then $x \in A$ and x < b. Moreover, $(x, b] \cap A = \emptyset$, equivalently, $(x, b] \subset B$. So $[x, b] \subset B$ as B is closed. It follows that $x \in A \cap B \subset C \cap D = \emptyset$, impossible!

Connected space

Definition 12.6

A topological space X is said to be connected if there does NOT exist a separation of X.

Example 12.7

Is the following topological space connected?

•
$$X = \{1, 2, 3\}$$
 with $\tau = \{\emptyset, X, \{1, 2\}, \{3\}\}.$

2
$$\mathbb{R}_{\ell}$$

\mathbb{R} is connected.

If not, there is a separation $\{C, D\}$ of \mathbb{R} . Let $a \in C$ and $b \in D$. Set $A := C \cap [a, b]$ and $B := D \cap [a, b]$. Let $x := \sup A$. Then $x \in A$ and x < b. Moreover, $(x, b] \cap A = \emptyset$, equivalently, $(x, b] \subset B$. So $[x, b] \subset B$ as B is closed. It follows that $x \in A \cap B \subset C \cap D = \emptyset$, impossible!

The above proof essentially shows that every closed interval [a,b] is connected in $\mathbb{R}.$

[a,b] is connected in \mathbb{R} .

Question

Is open interval (a, b) connected?

Yes! But how to prove?

- ◎ 改编"[a, b] is connected"的证明(初学者的基本想法)
- 探索新的证明方法. (基本靠积累和感觉)

The above proof essentially shows that every closed interval [a,b] is connected in $\mathbb{R}.$

[a,b] is connected in \mathbb{R} .

Question

Is open interval (a, b) connected?

Yes! But how to prove?

- 0 改编"[a, b] is connected"的证明(初学者的基本想法)
- ❷ 探索新的证明方法. (基本靠积累和感觉)

Outline

Lecture 11

- Separation
- Separation ↔ subspace
- Connected space
- Properties of connected space

X is not connected \iff There exists a nonempty proper subset of X that are both open and closed.

Corollary 12.9

X is connected \iff The only subsets of X that are both open and closed are \emptyset and X.

一般来说,给出不连通空间的证据,比给连通空间的证据更容易. Question (Topologist's sine curve) Let

$$X := \left\{ (x, y) \in \mathbb{R}^2 : x > 0, y = \sin \frac{1}{x} \right\} \cup (\{0\} \times [-1, 1]).$$

ls X connected? (方向在哪里?)

X is not connected \iff There exists a nonempty proper subset of X that are both open and closed.

Corollary 12.9

X is connected \iff The only subsets of X that are both open and closed are \emptyset and X.

一般来说,给出不连通空间的证据,比给连通空间的证据更容易.

 $X := \left\{ (x, y) \in \mathbb{R}^2 : x > 0, y = \sin \frac{1}{x} \right\} \cup (\{0\} \times [-1, 1]).$

ls X connected? (方向在哪里?)

X is not connected \iff There exists a nonempty proper subset of X that are both open and closed.

Corollary 12.9

X is connected \iff The only subsets of X that are both open and closed are \emptyset and X.

一般来说,给出不连通空间的证据,比给连通空间的证据更容易. Question (Topologist's sine curve) l et

$$X := \left\{ (x, y) \in \mathbb{R}^2 : x > 0, y = \sin \frac{1}{x} \right\} \cup (\{0\} \times [-1, 1]).$$

Is X connected? (方向在哪里?)