Topology by Munkres James

何诣然

7-405, Sichuan Normal University

2nd semester, 2010-2011

Lecture 5

- Closure (continued)
- Limit point
- Interior

Closure (continued)

Outline

Lecture 5

• Closure (continued)

- Limit point
- Interior

Micro: pointwise

Theorem 1.1

Let X be a topological space and $A \subset X$.

- **1** $x \in \overline{A} \iff$ For any open set U in X, if $x \in U$, then $U \cap A \neq \emptyset$.

Each open set containing x is called a neighborhood of x. We use $\mathcal{N}(x)$ to denote all neighborhoods of x.

Theorem 1.2

Let X be a topological space whose basis is \mathscr{B} and $A \subset X$.

• $x \in \overline{A} \iff$ For any $V \in \mathcal{N}(x)$, $U \cap A \neq \emptyset$.

Exercise: The closure of $\{1/n : n \in \mathbb{N}\}$?

Closure <---> Subspace

Let Y be a subspace of a topological space X. Let $A \subset Y$ be a nonempty set. Then the closure of A in Y is the set

$$\overline{A}^Y := \bigcap \{B : A \subset B \text{ and } B \text{ is closed in } Y\}$$

Theorem 1.3

$$\overline{A}^Y = \overline{A} \cap Y.$$

Closure +---> Product topology

Theorem 1.4 (See Exercise 9 on Page 101) Let $A \subset X$ and $B \subset Y$. Then

$$\overline{A \times B} = \overline{A} \times \overline{B}.$$

Closure <---> Subspace

Let Y be a subspace of a topological space X. Let $A \subset Y$ be a nonempty set. Then the closure of A in Y is the set

$$\overline{A}^Y := \bigcap \{B : A \subset B \text{ and } B \text{ is closed in } Y\}$$

Theorem 1.3

$$\overline{A}^Y = \overline{A} \cap Y.$$

Closure <---> Product topology

Theorem 1.4 (See Exercise 9 on Page 101) Let $A \subset X$ and $B \subset Y$. Then

$$\overline{A \times B} = \overline{A} \times \overline{B}.$$

Closure (continued)

Revisit an example

The closure of $\{1/n : n \in \mathbb{N}\}$?

何诣然 (7-405, Sichuan Normal University)

Lecture 5

Limit point

Outline

Let A be a subset of a topological space X.

Definition 1.5

 $x\in X$ is said to be a limit point of A, if for every $V\in \mathscr{N}(x),$

 $V \cap (A \setminus \{x\}) \neq \emptyset.$

We use A' to denote the set of all limit points of A.

Remark 1.6

• a limit point of A is not necessarily in A.

a point in A is not necessarily a limit point of A.

 $\{1/n:n\in\mathbb{N}\}.$

Theorem 1.7

 $\overline{A} = A \cup A'$

Limit point

Let A be a subset of a topological space X.

Definition 1.5

 $x\in X$ is said to be a limit point of A, if for every $V\in \mathscr{N}(x),$

 $V \cap (A \setminus \{x\}) \neq \emptyset.$

We use A' to denote the set of all limit points of A.

Remark 1.6

() a limit point of A is not necessarily in A.

2 a point in A is not necessarily a limit point of A.

 $\{1/n:n\in\mathbb{N}\}.$

Theorem 1.7

```
\overline{A} = A \cup A'
```

Limit point

Let A be a subset of a topological space X.

Definition 1.5

 $x\in X$ is said to be a limit point of A, if for every $V\in \mathscr{N}(x),$

 $V \cap (A \setminus \{x\}) \neq \emptyset.$

We use A' to denote the set of all limit points of A.

Remark 1.6

() a limit point of A is not necessarily in A.

2 a point in A is not necessarily a limit point of A.

 $\{1/n:n\in\mathbb{N}\}.$

Theorem 1.7

$$\overline{A} = A \cup A'$$

Lecture 5

Interior

Outline

Lecture 5

- Closure (continued)
- Limit point
- Interior

Definition 1.8

Let A be a subset of a topological space X.

```
int(A) := \bigcup \{ B : B \subset A \text{ and } B \text{ is open in } X \}
```

is called the interior of A.

Remark 1.9

```
\bigcirc int(A) is open in X.
```

```
\bigcirc int(A) \subset A
```

```
  A \text{ is open } \iff \operatorname{int}(A) = A.
```

Theorem 1.10

 $x \in int(A) \iff$ There exists $V \in \mathscr{N}(x)$ such that $V \subset A$.

Definition 1.8

Let A be a subset of a topological space X.

```
int(A) := \bigcup \{ B : B \subset A \text{ and } B \text{ is open in } X \}
```

is called the interior of A.

Remark 1.9

- int(A) is open in X.
- $(a) \quad \text{int}(A) \subset A.$
- $A \text{ is open} \iff \operatorname{int}(A) = A.$

Theorem 1.10

 $x \in int(A) \iff$ There exists $V \in \mathcal{N}(x)$ such that $V \subset A$.

Definition 1.8

Let A be a subset of a topological space X.

```
int(A) := \bigcup \{ B : B \subset A \text{ and } B \text{ is open in } X \}
```

is called the interior of A.

Remark 1.9

- int(A) is open in X.
- $int(A) \subset A.$

Theorem 1.10

 $x \in int(A) \iff$ There exists $V \in \mathcal{N}(x)$ such that $V \subset A$.

Interior *webspace*

Question

Let Y be a subspace of a topological space X and let $A \subset Y$. $\operatorname{int}_{Y}(A) = \operatorname{int}(A) \cap Y$?

Interior +---> Subspace

Question

Let Y be a subspace of a topological space X and let $A \subset Y$. $int_Y(A) = int(A) \cap Y$?

No! Take A = Y. Dramatically different from Closure. Why does this happen?

Interior 🚧 Product topology

Theorem 1.11 $\operatorname{int}(A \times B) = \operatorname{int}(A) \times \operatorname{int}(B).$

Interior +---> Subspace

Question

Let Y be a subspace of a topological space X and let $A \subset Y$. $int_Y(A) = int(A) \cap Y$?

No! Take A = Y. Dramatically different from Closure. Why does this happen? Interior $\leftrightarrow \rightarrow$ Product topology

Theorem 1.11 $int(A \times B) = int(A) \times int(B).$