Topology by Munkres James

何诣然

7-405, Sichuan Normal University

2nd semester, 2010-2011

- Topological Spaces and Continuous Functions
- Basis for a Topology
- Metric and topology
- Subbasis
- Compare different topologies

Lecture 2

• Topological Spaces and Continuous Functions

- Basis for a Topology
- Metric and topology
- Subbasis
- Compare different topologies

Definition 1.1

Let X be a set, a topology on X is a collection τ of subsets of X satisfying the following conditions:

(1) $\emptyset \in \tau, X \in \tau$.

(2) The union of arbitrary elements of τ is an element of τ .

(3) The intersection of finite elements of τ is an element of τ .

Every element of τ is called an open set. (X, τ) is called a topological space.

Lecture 2

• Topological Spaces and Continuous Functions

Basis for a Topology

- Metric and topology
- Subbasis
- Compare different topologies

拓扑,作为一个集合族,包括的元素太没有特点,不容易把握, 找不到感觉.

Topology, as a collection, whose elements are too vague to be caught.

Basis

Definition 1.2

Let X be a set. A collection $\mathscr{B} \subset P(X)$ is a basis for a topology if

- $\forall x \in X, \exists B \in \mathscr{B} \text{ such that } x \in B.$ (Equivalently, $X = \bigcup_{B \in \mathscr{B}} B$)
- ② If $B_1, B_2 \in \mathscr{B}$ and $x \in B_1 \cap B_2$, then there is an element $B_3 \in \mathscr{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.

Each element of \mathscr{B} is called a basis element.

Example 1.3 (Examples of basis)

- In the real line \mathbb{R} , all open intervals.
- In the real line \mathbb{R} , all intervals of the form [a, b].
- Every topology itself.

Basis

Definition 1.2

Let X be a set. A collection $\mathscr{B} \subset P(X)$ is a basis for a topology if

- $\forall x \in X, \exists B \in \mathscr{B} \text{ such that } x \in B.$ (Equivalently, $X = \bigcup_{B \in \mathscr{B}} B$)
- ② If $B_1, B_2 \in \mathscr{B}$ and $x \in B_1 \cap B_2$, then there is an element $B_3 \in \mathscr{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.

Each element of \mathscr{B} is called a basis element.

Example 1.3 (Examples of basis)

- \blacksquare In the real line \mathbb{R} , all open intervals.
- **2** In the real line \mathbb{R} , all intervals of the form [a, b).
- Every topology itself.

Proposition 1.4 (Basis $\rightarrow \rightarrow$ Topology: Micro)

Let X be a set and \mathscr{B} be a basis. Define τ to be the collection of subsets $U \subset X$ satisfying the following property:

$$U \in \tau \Leftrightarrow \forall \ x \in U, \ \exists B \in \mathscr{B}, \ni : x \in B \subset U.$$

Then τ is a topology.

We say that τ is the topology generated by the basis \mathscr{B} .

Proposition 1.5 (Basis→→Topology: Macro)

Let X be a set, \mathscr{B} a basis, and τ the topology generated by \mathscr{B} . Then τ is equal to the collection of union of arbitrary elements in \mathscr{B} .

(*)

Lecture 2

- Topological Spaces and Continuous Functions
- Basis for a Topology
- Metric and topology
- Compare different topologies

Definition 1.6 (Metric Space)

Let X be a set. If a function $\rho: X \times X \to \mathbb{R}_+$, satisfies:

Then ρ is said to be a metric on X, (X, ρ) is called a metric space.

 $\text{ For } x \in X \text{, } \varepsilon > 0 \text{, let } B_{\rho}(x, \varepsilon) := \{ y \in X : \rho(x, y) < \varepsilon \}.$

Proposition 1.7 (Metric \rightarrow topology)

If ρ is a metric on X, then the collection $B := \{B_{\rho}(x, \varepsilon) : x \in X, \varepsilon > 0\}$ is a basis for a topology on X.

We call such topology as the metric topology.

Proposition 1.8

Let (X, ρ) be a metric space and $U \subset X$. Then U is open in the metric topology $\iff \forall x \in U, \exists \delta > 0, \exists \theta_{\rho}(x, \delta) \subset U.$

Topology \rightarrow **metric**: metrizable topology. A topology τ on X is said to be metrizable if there is a metric ρ on X such that the metric topology is the same as τ .

Subbasis

Outline

Lecture 2

- Topological Spaces and Continuous Functions
- Basis for a Topology
- Metric and topology
- Subbasis
- Compare different topologies

Definition 1.9

 $\mathscr{A} \subset P(X)$ is said to be a subbasis of X if for each $x \in X$ there exist $S \in \mathscr{A}$ such that $x \in S$.

Proposition 1.10

Let \mathscr{B} denote the collection of intersection of finite elements in \mathscr{A} . Then \mathscr{B} is a basis on X.

Lecture 2

- Topological Spaces and Continuous Functions
- Basis for a Topology
- Metric and topology
- Subbasis

• Compare different topologies

Definition 1.11

Let τ_1 and τ_2 be two topologies on a set X. Then τ_1 is finer(更细致) than τ_2 if $\tau_2 \subset \tau_1$. If $\tau_2 \subsetneq \tau_1$, then τ_1 is said to be strictly finer than τ_2 . We also say that τ_2 is coarser than τ_1 if τ_1 is finer than τ_2 .

Remark 1.12

If either $\tau_1 \subset \tau_2$ or $\tau_2 \subset \tau_1$, then we say that τ_1 and τ_2 are comparable.

Example 1.13 Let $X = \{1, 2, 3\}$, then

 $\{\emptyset, \{1\}, \{2\}, \{1,2\}, X\} \supset \{\emptyset, \{1\}, \{1,2\}, X\} \supset \{\emptyset, \{1,2\}, X\}.$

But $\{ \emptyset, \{1,2\}, X\}$ and $\{ \emptyset, \{2,3\}, X\}$ can't compare with each other.

Compare topologies: the role of basis.

Proposition 1.14 (Compare topologies by their bases)

Let \mathscr{B} and \mathscr{B}' be bases for the topologies τ and τ' on X, respectively. Then the following are equivalent.

- $\ \, \mathbf{1} \quad \tau \subset \tau'.$
- $\label{eq:and_states} \forall \ B \in \mathscr{B} \ \text{and} \ \forall \ x \in B, \ \exists \ B' \in \mathscr{B}', \ \exists x \in B' \subset B.$

Example 1.15

Consider the set \mathbb{R} .

- $\mathscr{B} := \{(a, b) : a, b \in \mathbb{R}\}.$ Then \mathscr{B} is a basis on \mathbb{R} . (standard topology, still write as \mathbb{R})

Compare the two topologies.

Exercise 1

In a metric space (X, ρ) , $\{B_{\rho}(x, \varepsilon) : x \in X, 0 < \varepsilon < 1\}$ is also a basis, which generates the same topology as the usual basis.