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Note

A Novel Method to Improve Individual
Animal Identification Based on
Camera-Trapping Data

EDUARDO MENDOZA,1,2 Department of Biology, Stanford University, Stanford, CA 94305, USA

PIERRE R. MARTINEAU, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
and Martineau & Associates, Menlo Park, CA 94025, USA

ELLIOTT BRENNER, Department of Biology, Stanford University, Stanford, CA 94305, USA

RODOLFO DIRZO, Department of Biology, Stanford University, Stanford, CA 94305, USA

ABSTRACT We present a novel method to improve individual identification of animals based on camera-
trapping data. The method combines computer tools and human visual recognition to help multiple users to
reach identification agreement. Application of this method to a bobcat (Lynx rufus) picture database from the
Jasper Ridge Biological Preserve resulted in a progressive increase in identification agreement between 2
users, as measured by the adjusted Rand index (ARI). An initial ARI value of 0.28 increased to a final value of
0.84 (1 ¼ maximum agreement). In contrast, comparisons involving random picture groupings consistently
rendered low ARI values (�0.05). The numbers of individuals named by the 2 users decreased from initial
values of 46 and 43 to final values of 25 and 29, respectively. The tool presented here will help researchers and
wildlife managers to identify individual mammals and monitor populations. � 2011 The Wildlife Society.

KEY WORDS adjusted Rand index, animal natural marks, bobcat, camera-trapping, individual identification, jasper
ridge biological preserve, Lynx rufus.

The use of camera-trapping to survey wildlife fauna is under-
going an explosive expansion (Cutler and Swann 1999, Kays
and Slauson 2008, Kelly 2008, Rowcliffe and Carbone 2008).
Factors underlying its increasing use include: amenability
of picture-derived data for quantitative analysis, low
labor costs in comparison to traditional inventory methods
(e.g., transects), and low environmental invasiveness (Kays
and Slauson 2008, Rowcliffe et al. 2008). Yet the most
advantageous characteristic of camera-traps is likely its effec-
tiveness in producing information on highly cryptic species
occurring in hard-to-access terrain (Jackson et al. 2005,
Tobler et al. 2008).
Presence of natural marks such as fur spot patterns (Jackson

et al. 2005, Heilbrun et al. 2006), skin blotches (Bhupathy
1991), tail marks (Swanepoel 1996), stripe patterns (Karanth
1995), body coloration patterns (Church et al. 2007),
and injury scars (Langtimm et al. 2004) makes individual
identification feasible, when based on camera-trapping
data. Individual identification has numerous applications
in ecological and behavioral studies. For example, it allows
for building of presence–absence matrices, which can be

analyzed with mark-recapture models to generate estimates
of population abundance (Karanth 1995, Heilbrun et al.
2006). This analytic approach produces more accurate popu-
lation estimates of wild fauna while avoiding the need to
capture and mark animals, which can harm them or be
logistically unfeasible.
Recent studies have shown that to produce sounder cam-

era-trapping data and unbiased population estimates, several
methodological aspects are important to consider, including:
the spatial array of cameras with respect to species’ habitat
use (Wallace et al. 2003, Karanth et al. 2004, Trolle et al.
2007, Rowcliffe et al. 2008), compliance with the assump-
tions of mark-recapture models (Karanth and Nichols 1998,
Trolle and Kery 2003, Heilbrun et al. 2006), sampling
intensity (Trolle and Kery 2003), the potential interaction
between camera presence and an animal’s behavior (Séquin
et al. 2003), and the adequate selection of animal marks to be
used to distinguish among different individuals (Karanth
1995, Heilbrun et al. 2003, Trolle and Kery 2003, Trolle
et al. 2008). However, less attention has been paid to the
need to reduce subjectivity in the process of visually identi-
fying individuals, despite that it has been shown that mis-
identification can produce significant biases in population
estimates (Trolle et al. 2008, Yoshizaki et al. 2009).
There are 2 main ways, not mutually exclusive, in which

misidentification and its potential impacts on population
estimates can be addressed. First, when misidentification
cannot be reduced but its source and approximate magnitude
are known, models can be built to explicitly incorporate such
effects into population estimations. For example, Yoshizaki
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et al. (2009) modeled the effect that over counting caused by
evolving natural marks (i.e., natural marks that change with
time) would have on populations estimates. Yoshizaki et al.
(2009) found that models not accounting for misidentifica-
tion resulting from evolving marks consistently overesti-
mated population size. Second, efforts can be focused on
improving the process leading to the individual identification
itself by using tools to automate the identification process.
This option is particularly useful when working with large
picture databases, which could be time-consuming and prone
to error. For example, Kelly (2001) used a 3-dimensional
computer-matching system to aid in classifying nearly 10,000
photographs of Serengeti cheetahs (Acinonyx jubatus). The
results of applying such a computer-based method were
promising in terms of their accuracy and capacity to process
a large database, however, the method’s performance was
clearly affected by picture quality and skewed camera angles.
Other attempts to apply computer-assisted matching have
been found to be successful in analyzing large picture data-
bases (approx. 24,000 pictures) of mammals such as hump-
back whales (Megaptera novaeangliae). Yet, these attempts
still strongly rely on the expert’s opinion to make pictures
amenable to be matched (Mizroch and Harkness 2003). The
many challenges that arise when dealing with individual
identification (e.g., variable camera angles and a variety of
natural marks) have precluded development of a fully auto-
mated method to identify individuals. Consequently, pic-
ture-based individual identification is largely based on ad hoc
protocols, which tend to strongly rely on human visual
inspection of pictures. This has slowed the development
of a standardized protocol for data quality control, although
studies on cetacean photo-identification have made import-
ant progress in this regard (Hammond 1986, Friday et al.
2000, Mizroch and Harkness 2003).
We developed a novel method to improve individual

identification based on computer-aided tools and visual
recognition of pictures. We tested our method by having
two independent users (hereafter classifiers) apply the
method to a database consisting of 1,072 pictures of bobcat
(Lynx rufus) we collected during two years of fieldwork.
Central to this method was that it allowed multiple people
to work in parallel in a cooperative process aimed to inter-
actively refine and reach consensus on individual identifi-
cation. Our goal was to evaluate to what extent the
application of our method resulted in an increased agreement
between identifications made by the independent classifiers
(assumed to be indicative of a more accurate identification) as
compared to randomly generated bobcat picture groupings.
We hypothesized that the application of our method would
result in an increase in picture classification agreement
between classifiers greater than would be expected just by
chance.

STUDY AREA

Our picture database was a product of a camera-trapping
study carried out at the Jasper Ridge Biological Preserve
(JRBP) in California, USA. The JRBP was operated by
Stanford University and covered an area of 481 ha encom-

passing a variety of vegetation types, including chaparral
scrubland, woodland, serpentine grassland and redwood for-
est patches, all co-occurring in a Mediterranean-type climate
(Field et al. 1996, Human and Gordon 1996).

METHODS

In March 2006, we set up a grid over the JRBP composed
of 12 camera-trapping stations. Stations consisted of 2 posts
(10 m apart) each holding a waterproof Sure Shot A-1TM

film camera (Canon, Lake Success, NY) connected to a
TrailMasterTM TM15500 active infrared monitoring system
(Goodson and Associates, Inc., Lenexa, KS). All camera-
trap stations operated continuously for 2 years (Mar 2006
to Apr 2008) with the support of a team of trained field
assistants.
We sent all film rolls obtained from the camera-traps to a

commercial vendor to be developed, scanned to the highest
available resolution, and digitally stored on compact discs.
We then uploaded the digital pictures onto a relational
database (MySQL, Inc., Cupertino, CA) and stored them
on a web-accessible file server. The picture uploading process
included the automated extraction of the date and time (hr
and min) data directly from the scanned pictures, as this
information was only available as a yellow printed time stamp
on each individual picture. We developed a custom image
processing code to automatically locate and parse time
stamps. Essentially, the code searched each scanned image
for patterns matching the time stamp format in a narrow
yellow spectral band. We wrote the code in Matlab (The
MathWorks, Inc., Natick, MA) using mathematical
morphology functions.
We stored pictures in the database and conducted further

processing using an interface designed in Access 2000
(Microsoft Corporation, Redmond, WA). During this proc-
essing we verified the extracted date and time information
and entered additional data regarding species identity and
number of individuals depicted in each picture. For the rest
of our study we focused on the individual identification of
bobcats from the 1,072 pictures mentioned above.
As a first step towards identifying individual bobcats,

we applied an automatic procedure to group pictures into
clusters based on the camera-trap station, date, and time of
their occurrence (hereafter, picture time clusters). We used
a 3-min cut-off time to group pictures within a time
cluster. We selected this cut-off time based on the obser-
vation that in a histogram showing the distribution of time
intervals between consecutive pictures at each site, 3 min
corresponded to the point where the distribution had a
marked drop.
As a result of applying the 3-min limit criterion, we gener-

ated 487 picture time clusters with an average size of 2.2
pictures per cluster and a range of 1 to 16 pictures.We carried
out a second phase of merging by focusing on pictures
separated by >3 min but that seemed to belong to the
same picture sequence. Such situations might have occurred
as a result of the clocks of the 2 cameras at one station being
marginally desynchronized. This subsequent processing
reduced the number of picture time clusters to 464.
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We created an online web interface to allow internet access
to the bobcat picture time clusters and their associated
information of time, date, and camera-trap station. This
web interface consisted of 2 main modules and provided
tools to help in individual identification. We developed
the first module (Bobcat identification tool) to help in the
naming of picture time clusters (see Supporting Information
Video 1: available online at www.onlinelibrary.wiley.com). A
particularly relevant characteristic of this module is that it
allowed classifiers to independently name bobcats in a paral-
lel, mutually blind procedure. Two classifiers visually
inspected individual pictures to identify the same bobcat
in different pictures. Separate picture time clusters contain-
ing pictures identified as the same bobcat were exclusively
labeled with the same name (e.g., Bobcat01) from a prede-
fined list of names (hereafter, named picture time clusters or
named clusters). We assumed all pictures within a picture
time cluster to be of the same individual. If multiple indi-
viduals were in the same picture, we focused upon and named
the more recognizable bobcat.
Prior to individual naming we used the visualization capa-

bilities of the bobcat identification tool to apply the protocol
employed by Mizroch et al. (1990) to categorize bobcat
pictures in terms of their quality. Using a computer spread-
sheet each classifier categorized pictures within clusters
into 3 levels (poor, medium, and excellent) based upon: 1)
their image quality and 2) their potential to help in individual
identification by showing clear views of distinctive natural
marks. We compared how classifiers categorized pictures
differently with correlation analysis. Individual identification
by the classifiers was based on presence of the dark spots
observed on the bobcats’ sides, ears, and tails in conjunction
with those observed on the front and back of legs (see Fig. 1).
Patterns of spots in bobcats’ fur have been used as a
reliable trait for individual identification as they are
distinctive and do not show evident change over time
(Heilbrun et al. 2003). We implemented a second module
(Bobcat reconciliation tool) to help form a consensus
between the classifications generated by different classifiers
(see Supporting Information Video 2: available online at
www.onlinelibrary.wiley.com). Following the initial, inde-
pendent individual identification, each of the classifiers used
the bobcat reconciliation tool to compare already named
picture time clusters. We allowed the classifier using the
reconciliation tool to compare their classifications with that
of the second, independent classifier. We provided each
classifier with the option to modify their classifications by
naming previously unnamed picture time clusters or renam-
ing already named picture time clusters. After finishing the
comparison of classifications, both classifiers went through
all of the bobcat pictures to do a final inspection to try to
ensure the uniqueness of all named individuals.
By assigning names to pictures, each classifier created their

own de facto partition between all named and unnamed
picture clusters. We assessed the level of agreement between
classifiers by comparing the picture clusters that were in the
named partitions of both classifiers. To evaluate the level of
agreement between classifiers, we calculated the adjusted

Rand index ARI (Hubert and Arabie 1985). This index
compares the level of similarity between 2 partitions (i.e.,
2 different classifications of picture clusters, in this case).
This comparison considers only picture clusters named by
both classifiers. Furthermore, the ARI has 2 specific traits
that make it particularly useful (Milligan and Cooper 1986).
First, the ARI considers that some level of agreement
between partitions might arise by chance. Accordingly, the
ARI is adjusted in the sense that it results in a value of zero
when the index equals its expected value. Second, the ARI
has an upper bound of one, whichmakes interpretation of the
level of agreement straightforward; the closer the ARI is to
one, the greater the similarity between 2 partitions (Hubert
and Arabie 1985). The ARI can also produce negative values
indicating that the agreement between partitions is worse
than expected by chance. There is no lower bound for the
ARI.
The formula to calculate the ARI for 2 partitions is:

ARI ¼
P
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with n ¼ total number of items being classified, nij ¼ num-
number of items in both partitions, and ni. and n.j ¼ number
of items in partitions i and j, respectively. In parentheses are
denoted the possible combinations of 2 items that can be
taken from the various sets of items described before. We
calculated the ARI at 3 different times during the processing
of the pictures: first, just after the classifiers finished the first
round of picture naming; second, after one of 2 classifiers
finished using the reconciliation tool; third, when both of the
classifiers finished using the reconciliation tool.
To contrast the levels of consensus reached by classifiers to

those that can be achieved by random processes, we carried out
a series of Monte Carlo simulations to generate a set of
random partitions of the picture clusters. We constrained
partitions from theMonte Carlo simulations to have the same
number and size of picture clusters as those actually produced
by each classifier at each stage of naming. For example, to
compare with the results of the first round of naming by
classifier A, we generated a set of 100 random partitions of
the picture clusters fixing the number and size of picture
clusters at each Monte Carlo simulation to correspond with
those of the classification created by classifier B after their first
round of naming. We carried out the same ARI comparisons
we made between classifiers but this time instead used the
corresponding Monte Carlo generated partition. For each
comparison, we recorded maximum ARI values.
Finally, we were interested in evaluating whether the num-

ber of pictures included in the clusters influenced the prob-
ability of them being named by the classifiers. Therefore, we
compared the distribution of sizes of picture clusters named
by each classifier at the beginning and at the end of the
study with the initial distributions of sizes of the clusters
available for naming using contingency tables. Differences in
the distributions of sizes of original picture clusters and
named picture clusters would be indicative of size-based
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biases in the selection of picture clusters to be named (e.g.,
clusters with more photos may be more likely to be named).

RESULTS

From the 464 picture clusters analyzed, 90 were deemed
by the 2 classifiers as solely containing poor pictures
both in terms of picture quality and recognition quality.
Single pictures constituted most of these picture clusters
(76%). There were 106 clusters with various image quality
scores that were deemed by both classifiers as poor in terms
of the potential of those clusters to help in individual
identification. There was little agreement between classifiers
in terms of their categorization of picture quality (Pearson

correlation ¼ 0.32), but greater agreement existed in terms
of their categorization of the potential of pictures to help in
individual recognition (Pearson correlation ¼ 0.56). As the
overall process of picture identification progressed, the num-
ber of names assigned by each classifier reduced. Classifier
A passed from originally assigning 46 different names to
assigning 25. Similarly, classifier B originally assigned 43
names but ended up assigning 29 names. In turn, the number
of named individuals by each classifier dropped by 45.6% and
33.6%, respectively (Fig. 2).
In contrast to the concurrence observed in the reduction

of the number of named bobcat individuals, there was a
discrepancy between classifiers in the proportion of picture

Figure 1. Picture time clusters showing (vertically) the same individual bobcat recorded at the Jasper Ridge Biological Preserve, California, at 3 different dates in
June and November 2006. Lines connect pictures allowing identification. The individual is identified by the fur patterns on the tail, back, ears, and rear views of
the front left legs and rear left and right legs. Use of picture clusters instead of individual pictures helps to link pictures that otherwise would be hard to match
together as belonging to the same individual due their low image quality or because of the absence of clear views of natural marks.
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clusters that received a name. Classifier A passed from
initially naming 306 picture clusters (66% of the total num-
ber of picture clusters) to naming 254 (55% of the total). In
comparison, classifier B increased the number of picture
clusters named by passing from 115 to 194 (25% and 42%
of the total, respectively). When we adjusted these figures by
discounting clusters not suitable to be identified and named,
final success reached in naming picture clusters was 71%
and 54% for classifier A and B, respectively. Overall,
classifiers identified and named 32 different bobcats from
which 22 (69%) were common to both classifiers through
shared picture clusters.
We identified evidence of an initial disagreement between

the original distribution of sizes of picture time clusters
and the distribution of sizes of clusters named by classifiers
(x2 ¼ 11.82, df ¼ 5, P ¼ 0.03). This discrepancy was
caused by a slight overrepresentation of intermediate-sized
clusters among named clusters by one of the classifiers
after the first round of inspection (Fig. 2). This difference,
however, did not continue in the subsequent round of
naming.
The level of agreement between classifiers quickly

increased, as measured by the proximity of the ARI values
to 1 (Fig. 3). Values of the ARI passed from an initial value of
0.28 (before any of the classifiers used the reconciliation tool)
to an intermediate value of 0.49 (after one of the classifiers

used the reconciliation tool) and finally to a value of 0.84
(after the 2 classifiers finished the reconciliation process).
This represented an increase of 300% in the ARI value at the
end of the study (Fig. 3).

Figure 2. Comparisons among distribution of sizes of bobcat picture clusters recorded between March 2006 and April 2008 at the Jasper Ridge Biological
Preserve, California. The initial distribution of picture clusters is shownwith black bars. Distributions of picture clusters generated by classifier A and classifier B
after their first and second round of naming are shown in white bars and gray bars, respectively. The asterisk indicates classifier’s picture cluster distribution that
statistically differs from the initial cluster distribution.

Figure 3. Similarity of bobcat picture groupings created by two classifiers
(A and B) and Monte Carlo simulations. Bobcat pictures were recorded
from March 2006 to April 2008 at the Jasper Ridge Biological Preserve,
California. Similarity between groupings is measured with the adjusted Rand
index (ARI). ARI values close to 1 indicate greatest similarity. Times 1 to 3
correspond to successive rounds of picture classification. Comparisons
between Monte Carlo simulations and classifiers A and B are indicated as
Monte Carlo 1 and Monte Carlo 2, respectively.
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We observed marked contrast between the results of
the comparisons of agreement between classifiers and the
comparisons of agreement between classifiers and Monte
Carlo simulations. Comparisons involving Monte Carlo
simulations rendered consistently low ARI values. Even
when focused on maximal ARI values, comparisons between
classifiers andMonte Carlo picture partitions generated ARI
values �0.05. Even the lowest ARI value resulting from the
comparison between classifiers (0.28) was 5.6 times greater
than the maximal value reached by the ARI in comparisons
involving Monte Carlo simulations (Fig. 3).

DISCUSSION

We found that the application of our individual identifi-
cation method resulted in a marked increase (300%)
in agreement between classifiers, as measured by the
ARI, after just 2 rounds of classification. The increase in
the level of agreement reached by classifiers was much greater
than the agreement resulting from comparisons between
classifications we generated via Monte Carlo simulations.
Therefore, we confirmed our initial hypothesis indicating the
utility of our approach to improve individual identification
based on camera-trapping data. In conjunction with our
computer-based tools, the companion ARImeasure of classi-
fication agreement was an effective parameter to evaluate
changes in identification agreement.
The distribution of sizes of picture time clusters named

by the classifiers reflected the original picture cluster distri-
bution of sizes indicating the lack of bias in the likelihood to
name a picture time cluster depending on its size. We found,
however, slight differences between classifiers in terms of the
number of picture clusters they named at the end of the
study. These differences are probably related to differences
between classifiers in terms of their appreciation of picture
quality and a picture’s potential to assist in individual recog-
nition, as is suggested by our comparison of the picture
categorizations carried out by both classifiers. The different
number of picture clusters named by different classifiers
highlights the risk of individual identification resulting in
a different number of named individuals, when a consensus
agreement is missing. To increase standardization of evalu-
ation criteria among classifiers and assist in the formation of
a classification agreement, it is highly desirable to carry out
practice trials prior to individual identification.
Our approach is a promising tool to improve the individual

identification of wild fauna based on camera-trapping
studies. Given that the database available for our analysis
consisted of scanned film, we needed to include in our
approach tools to extract information from images (e.g., date
and time) that otherwise would have been directly available
from digital metadata. The existence of many databases still
consisting of film pictures, as well as ongoing studies that
continue using film-based camera-traps, warrants the appli-
cation of tools such as those we applied here to manipulate
scanned pictures. Yet, our protocol will clearly benefit from
future modifications to fully exploit new technological
developments such as digital camera-traps and Global
Positioning System (GPS)-derived data. The flexibility of

the platform in which we based our tools provides great
adaptability to incorporate applications derived from these
technologies.
A more comprehensive process of evaluation would help to

maximize the potential of our approach. Aspects that should
be of relevance to include in such an evaluation include: 1)
the impact that the increase in the number of classifiers
has on the process and level of agreement reached, 2) the
comparison of our method with a fully automated method
(Kelly 2001), and 3) the application of our method to pictures
where individual identities are reliably known in advance to
assess identification accuracy. Because one of the ultimate
goals of individual identification is helping to generate popu-
lation size estimates, it would be relevant to evaluate the
effect that applying our method has on the calculation of
population estimates. We consider that the combined
application of methods such as ours with other modeling
approaches that account for sources of misidentification,
such as evolving natural marks (e.g., Yoshizaki et al.
2009), will lead to the emergence of a more robust approach
to animal individual identification.

Management Implications

The approach we present in this paper can be easily imple-
mented in a diversity of wildlife communities by researchers
and preserve managers to increase the accuracy of monitoring
of populations of species with distinctive, detectable marks.
Moreover, our approach can be used by instructors to
teach novice users to carry out individual identification
and to achieve homogeneous criteria within teams working
on mammal population monitoring. For example, classifier
teams can include local people living in remote areas, as long
as access to internet in nearby locations is possible.
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