Topology

 by Munkres James何诣然

7－405，Sichuan Normal University

2nd semester，2010－2011
（2）Lecture 8
－Continuous function：other equivalent statements
－Continuous function：rules
－Continuous \leftrightarrow subspace

Outline

（1）Lecture 8

－Continuous function：other equivalent statements
－Continuous function：rules
－Continuous \leftrightarrow subspace

Let \mathscr{B}_{Y} and \mathscr{A}_{Y} be the basis and subbasis for the topology of Y ， respectively．

Theorem 1.1
The following are equivalent：
（1）f is continuous on X ．
（2）For every $B \in \mathscr{B}_{Y}, f^{-1}(B)$ is open in X ．
（3）For every $S \in \mathscr{A}_{Y}, f^{-1}(S)$ is open in X ．

Let \mathscr{B}_{Y} and \mathscr{A}_{Y} be the basis and subbasis for the topology of Y ， respectively．

Theorem 1.1
The following are equivalent：
（1）f is continuous on X ．
（2）For every $B \in \mathscr{B}_{Y}, f^{-1}(B)$ is open in X ．
（3）For every $S \in \mathscr{A}_{Y}, f^{-1}(S)$ is open in X ．

Theorem 1.2
The following are equivalent：
（1）f is continuous on X ．
（2）For every subset $A \subset X, f(\bar{A}) \subset \overline{f(A)}$ ．
（3）For every closed set $B \subset Y, f^{-1}(B)$ is closed in X ．

Outline

（1）Lecture 8

－Continuous function：other equivalent statements
－Continuous function：rules
－Continuous \leftrightarrow subspace

Theorem 1.3
Let X, Y ，and Z be topological spaces．
（1）Constant function is continuous．
（2）（Composite）If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous， then $g \circ f: X \rightarrow Z$ is continuous．

Outline

（1）Lecture 8
－Continuous function：other equivalent statements
－Continuous function：rules
－Continuous \leftrightarrow subspace

Theorem 1.4
Let A be a subspace of X ．If $f: X \rightarrow Y$ is continuous at every point of A ，then $\left.f\right|_{A}: A \rightarrow Y$ is continuous．

Theorem 1.4
Let A be a subspace of X ．If $f: X \rightarrow Y$ is continuous at every point of A ，then $\left.f\right|_{A}: A \rightarrow Y$ is continuous．

Corollary 1.5
Let A be a subspace of X ．If $f: X \rightarrow Y$ is continuous on X ，then $\left.f\right|_{A}: A \rightarrow Y$ is continuous．

Theorem 1.4
Let A be a subspace of X ．If $f: X \rightarrow Y$ is continuous at every point of A ，then $\left.f\right|_{A}: A \rightarrow Y$ is continuous．

Corollary 1.5
Let A be a subspace of X ．If $f: X \rightarrow Y$ is continuous on X ，then $\left.f\right|_{A}: A \rightarrow Y$ is continuous．

Hint：$\left(\left.f\right|_{A}\right)^{-1}(V)=\{x \in A: f(x) \in V\}=A \cap f^{-1}(V)$ ．

Theorem 1.4
Let A be a subspace of X ．If $f: X \rightarrow Y$ is continuous at every point of A ，then $\left.f\right|_{A}: A \rightarrow Y$ is continuous．

Corollary 1.5
Let A be a subspace of X ．If $f: X \rightarrow Y$ is continuous on X ，then $\left.f\right|_{A}: A \rightarrow Y$ is continuous．

Hint：$\left(\left.f\right|_{A}\right)^{-1}(V)=\{x \in A: f(x) \in V\}=A \cap f^{-1}(V)$ ．The converse of Theorem 1.4 and hence of Corollary 1.5 does not hold．

Example 1.6
Let $X:=\mathbb{R}, A:=(-\infty, 0]$ ，and $f(x):= \begin{cases}0 & x \leq 0, \\ 1 & x>0 .\end{cases}$
（1）Let A be a subspace of X ．Then $j: A \rightarrow X$ defined by $j(x)=x$ is continuous．
（2）Let Y be a subspace of a topological space Z ．If $f: X \rightarrow Y$ is continuous，then the function $h: X \rightarrow Z$ defined by $h(x)=f(x)$ is continuous．
（3）Let Y be a subspace of a topological space Z ．If $f: X \rightarrow Z$ is continuous and $f(X) \subset Y$ ，then the function $g: X \rightarrow Y$ defined by $g(x)=f(x)$ for $x \in X$ is continuous．
你明白它们在说什么吗？

