Topology by Munkres James

何诣然

7-405, Sichuan Normal University

2nd semester, 2010-2011

Lecture 6

- Boundary
- Convergence
- Hausdorff Space

Lecture 6

Boundary

Outline

Lecture 6 • Boundary

- Convergence
- Hausdorff Space

Let A be a subset of a topological space X.

 $\operatorname{bd}(A) := \overline{A} \setminus \operatorname{int}(A)$

is called the **boundary** of A.

Theorem 1.1 $x \in \mathrm{bd}(A) \iff$ For every $V \in \mathscr{N}(x)$,

 $V \cap A \neq \emptyset$ and $V \cap (X \setminus A) \neq \emptyset$.

Other properties:

- $\operatorname{int}(A) \cap \operatorname{bd}(A) = \emptyset, \overline{A} = \operatorname{int}(A) \cup \operatorname{bd}(A).$
- $\operatorname{bd}(A) = \overline{A} \cap \overline{X \setminus A}.$
- A is open \iff $\operatorname{bd}(A) = \overline{A} \setminus A$.

Let A be a subset of a topological space X.

$$\operatorname{bd}(A) := \overline{A} \setminus \operatorname{int}(A)$$

is called the **boundary** of A.

Theorem 1.1 $x \in bd(A) \iff$ For every $V \in \mathcal{N}(x)$, $V \cap A \neq \emptyset$ and $V \cap (X \setminus A) \neq \emptyset$.

Other properties: • $\operatorname{int}(A) \cap \operatorname{bd}(A) = \emptyset, \overline{A} = \operatorname{int}(A) \cup \operatorname{bd}(A).$ • $\operatorname{bd}(A) = \overline{A} \cap \overline{X \setminus A}.$ • A is open \iff $\operatorname{bd}(A) = \overline{A \setminus A}.$ Let A be a subset of a topological space X.

$$\operatorname{bd}(A) := \overline{A} \setminus \operatorname{int}(A)$$

is called the **boundary** of A.

Theorem 1.1 $x \in bd(A) \iff$ For every $V \in \mathscr{N}(x)$, $V \cap A \neq \emptyset$ and $V \cap (X \setminus A) \neq \emptyset$.

Other properties:

$$1 int(A) \cap bd(A) = \emptyset, \ \overline{A} = int(A) \cup bd(A).$$

$$(a) = \overline{A} \cap \overline{X \setminus A}.$$

Boundary <----> Subspace

Question $bd_Y(A) = bd(A) \cap Y$?

No! But $bd_Y(A) \subset bd(A) \cap Y$. Boundary $\leftrightarrow \rightarrow$ Product topology

Question $bd(A \times B) = bd(A) \times bd(B)$?

Boundary ++++ Subspace

Question

 $\mathrm{bd}_Y(A) = \mathrm{bd}(A) \cap Y$?

No! But $\operatorname{bd}_Y(A) \subset \operatorname{bd}(A) \cap Y$.

Question $bd(A \times B) = bd(A) \times bd(B)$?

Boundary

Boundary 🚧 Subspace

Question

 $\mathrm{bd}_Y(A) = \mathrm{bd}(A) \cap Y$?

No! But $bd_Y(A) \subset bd(A) \cap Y$. Boundary $\leftrightarrow \rightarrow$ Product topology

Question $bd(A \times B) = bd(A) \times bd(B)$?

Boundary

Boundary 🚧 Subspace

Question

 $\mathrm{bd}_Y(A) = \mathrm{bd}(A) \cap Y$?

No! But $bd_Y(A) \subset bd(A) \cap Y$. Boundary $\leftrightarrow \rightarrow$ Product topology

Question $bd(A \times B) = bd(A) \times bd(B)$?

Lecture 6

Convergence

Outline

Lecture 6

- Boundary
- Convergence
- Hausdorff Space

Let X be a topological space.

Definition 1.2 (Convergent sequence)

We say that a sequence $\{x_n\} \subset X$ converges to $x \in X$, if for every $U \in \mathcal{N}(x)$, there exists N such that

$$x_n \in U, \quad \forall n > N.$$

Example 1.3 ℝ. metric space.

Example 1.4 $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, b\}, X\}, x_n = a$. We have $x_n \rightarrow a, x_n \rightarrow b$. Let X be a topological space.

Definition 1.2 (Convergent sequence)

We say that a sequence $\{x_n\} \subset X$ converges to $x \in X$, if for every $U \in \mathcal{N}(x)$, there exists N such that

$$x_n \in U, \quad \forall n > N.$$

Example 1.3

 \mathbb{R} , metric space.

Example 1.4

 $X = \{a, b, c\}, \ \tau = \{\emptyset, \{a\}, \{a, b\}, X\}, \ x_n = a.$ We have $x_n \to a, \ x_n \to b.$

Let X be a topological space.

Definition 1.2 (Convergent sequence)

We say that a sequence $\{x_n\} \subset X$ converges to $x \in X$, if for every $U \in \mathcal{N}(x)$, there exists N such that

$$x_n \in U, \quad \forall n > N.$$

Example 1.3

 \mathbb{R} , metric space.

Example 1.4

$$X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, b\}, X\}, x_n = a.$$
 We have $x_n \to a, x_n \to b.$

Hausdorff Space

Outline

Lecture 6

- Boundary
- Convergence
- Hausdorff Space

Definition 1.5

A topological space X is called a Hausdorff space, if $\forall x, y \in X$ with $x \neq y$, there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$.

It is actually a separation property. A micro definition Macro? Exercise 13 on Page 101, too artificial! Difference: space, not set.

Theorem 1.6

If X is a Hausdorff space, then every sequence of points of X converges to at most one point of X.

Theorem 1.7 Let X be a Hausdorff space. Then for every $x \in X$, $\{x\}$ is closed in X.

Definition 1.5

A topological space X is called a Hausdorff space, if $\forall x, y \in X$ with $x \neq y$, there exist $U \in \mathscr{N}(x)$ and $V \in \mathscr{N}(y)$ such that $U \cap V = \emptyset$.

It is actually a separation property. A micro definition. Macro? Exercise 13 on Page 101, too artificial! Difference: space, not set.

Theorem 1.6

If X is a Hausdorff space, then every sequence of points of X converges to at most one point of X.

Theorem 1.7 Let X be a Hausdorff space. Then for every $x \in X$, $\{x\}$ is closed in X.

Definition 1.5

A topological space X is called a Hausdorff space, if $\forall x, y \in X$ with $x \neq y$, there exist $U \in \mathscr{N}(x)$ and $V \in \mathscr{N}(y)$ such that $U \cap V = \emptyset$.

It is actually a separation property. A micro definition. Macro? Exercise 13 on Page 101, too artificial! Difference: space, not set.

Theorem 1.6

If X is a Hausdorff space, then every sequence of points of X converges to at most one point of X.

Theorem 1.7

Let X be a Hausdorff space. Then for every $x \in X$, $\{x\}$ is closed in X.

Definition 1.5

A topological space X is called a Hausdorff space, if $\forall x, y \in X$ with $x \neq y$, there exist $U \in \mathscr{N}(x)$ and $V \in \mathscr{N}(y)$ such that $U \cap V = \emptyset$.

It is actually a separation property. A micro definition. Macro? Exercise 13 on Page 101, too artificial! Difference: space, not set.

Theorem 1.6

If X is a Hausdorff space, then every sequence of points of X converges to at most one point of X.

Theorem 1.7

Let X be a Hausdorff space. Then for every $x \in X$, $\{x\}$ is closed in X.

Theorem 1.8

Let Y be a subspace of a Hausdorff space X. Then Y is a Hausdorff space.

Hausdorff +---> Product topology

Theorem 1.9 Let X and Y be Hausdorff spaces. Then $X \times Y$ is a Hausdorff space.

Hausdorff <---> Subspace

Theorem 1.8

Let Y be a subspace of a Hausdorff space X. Then Y is a Hausdorff space.

Theorem 1.9 Let X and Y be Hausdorff spaces. Then $X \times Y$ is a Hausdorff space.