Topology by Munkres James

何诣然

7-405, Sichuan Normal University

2nd semester, 2010-2011

Definition of continuous function

 \diamond How to extend the $\varepsilon - \delta$ definition to topological spaces? $f: X \to Y$, where X and Y are topological spaces. Definition 1.1

 $f: X \to Y$ is said to be continuous at $x \in X$ if for every $V \in \mathscr{N}_Y(f(x))$, there is $U \in \mathscr{N}_X(x)$ such that $f(U) \subset V$.

Link with $\varepsilon - \delta$ definition

Proposition 1.2

Let $f : \mathbb{R} \to \mathbb{R}$. Then f is continuous at a point x_0 (in the topological sense) $\iff \forall \varepsilon > 0, \exists \delta > 0$ such that

$$|f(x) - f(x_0)| < \varepsilon$$
, whenever $|x - x_0| < \delta$.

Definition 1.3

 $f: X \to Y$ is said to be continuous on X if f is continuous at every $x \in X$.

Theorem 1.4

 $f: X \to Y$ is continuous on $X \iff$ For every open subset $V \subset Y$, $f^{-1}(V)$ is open in X.

Remark 1.5

The continuity of a function depends on the specified topologies. For example, in the real line, f(x) = x is continuous in the standard topology, but not continuous when the range space is assumed with the lower limit topology \mathbb{R}_{ℓ} .

Definition 1.3

 $f: X \to Y$ is said to be continuous on X if f is continuous at every $x \in X$.

Theorem 1.4

 $f: X \to Y$ is continuous on $X \iff$ For every open subset $V \subset Y$, $f^{-1}(V)$ is open in X.

Remark 1.5

The continuity of a function depends on the specified topologies. For example, in the real line, f(x) = x is continuous in the standard topology, but not continuous when the range space is assumed with the lower limit topology \mathbb{R}_{ℓ} .

Definition 1.3

 $f: X \to Y$ is said to be continuous on X if f is continuous at every $x \in X$.

Theorem 1.4

 $f: X \to Y$ is continuous on $X \iff$ For every open subset $V \subset Y$, $f^{-1}(V)$ is open in X.

Remark 1.5

The continuity of a function depends on the specified topologies. For example, in the real line, f(x) = x is continuous in the standard topology, but not continuous when the range space is assumed with the lower limit topology \mathbb{R}_{ℓ} .