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Abstract. We study the evolution of a many-particle system whose wave function
obeys the N-body Schrödinger equation under Bose symmetry. The system Hamiltonian
describes pairwise particle interactions in the absence of an external potential. We derive
a priori dispersive estimates that express the overall repulsive nature of the particle inter-
actions. These estimates hold for a wide class of two-body interaction potentials which

are independent of the particle number, N . We discuss applications of these estimates to
the BBGKY hierarchy for reduced density matrices analyzed by Elgart, Erdős, Schlein
and Yau.
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1. Introduction

Quantum mechanics dictates that the dynamics of N interacting particles at
zero temperature be described by a wave function satisfying the time-dependent
N -body Schrödinger equation. When N is large this description becomes imprac-
tical. A common remedy is to reduce the system degrees of freedom by replacing
the many-body Schrödinger equation by effective partial differential equations for
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single-particle wave functions. Thus, the many-body interaction is approximately
replaced by sums of effective one-particle potentials. This approach amounts to a
“mean-field” approximation, which is expected to be exact as N → ∞ in an appro-
priate sense. This formulation yields nonlinear evolution laws in 3 + 1 dimensions
which often lead to successful predictions. In particular, the dynamics of parti-
cles with integer spin (Bosons) has been described by nonlinear Schrödinger-type
equations [12, 13, 25, 30, 31].

The relation of mean-field approaches to the many-particle Hamiltonian evolu-
tion is an area of active research. In settings with Boson symmetry, fundamental
questions concern the rigorous derivation of nonlinear Schrödinger-type equations
from N -body evolution laws and the formulation of theories that transcend mean
field [3]. Recently, Elgart, Erdős, Schlein and Yau (EESY) [7–10] derived rigorously
mean-field limits for Bosons on the basis of BBKGY-type hierarchies for reduced
density matrices [26, 27].

In this paper, we study the N -particle Hamiltonian evolution of a Boson sys-
tem for large yet finite N . We derive certain a priori estimates for hydrodynamic
quantities, and examine some applications of these estimates to BBGKY hierarchies
formulated for dilute atomic gases [7–10]. Our goal is to understand how many-body
properties of the Boson system are connected to the mean-field limit.

The model equation for the particle system reads

−i∂tψN = HNψN , (1.1)

where ψN is the N -body wave function and HN is the Hamiltonian operator. This
HN has the form

HN =
∑

a

Ha +
∑
a�=b

Hab, a, b = 1, . . . , N, (1.2)

where a and b label the particles, Ha is the part of the Hamiltonian acting solely on
particle a, and Hab denotes the (pairwise) interaction between the particles a and
b. For identical particles, Ha is described by

Ha = −∆a + Vtrap(�xa) (1.3)

and the interaction Hab has the form

Hab :=
1
2
Vint(�xa − �xb), (1.4)

where �xa denotes the vector position of particle a (�xa ∈ R
3), Vtrap is a trapping

potential which confines the particles in space, and Vint is a two-body potential.
In our formulation, (1.1) is converted exactly to a set of hydrodynamic equations.

A priori estimates for finite N are derived here directly from these hydrodynamic
equations. Note that by (1.1), we have ψN (t) = U(t)ψN (0) where U(t) = eitHN , a
unitary operator. For large N , this representation of ψN (t) is not particularly useful
for a priori estimates and testable predictions.
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We proceed to discuss elements of the model. The trapping potential, Vtrap, is
introduced in experiments in order to keep the particles together. To avoid uneces-
sary complications such as the effect of bound states in our analysis, we set Vtrap

equal to zero, Vtrap ≡ 0. The case with a nonzero external potential, Vtrap �≡ 0, is
the subject of future work.

Next, we comment on the particle interactions, which are crucial for the system
evolution. In our model, the pairwise interaction, Vint, is considered as a known
short-range potential. For dilute gases, which are the primary focus of this inves-
tigation, the particle collisions are sufficiently rare and weak; hence, the distance
|�xa − �xb| (a �= b) remains mostly large in an appropriate sense. Consequently, each
particle is influenced only by gross features of Vint. The specific details of this poten-
tial should be immaterial for our purposes. In this vein, by considering particles that
repel each other, it suffices to assume that

Hab = V (|�xa − �xb|); V ≥ −c, V ′(s) ≤ 0 ∀ s ∈ R
+. (1.5)

Note that we consider only two-body interactions, neglecting effects of three-body
and higher-order collisions [29].

A key ingredient of the particle model is the scattering length l of the interac-
tion potential, Vint. This l encapsulates the gross features of the two-particle scatter-
ing [8]. Let the zero-energy scattering solution for the class of potentials Vint(�x) that
decay sufficiently fast at infinity have the form 1 − w0(�x) where lim|�x|→∞w0 = 0;
then, l is defined by l := lim|�x|→∞(|�x|w0). Accordingly, Vint can be expressed in the
scaled form [8, 21, 22]

Vint(�x) = l−2V1(|�x|/l), (1.6)

where V1 is a fixed potential with scattering length equal to unity. Thus, the Hamil-
tonian HN has two parameters, namely, the number, N , of particles and the scat-
tering length, l. In the EESY formulation [7–10], it is essential to allow for N → ∞
by keeping Nl fixed. A parameter that enters the mean-field limit of (1.1) is [8]

g := 4πNl. (1.7)

Thus, setting g = O(1) implies that the scattering length l scales with N−1.
The recent work by EESY [7–10] deserves special attention, because it provides

a rigorous justification of the mean-field limit of (1.1) for Bosons via an averaging
procedure. In Sec. 4, we outline their approach and derive certain a priori estimates.
The uniqueness of the solution to the BBGKY hierarchy in the mean-field limit is
also proved via a different argument by Klainerman and Machedon [16].

A crucial observation within the EESY framework is that, in order to be able
to pass rigorously to the limit as N increases, the two-body potential Vint has to be
appropriately scaled with N . For example, EESY [7–10] posit that Vint approaches
a delta function as N → ∞, which comes from (1.6) with l = N−1. These inter-
actions cannot be treated as a perturbation since they have an appreciable effect
for sufficiently large N . We note in passing that in a more elaborate model Vint is



November 24, 2008 15:16 WSPC/JHDE 00172

860 M. G. Grillakis & D. Margetis

replaced by the Fermi pseudopotential [2,14,15,17,18,29], an operator that consists
of a delta function times a space derivative acting on ψN . The use of this pseudopo-
tential allows for interesting extensions but causes mathematical difficulties and lies
beyond our present scope.

A few remarks on a mean-field limit of (1.1) and its variants are in order. This
limit can be derived heuristically under (1.6) with l = O(N−1) by approximately
replacing the wave function ψN by the tensor product

ψN ≈
N∏

a=1

φa, (1.8)

where φa := φ(t, �xa) and
∫

d�x|φ|2 = 1. By manipulation of (1.1) and neglect of
terms inconsistent with (1.8), a cubic nonlinear Schrödinger equation is recovered
for φ(t, �x). This equation reads [11]

−i∂tφ = Hφ+ g|φ|2φ− µ(t)φ, (1.9)

where H = −∆ +Vtrap and µ(t) = (g/2)
∫
d�x|φ|4; cf. [12,13,25,30,31]. This form of

µ does not appear in the results of Gross [12, 13], Pitaevskii [25] and EESY [7–10]
but is in agreement with the derivation by Wu [30, 31]. This µ(t) is not essential
since it can be absorbed into a phase factor for φ.

It is worthwhile mentioning the complementary view on particle dynamics
that invokes operator-valued distributions [1, 30, 31]. For the periodic case, see,
e.g. [14, 17, 18]. In this context, one defines the Boson annihilation operator Ψ(�x)
and its adjoint, Ψ∗(�x), for a particle at point �x. Accordingly, HN with the Fermi
pseudopotential is written in terms of Ψ and Ψ∗. The annihilation operator a0(t)
for the Bose condensate, the macroscopic quantum state in Bose–Einstein conden-
sation, is introduced as the average a0(t) =

∫
d�x{φ∗Ψ}, where φ(t, x) is the (one-

particle) condensate wave function. The evolution equation for φ can be derived by
linearization of HN in Ψ − φa0, which is considered as small in some sense, and
enforcement of (1.1) under (1.8) [24, 30, 31]. This approach offers physical insight
and is amenable to extensions, particularly the inclusion of higher-order scatter-
ing processes [3,17,18,29,30]. However, this formalism is less amenable to rigorous
treatment. In particular, the introduction of the Fermi pseudopotential, which is a
type of singular distribution, renders the analysis especially difficult.

Of course, tensor products such as (1.8) are not approximate solutions in any
classical sense. So, an issue is how to make this type of approximation meaningful.
The BBGKY hierarchy invoked by EESY [7–10], for which the Gross–Pitaevskii
equation provides a closure condition, offers a meaningful scheme for justifying (1.8):
if the Gross–Pitaevskii equation is satisfied then all the equations in the hierarchy
are satisfied as N → ∞.

To understand the system evolution by connecting macroscopic variables such
as φ with microscopic quantities for finite N , we resort to a priori dispersive esti-
mates which express the particle repulsions. These estimates are scale independent:
we derive them for interaction potentials of the form V (|�xa − �xb|), omitting the
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scaling which can be inserted in the end. Our basic underlying assumption is given
by (1.5).

Our a priori estimates are useful for the passage to the limit N → ∞, but also
offer insight into the case with finite N . The techniques employed in the present
work originated in [4, 23] in connection to the nonlinear Schrödinger equation (see
also [5, 28]). A new element of the present problem is the presence of a large num-
ber of interaction potentials and the fact that the hydrodynamic momenta are not
conserved by the flow. Our analysis addresses the question in what sense the poten-
tials are repulsive and what are the precise implications of this repulsive nature.

The static version of (1.1) is not addressed here. This case was studied by
Dyson [6] and by Lee, Huang and Yang [17]. A mathematical proof of the Bose–
Einstein condensation for the time-independent case was provided recently by Lieb
et al. [19–22].

The remainder of the paper is organized as follows. In Sec. 2, we derive an
a priori space-time estimate for the particle density function after the collapse
(identification) of two particle positions. Boson symmetry is not required for the
main result of Sec. 2. In Sec. 3, we restrict attention to Bosons and derive another
estimate for the square of an appropriately averaged (reduced) particle density. In
Sec. 4, we outline the EESY approach based on the BGGKY hierarchy for reduced
density matrices [7–10, 16], and derive a priori estimates in the context of this
formulation. The (Einstein) summation convention for repeated indices is employed
unless it is noted otherwise.

2. First Estimate by Coordinate Collapse

In this section, we derive an a priori space-time estimate for the particle density
of the N -body system described by (1.1)–(1.4) when N is large and finite. Boson
symmetry is not required for our main result but simplifies it considerably, as shown
below. Our motivation is to investigate in what sense the wave function ψN disperses
with time. The methodology followed here originates from the work of Lin and
Strauss [23].

Specifically, we show that∑
a�=b

∫
dtd �Xabρ(t, �Xab) ≤ N2‖ψN‖H1‖ψN‖L2, (2.1)

where the particle density function ρ is defined by

ρ(t, �x1, . . . �xN ) :=
1
2
|ψN (t, �x1, . . . �xN )|2. (2.2)

The reduced vector �Xab entering (2.1) comes from a basic collapse mechanism which
identifies two of the variables (�x1, . . . , �xN ). Hence, �Xab is defined by

�Xab := ( �X)�xa=�xb
∈ R

3(N−1), �X := (�x1, �x2, . . . , �xN ). (2.3)
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See Sec. 4 for a discussion on the motivation for this coordinate collapse. For Boson
particles, ψN remains invariant under permutations of �xa’s. Thus, the integrals
entering the sum of (2.1) are the same and the estimate (2.1) evidently becomes

mab :=
∫

dtd �Xab{ρ(t, �Xab)} ≤ ‖ψN‖H1‖ψN‖L2. (2.4)

Estimates (2.1) and (2.4) can be modified to manifestly become independent of
the number, N , of particles. As a matter of fact, these estimates are not optimal
since the term ‖ψN‖H1 scales as N1/2. We show that (2.1) can be replaced by∑

a�=b

∫
dtd �Xabρ(t, �Xab) ≤ N3/2‖�∇ψN‖L2‖ψN‖L2 , (2.5)

where �∇ = (�∇1, �∇2, . . . , �∇N ). In the same vein, estimate (2.4) (for Bosons) is
modified to

mab ≤ N−1/2‖∇ψN‖L2‖ψN‖L2 . (2.6)

The independence from N of these modified estimates becomes explicit for initial
data that form a tensor product, as discussed at the end of this section.

We proceed to prove (2.1). Our program consists of the following steps. (i) An
evolution equation is derived for the particle momentum density, expressing the
fact that momentum is not conserved by the flow (see (2.14)). (ii) This equation is
contracted with suitable vector fields to yield (2.19), which contains “error” terms
depending on the nature of particle interactions. (iii) Estimates for these error terms
are obtained directly. (iv) The contracted equation is integrated in space and time
to yield (2.1).

We now describe the procedure in detail. The evolution equation (1.1) is recast
to the form

i∂tψN +

(∑
a

Ha

)
ψN +

∑
a�=b

Hab

ψN = 0, (2.7)

where Ha = −∆a and Hab = V (|�xa − �xb|), which implies that our analysis will
be independent of any particular scaling of the interaction potential. By (1.5), the
basic assumption is

V ′(s) ≤ 0 ∀ s ∈ R
+. (2.8)

The particle coordinates are denoted by xj
a where j = 1, 2, 3 and a = 1, 2, . . . , N .

We consider the Euclidean space with metric

gab
jk := δjkδ

ab, j, k = 1, 2, 3, a, b = 1, 2, . . . , N, (2.9)

and use the notation

∇j
a :=

∂

∂xj
a

. (2.10)
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Next, we define the momentum variables and stress tensor. The components of
the momentum density for the ath particle are defined by

pj
a :=

1
2i

(ψ∗
N∇j

aψN − ψN∇j
aψ

∗
N ), j = 1, 2, 3, a = 1, 2 . . .N, (2.11)

where ψ∗
N is the complex conjugate of ψN . The stress tensor is

σjk
ab := (∇j

aψN )(∇k
bψ

∗
N ) + (∇j

aψ
∗
N )(∇k

bψN ), j, k = 1, 2, 3, a, b = 1, . . . , N.

(2.12)

For completeness, we provide the conservation law for the density ρ, although
this law is not invoked directly in the proof. The mass conservation statement reads

∂t{ρ} − ∇a
j {pj

a} = 0. (2.13)

Use of this law will be made at the end of this section and in Sec. 3.
The evolution equation for the momenta pa

j stems from differentiation of (2.11)
with respect to time and use of (1.1). The resulting equation reads

∂t{pj
a} − ∇k

b{σjb
ka} + ∇j

a{∆ρ} −
∑

b,b�=a

2V ′(|�xa − �xb|) x
j
a − xj

b

|�xa − �xb|ρ = 0, (2.14)

where ∆ :=
∑

a ∆a is the 3N -dimensional Laplacian. Equation (2.14) is not a
conservation law because of V ′ on the left-hand side. By defining the weights wab

and the 3N -dimensional vector �Ma = ( �M1, �M2, . . . , �MN) according to

wab := −2V ′(|�xa − �xb|), �Ma :=
∑

b,b�=a

wab
�xa − �xb

|�xa − �xb| , (2.15)

we rewrite (2.14) as

∂t{�p a} − ∇b
k{�σka

b } + �∇a{∆ρ} + �Maρ = 0, a = 1, 2, . . . , N. (2.16)

For algebraic convenience we have written �p a := (pa
1 , p

a
2 , p

a
3), the three-vector with

respect to the group of coordinates for �xa. Notice that the condition V ′ ≤ 0 for
repulsive interactions entails wab = wba ≥ 0.

Next, we contract the momentum equation, (2.14) or (2.16), with a suitable 3N -
dimensional vector field, �Y(ab). This field consists of N ordered three-vectors and is
defined by

�Y(ab) :=
(
�0, . . . ,�0,

�xa − �xb

|�xa − �xb| ,
�0, . . . ,�0,

�xb − �xa

|�xb − �xa| ,
�0, . . . ,�0

)
. (2.17)

This expression means that the sole nonzero three-vectors forming Y(ab) are the ones
in the ath and bth position in the way indicated above. We adopt the convention
that �Y(ab) = �Y(ba) and write Y j

c(ab) to denote the jth component of the vector located
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in the cth position of �Y(ab) (j = 1, 2, 3 and a, b, c = 1, . . . , N). The contraction of
the ath-particle momentum, �p a, with Ya(cd) equals

pa
jY

j
a(cd) = �pc · �xc − �xd

|�xc − �xd| + �pd · �xd − �xc

|�xd − �xc| , (2.18)

where no summation over c and d is implied. The contraction of (2.14) with the
field Y j

a(cd) by (2.17) produces the equation

∂t{pa
jY

j
a(cd)} − ∇b

k{σka
jb Y

j
a(cd)} + ∇a

j {Y j
a(cd)∆ρ}

+ (∇b
kY

j
a(cd))σ

ka
jb − (∇a

jY
j
a(cd))∆ρ+

∑
c

wac

xa
j − xj,c

|�xa − �xc|Y
j
a(cd)ρ = 0. (2.19)

We will show that the dispersive nature of (2.19) provides an a priori bound
for the collapsed density according to (2.1). For this purpose, we integrate (2.19)
over the time-slice [0, T ] × R

3N . The last two terms in the first line of (2.19) are
explicitly integrated out to zero, viz.∫

dtd �X∇b
k{σka

jb Y
j
a(cd)} = 0 =

∫
dtd �X∇a

j {Y j
a(cd)∆ρ}. (2.20)

We will return to the first term, ∂t{pa
jY

j
a(cd)}, near the end of this proof.

Our main task now is to investigate the nature of terms in the second line
of (2.19). We sum over all contractions with the vector fields �Y(cd) for c �= d. There
are N(N − 1)/2 different vector fields. For simplicity, we will relabel indices by
c = a, d = b and a = c.

First, we focus on the term −(∇a
jY

j
a(cd))∆ρ, which is integrated to furnish

∑
c �=d

∫
dtd �X{−(∇a

jY
j
a(cd))∆ρ}, �X = (�x1, �x2, . . . , �xN ). (2.21)

The identity

div�Y(ab) = �∇ · �Y(ab) =
4

|�xa − �xb| (2.22)

and the subsequent integration by parts in (2.21) with c = a and d = b yield

∑
a�=b

∫
dtd �X

{ −4
|�xa − �xb|

}
∆ρ = c

∑
a�=b

∫
dtd �Xab{ρ(t, �Xab)} ≥ 0, (2.23)

where ∆a(|�xa − �xb|−1) = 4πδ(�xa − �xb) and �Xab is defined in (2.3). Notice that
in our derivation so far, we did not have to assume that the particles are Bosons.
However, it should be borne in mind that in the case with Bosons the results are
simplified since all these integrals are equal.
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Next, we focus on the last term in (2.19), viz.

E :=
∑
a�=b

(
�Ma · �xa − �xb

|�xa − �xb| + �M b · �xb − �xa

|�xb − �xa|
)
ρ(t, �X), (2.24)

which by use of (2.15) can be written explicitly as the triple sum∑
a�=b

∑
c

(
wca

�xc − �xa

|�xc − �xa| ·
�xb − �xa

|�xb − �xa| + wcb
�xc − �xb

|�xc − �xb| ·
�xa − �xb

|�xa − �xb|
)
ρ(t, �X). (2.25)

Terms with c = b or c = a in the first or second sum of (2.25), respectively, add up
to a manifestly positive term. We turn our attention to terms with c �= a, b. Let us
pair the term

wca
�xc − �xa

|�xc − �xa| ·
�xb − �xa

|�xb − �xa| , (2.26)

which comes from the contraction with Y(ab), with the term

wac
�xa − �xc

|�xa − �xc| ·
�xb − �xc

|�xb − �xc| , (2.27)

which comes from the contraction with Y(bc). The sum of these two terms admits a
geometric interpretation as follows. Consider the triangle T (�xa, �xb, �xc) with vertices
�xa, �xb and �xc and denote the corresponding angles αa := α(a), αb := α(b) and
αc := α(c) as shown in Fig. 1. Evidently, the sum of terms (2.26) and (2.27) equals

wac[cos(αa) + cos(αc)] ≥ 0, (2.28)

which has a positive sign. In a similar manner, one can pair the term

wcb
�xc − �xb

|�xc − �xb| ·
�xa − �xb

|�xa − �xb| , (2.29)

which comes from the contraction with Y(ab), with the term

wbc
�xb − �xc

|�xb − �xc| ·
�xa − �xc

|�xa − �xc| , (2.30)

α(   )a

α(   )c

a b

c

Fig. 1. Geometric interpretation of interaction terms from (2.26) and (2.27) by the triangle
T (�xa, �xb, �xc).
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which comes from the contraction with Y(ac). The representation by the triangle of
Fig. 1 implies that the sum of the last two terms is

wcb[cos(αb) + cos(αc)] ≥ 0. (2.31)

As a matter of fact, by inspection of the sum of (2.26), and (2.27), we can define
the potential

U(�xa, �xb, �xc) := wca
�xc − �xa

|�xc − �xa| ·
�xb − �xa

|�xb − �xa| + wac
�xa − �xc

|�xa − �xc| ·
�xb − �xc

|�xb − �xc| . (2.32)

Accordingly, the quantity E from (2.24) or (2.25) is recast to the expression

E =
∑
a�=b

∑
c

U(�xa, �xb, �xc)ρ(t, �X). (2.33)

There are three remarks in order on expression (2.33).

Remark 2.1. There are overallN(N−1)2 terms in the summation (2.33), because
each contraction produces 2(N − 1) terms and there are N(N − 1)/2 contractions.
The number of terms with c = b or c = a, which have positive sign, is N(N − 1);
thus, the number of the remaining terms is N(N −1)(N −2) and we separate them
into two groups.

Remark 2.2. Notice the following term, which comes from (2.26):

−V ′(|�xc − �xa|) �xc − �xa

|�xc − �xa| ·
�xb − �xa

|�xb − �xa|ρ(t,
�X). (2.34)

This term can be thought of as a three-particle interaction: the particle c interacts
with a and b. If we consider the plane Pa,b that passes through �xa and is orthogonal
to the vector �xb − �xa, then in the half space that contains �xb the expression (2.34)
is positive. In contrast, in the complementary half space this expression becomes
negative. The idea is that (2.34) can be paired with another term where the particle
a interacts with b and c so that the sum of the two contributions is positive. This
argument gives general qualitative information on the particle mutual repulsion.

Remark 2.3. By replacing the vector fields �X in (2.17) with (�xa − �xb − �d)/|�xa −
�xb − �d |, where �d is some fixed vector, we obtain an estimate like the one in (2.4),
where the integration is over �xa − �xb = �d.

These remarks conclude the investigation of the last term in evolution law (2.19).
We have asserted that this term is positive.

The first term in the second line of (2.19) reads

Σ := (∇b
kY

j
a(cd))σ

ka
jb . (2.35)

Evidently, this term is positive, i.e. Σ ≥ 0 for the given vector fields.
It remains to collect the results obtained thus far in order to derive (2.4). In

summary, with regard to the second line of (2.19), we showed that the first and
third terms are positive and the second term yields the positive integral (2.23).
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Recall that (2.20) hold. By integrating the first term in (2.19) over the time-slice
[0, T ]× R

3N , we obtain the estimate

0 ≤
∫ T

0

dt
∫

d �X{−∂t(pa
jY

j
a(cd))} =

∫
d �X[(pa

jY
j
a(cd))|t=0 − (pa

jY
j
a(cd))|T ]

≤ ‖ψN‖L2‖ψN‖H1 . (2.36)

Here, we used definition (2.11) for the momentum variables. This statement con-
cludes the proof of estimate (2.1).

We proceed to show (2.5). First, we observe that (2.1) is recast to the form∑
a�=b

mab ≤ sup
t

∣∣∣∣∫ d �X{�Y · �P}
∣∣∣∣ , (2.37)

where �P is the momentum, �Y is a vector field defined by �Y =
∑

c �=d
�Y(cd) and each

�Y(cd) here has unit length; see (2.17). Therefore, if we write �Y = (�Y1, �Y2, . . . , �YN )
then we conclude that |�Ya| ≤ N .

Next, let us recall that the momenta are given by �P = (�p1, �p2, . . . , �pN) where
each �pa is defined by (2.11). Therefore, Cauchy–Schwartz implies that∫

d �X {|�pa|} ≤ ‖ψN‖L2‖�∇aψN‖L2 . (2.38)

Furthermore, we have the inequality

|�Y · �P | ≤
∑

a

|�Ya · �pa| ≤ N
∑

a

|�pa|. (2.39)

Thus, by integration and use of Cauchy–Schwartz as in (2.38), we find the bound

∫
d �X

{∑
a

|�pa|
}

≤
∑

a

‖ψN‖‖�∇aψN‖ ≤ ‖ψN‖N1/2

(∑
a

‖�∇aψN‖2

)1/2

, (2.40)

where ‖ · ‖ here denotes the L2 norm. The combination of (2.39) and (2.40)
yields (2.5).

Next we discuss implications of estimate (2.5) for initial ψN that is a tensor
product of one-particle states. First, note that the energy of the N -body system is
defined by

EN (t) :=
∫

R3N

d �X

{
1
2
tr(σ) +

∑
a�=b

V (|�xa − �xb|)2ρ
}
. (2.41)

This quantity is conserved, i.e. dEN/dt ≡ 0. It is written in the familiar form

EN (t) :=
∫

R3N

d �X

|�∇ψN |2 +
∑
a�=b

V (|�xa − �xb|)|ψN |2
 . (2.42)
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If the initial data form a tensor product, ψN (0, �X) =
∏N

a=1 φ(�xa), then the total
energy scales as EN (0) = NE1 where E1 is the energy per particle. Then, we have
the inequality ‖�∇ψN‖L2 ≤ N1/2

√
E1. Therefore, by (2.5), we obtain the bound∑

a�=b

mab ≤ N2‖ψN‖L2

√
E1. (2.43)

In the case where all particles are Bosons, the last bound reduces to

mab ≤
√
E1‖ψN‖L2, (2.44)

which is manifestly independent of N . This property is crucial if one wants to pass
to the limit N → ∞. (Notice that ‖ψN‖ here is independent of N .)

We close this section with the derivation of another estimate expressing the
dispersion of the particle density ρ. This estimate concerns the evolution of the
variance of ρ, viz.

d2

dt2

∫
d �X{ρD} ≥ 0, (2.45)

where the weight function D( �X) is defined by

D(�x1, �x2, . . . , �xN ) :=
∑
a�=b

|�xa − �xb|. (2.46)

This D is intimately connected with the procedure applied above. Indeed, the
derivative of D reads

�∇aD =
∑
b�=a

�xa − �xb

|�xa − �xb| . (2.47)

With the introduction of Y a
j by

∇a
jD(�x1, �x2 . . . �xN ) =: Y a

j , (2.48)

it becomes evident that we actually performed contractions with the vector fields
Y a

j for a = 1, 2, . . . , N . Estimate (2.45) for ρ results from the combination of (2.46)
with the mass conservation law (2.13).

A possible extension of our analysis is the inclusion of a nonzero trapping poten-
tial, Vtrap. To speculate the related difficulties, we recall that the repulsive nature
of particle interactions means that the particles tend to disperse so there are no
bound states. The addition of a trapping potential in the Hamiltonian will pro-
duce an effective attractive force that keeps the particles together. This influence
will compete with the dispersive effect described above, creating the possibility for
trapped states.



November 24, 2008 15:16 WSPC/JHDE 00172

A Priori Estimates for Many-Body Hamiltonian Evolution of Interacting Boson System 869

3. Second Estimate by Commutator Operators

In this section, we restrict attention to Bosons and derive an a priori estimate that
involves a space-time integral of the square of a reduced particle density function. We
prove this estimate by resorting to vector commutator operators and the evolution
of a suitably defined action and associated correlation function.

Specifically, we show that∑
a�=b

∫
R×R3

dtd�xa−b{(ρ̃a,b(t, �xab))2} ≤ N2‖ψN‖H1‖ψN‖3
L2 , (3.1)

where the averaged, reduced density ρ̃a,b is defined by

ρ̃a,b(t, �xa−b) :=
∫

R3(N−1)
d �Xa,bd�xa+b {ρ} . (3.2)

In the above, the variables �xa±b denote the center-of-mass coordinates

�xa±b :=
1√
2
(�xa ± �xb), (3.3)

and the reduced coordinates �Xa,b are defined by

�Xa,b := (�xc)c �=a,b ∈ R
3(N−2), (3.4)

i.e. �Xa,b stem from (�x1, �x2, . . . , �xN ) with the pair (�xa, �xb) being omitted.
By analogy with Sec. 2, we also modify (3.1) to the estimate∑

a�=b

∫
R×R3

dtd�xa−b

{
(ρ̃a,b(t, �xa−b))2

} ≤ N3/2‖∇ψ‖L2‖ψ‖3
L2, (3.5)

which is manifestly independent of the number, N , of particles. The case with initial
data that form a tensor product is discussed at the end of this section.

First, we briefly review and comment on the main assumptions and starting
equations. The many-particle wave function satisfies (2.7), which is recast to the
equation

i∂tψN − ∆ψN +
∑
a�=b

V (|�xa − �xb|)ψN = 0, (3.6)

where ∆ is the Laplacian in R
3N . The key idea in this section is to invoke commu-

tator vector operators, which we apply to conservation laws stemming from (3.6).
In addition to condition (2.8) on V , we impose Bose symmetry, i.e. require that ψN

remain invariant under permutation of any coordinate pair (�xa, �xb):

ψN (t, . . . , �xa, . . . , �xb, . . .) = ψN (t, . . . , �xb, . . . , �xa, . . .). (3.7)

This property is inherited by the density function defined by (2.2), viz.

ρ(t, . . . , �xa, . . . , �xb, . . .) = ρ(t, . . . , �xb, . . . , �xa, . . .). (3.8)
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Crucial in our considerations are the evolution laws (2.13) and (2.14) for mass
density and momentum. These equations read

∂tρ−∇b
kp

k
b = 0, (3.9)

∂tp
a
j −∇b

k{σka
jb + δk

j δ
a
b (−∆ρ)} +Ma

j ρ = 0, (3.10)

where j = 1, 2, 3 and a = 1, 2, . . . , N . The relevant quantities, namely, the density
ρ, the momenta pa

j , and the stress tensor σab
jk are defined by (2.2), (2.11) and (2.12).

In particular, σab
jk is rewritten as

σab
jk = ρ−1[pa

jp
b
k + (∇a

jρ)(∇b
kρ)]. (3.11)

It is worthwhile recalling the conservation of the total energy, EN (t), which we
will not use directly here. This law can be expressed as the conservation of the
integral (2.41): this quantity is a constant (dE/dt ≡ 0) and controls the right-hand
side of (3.1) provided that V is bounded below (see (1.5)).

The proof of (3.1) is based on the construction of suitable vector commutator
operators and study of associated evolution laws. Our program consists of the follow-
ing steps. (i) A vector commutator operator, �C, is constructed as a suitable average
over all particles. (ii) An action, L(t), is defined as the inner product 〈�C · �P (t)|ρ(t)〉
where �P is the 3N -dimensional momentum vector. (iii) The evolution of L(t) is
described in terms of distinct inner products, S�. (iv) Estimates are derived for
each S�. (v) The evolution equation for L(t) is integrated to yield (3.1).

We proceed to carry out this program. For each particle pair (a, b), we construct
the integral operator Bab by

(Babf)(�xa−b) :=
∫

R3N

1(�x ′
a+b)1( �X ′

a,b)
|�xa−b − �x ′

a−b|
f( �X ′)d �X ′. (3.12)

By using these Bab, we construct the 3N -vector commutator operator

�Ca;b := (0 . . . 0, [�xa−b;Bab], 0 . . . 0), (3.13)

where [A;B] := AB − BA denotes the commutator of A and B, and [�xa−b;Bab]
in (3.13) is placed in the ath position and acts on functions f according to

([�xa−b;Bab]f)(�xa−b) =
∫

R3N

�xa−b − �x ′
a−b

|�xa−b − �x ′
a−b|

f( �X ′)d �X ′. (3.14)

For our purposes, it is desirable to symmetrize �Ca;b and replace it by the operator

�C(a;b) := (0 . . . 0, [�xa−b;Bab], 0 . . . 0, [�xb−a;Bba], 0 . . . 0) = �Ca,b + �Cb,a. (3.15)

Subsequently, we average over all particles to obtain the 3N -vector operator

�C :=
∑
a<b

�C(a;b). (3.16)
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We use this �C to construct an appropriate action L(t) whose evolution paves
the way to estimate (3.1). With this goal in mind, let

�P := {pa
j}a=1,...,N

j=1,2,3 (3.17)

be the overall momentum vector and Cj
a denote the components of �C. Accordingly,

we consider the action

L(t) := 〈�C · �P (t)|ρ(t)〉. (3.18)

The time evolution of L(t) is described by

L̇(t) = 〈�C · ∂t
�P (t)|ρ(t)〉 − 〈�P (t)|�C∂tρ(t)〉. (3.19)

By using the conservation laws (3.9) and (3.10) and transferring the operator �C∇
on the right-hand side of the inner product, we obtain the equation

L̇(t) = Scm + Scv + Sds + Spr. (3.20)

The terms S� (
 = cm, cv, ds, pr) on the right-hand side express distinct physical
effects and are defined by

Scm := 〈ρ−1∇a
jρ∇b

kρ|(∇b
kC

j
a)ρ〉, (3.21)

Scv := 〈ρ−1pa
jp

k
b |(∇b

kC
j
a)ρ〉 − 〈pk

b |(∇b
kC

j
a)pa

j 〉, (3.22)

Sds := 〈(div �C)(−∆ρ)|ρ〉, (3.23)

Spr := 〈�C · ( �Mρ)|ρ〉. (3.24)

The origin of these terms is described as follows. The term Scm is due to the com-
pressibility of the fluid described by the conservation laws; Scv is a convective term;
Sds is due to dispersion; and Spr signifies a pressure contribution.

Our next goal is to show that all terms S� in (3.21)–(3.24) are positive. In
particular, Sds reduces to the integral appearing in (3.1). First, we derive alternative
expressions for Scm and Scv in terms of appropriate tensor products (see (3.35)
and (3.36)). To this end, we introduce some additional formulas which will be used
below. Recall definition (3.16) and write �C = (�C1, �C2, . . . , �CN ). The component �Ca

of �C reads

�Ca =
∑

b,b�=a

[�xa−b;Bab] (3.25)

and has derivative

∇c �Ca =
∑

b,b�=a

(∇a−b[�xa−b;Bab])(δc
a − δc

b). (3.26)

The combination of the identity

∇a−b
k [xj

a−b;Bab] = δj
kBab + [xj

a−b; (∇a−b
k Bab)] (3.27)
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with the formula

([xj
a−b;∇a−b

k Bab]f)(�xa−b)

= −
∫

R3N

(xj
a−b − x′,ja−b)(xk,a−b − x′k,a−b)

|�xa−b − �x ′
a−b|3

f( �X ′)d �X ′ (3.28)

yields the expression

(∇a−b
k [xj

a−b;Bab]f)(�xa−b) =
∫

R3N

rj
k(�xa−b; �x ′

a−b)f( �X ′)d �X ′, (3.29)

where the kernel rj
k is defined by

rj
k(�xa−b; �x′a−b) : = |�xa−b − �x′a−b|−3

× [|�xa−b − �x′a−b|2δj
k − (xk,a−b − x′k,a−b)(x

j
a−b − x′,ja−b)]. (3.30)

This kernel is positive definite. By the usual tensor convention we have

rab := (rj
k(�xa−b; �x′a−b)), j, k = 1, 2, 3. (3.31)

With regard to the momentum vector �P we write �P = (�p 1, �p 2, . . . , �pN ) and
denote the tensor product of two momentum components by

�p a ⊗ �p b = (pa
j p

b
k), j, k = 1, 2, 3. (3.32)

For a pair (a, b) of particles, we form the linear combinations

�p a±b :=
1√
2
(�p a ± �p b), a, b = 1, 2, . . . , N, (3.33)

which correspond to the center-of-mass coordinates (3.3). Consequently, we find the
useful relation

�p a−b ⊗ �p a−b =
1
2
(
�p a ⊗ �p a + �p b ⊗ �p b − �p a ⊗ �p b − �p b ⊗ �p a

)
. (3.34)

By combining (3.26)–(3.34), we express Scm and Scv from (3.21) and (3.22) as

Scm = 〈ρ−1∇ρ⊗∇ρ|(∇�C)ρ〉, (3.35)

Scv = 〈ρ−1 �P ⊗ �P |(∇�C)ρ〉 − 〈�P |(∇�C)�P 〉. (3.36)

With (3.23), (3.24), (3.35) and (3.36) in mind, we now show that the terms
Scm, Scv, Sds and Spr entering (3.20) are all positive. In particular, the dispersive
term Sds admits a space integral representation directly related to the left-hand
side of (3.1).
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First, we focus on the convective term, Scv. Since the tensor r(�xa−b; �x′a−b)
of (3.31) is evaluated at two points, we form the associated two-point momentum

�J( �X; �X ′) :=
√
ρ ′/ρ�P −

√
ρ/ρ′ �P ′, (3.37)

where

�P := �P (�xa+b, �xa−b, �Xa,b), �P ′ = �P (�x ′
a+b, �x

′
a−b, �X

′
a,b), (3.38)

ρ := ρ(�xa+b, �xa−b, �Xa,b), ρ′ = ρ(�x ′
a+b, �x

′
a−b,

�X ′
a,b). (3.39)

Accordingly, the convective term of (3.36) is expressed as the sum

Scv = 2
∑
a�=b

Wab, (3.40)

where the integrals Wab are given by

Wab :=
∫

d�xa+bd�x ′
a+bd �Xa,bd �X ′

a,b{〈 �Ja−b ⊗ �Ja−b|rab〉a−b} ≥ 0, (3.41)

with the obvious convention

�J a±b :=
1√
2
( �Ja ± �J b). (3.42)

In (3.41), 〈·|·〉a−b denotes the expectation value, or average, over the variables
(�xa−b, �x

′
a−b). By (3.40) and (3.41), we conclude that

Scv ≥ 0. (3.43)

Second, we concentrate on the compressible term, Scm, from (3.35). By intro-
ducing the gradient operator

∇a±b =
1√
2
(∇a ±∇b), (3.44)

Scm is recast to the form

Scm = 2
∑
a�=b

〈ρ−1∇a−bρ⊗∇a−bρ|(rab)ρ〉. (3.45)

Without further ado, we conclude that

Scm ≥ 0. (3.46)

Third, we show that the pressure term, Spr, is also positive. This case is more
demanding but crucial since it is connected intimately with the nature of particle
interactions. Equation (3.24) is recast to the expression

Spr =
∑

a

〈�Ca · ( �Maρ)|ρ〉 =
∑
a,b,c

b�=a,c �=a

Qa,b,c, (3.47)

where the triple interaction terms Qa,b,c have the integral representation

Qa,b,c :=
∫
wca

�xc − �xa

|�xc − �xa| ·
�xb − �xa − (�x ′

b − �x ′
a )

|�xb − �xa − (�x ′
b − �x ′

a )|ρ(
�X)ρ( �X ′)d �Xd �X ′. (3.48)
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Recall that wca is defined in (2.15). To derive the desired estimate, we pair appro-
priately terms participating in the sum of (3.47). So, we pair the terms

wca
�xc − �xa

|�xc − �xa| ·
�xb − �xa − �x ′

b + �x ′
a

|�xb − �xa − �x ′
b + �x ′

a |
ρ( �X)ρ( �X ′), (3.49)

wac
�xc − �xa

|�xc − �xa| ·
�xb − �xc − �x ′

b + �x ′
c

|�xb − �xc − �x ′
b + �x ′

c |
ρ( �X)ρ( �X ′). (3.50)

In the spirit of Sec. 2, we interpret the above terms geometrically by considering
the triangles

T (�xa, �xc, �xb − �x ′
b + �x ′

a ) =: T (a, c, b− b′ + a′), (3.51)

T (�xa, �xc, �xb − �x ′
b + �x ′

c ) =: T (a, c, b− b′ + c′), (3.52)

as shown in Fig. 2. By symmetry relation (3.8) for Bosons, we have

ρ(. . . �x ′
a . . . �x

′
c . . .) = ρ(. . . �x ′

c . . . �x
′

a . . .).

Hence, we can add to (3.49) and (3.50) the contributions from the terms

wca
�xc − �xa

|�xc − �xa| ·
�xb − �xa − �x ′

b + �x ′
c

|�xb − �xa − �x ′
b + �x ′

c |
ρ( �X)ρ( �X ′′), (3.53)

wac
�xc − �xa

|�xc − �xa| ·
�xb − �xc − �x ′

b + �x ′
a

|�xb − �xc − �x ′
b + �x ′

a |
ρ( �X)ρ( �X ′′), (3.54)

where �X ′′ denotes the variable resulting after we switch �x ′
a and �x ′

c . Accordingly,
we consider again the triangles

T (a, c, b− b′ + c′), T (a, c, b− b′ + a′). (3.55)

Thus, by the notation of Sec. 2, the sum of the four terms described
in (3.49), (3.50), (3.53) and (3.54) equals

wca{cosα(a, c, b− b′ + a′) + cosα(c, a, b− b′ + c′)}
+wac{cosα(a, c, b− b′ + c′) + cosα(c, a, b− b′ + c′)}; (3.56)

see Fig. 2. Evidently, this term is positive. Hence, we conclude that

Spr ≥ 0. (3.57)

We now focus on the dispersive term, Sds, and invoke the Fourier transform
with respect to the variables {�xa}. Let �ξa be the dual variable corresponding to the
three-vector �xa. By virtue of the dual 3N -vector

�Ξ = (�ξa+b, �ξa−b, �Ξa,b),

the Fourier transform of the 3N -dimensional Laplacian reads

F {−∆} = |�ξa+b|2 + |�ξa−b|2 + |�Ξa,b|2. (3.58)
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a
b

c

b−b′+a′

b−b′+c′

Fig. 2. Geometric interpretation of interaction terms from (3.47) and (3.48).

Note that formula (3.23) for Sds involves div �C. By (3.12)–(3.16), the divergence of
�C is

div �C = 2
∑
a�=b

Bab. (3.59)

In view of (3.12), the Fourier transform of the requisite Bab is

F {Bab} =
δ(�ξa+b)δ(�Ξa,b)

|�ξa−b|2
. (3.60)

Thus, we readily compute the transform

F{div �C(−∆)} =
∑
a�=b

1(�ξa−b)δ(�ξa+b)δ(�Ξa,b). (3.61)

By expressing Sds in terms of Fourier transforms, we conclude that the dispersive
term is in fact the integral

Sds =
∑
a�=b

∫
R3

d�xa−b{(ρ̃ab)2}, (3.62)

where the reduced density ρ̃ is introduced in (3.2).
So far, we proved that the terms entering the right-hand side of (3.19), the evolu-

tion equation for L(t), are positive. In particular, Sds is described by integral (3.62).
The final stage of the proof involves integrating (3.20) over a time interval [0, T ].
Thus, we obtain the equation∫ T

0

dt {Scm + Scv + Sds + Spr} = L(T )− L(0). (3.63)

Furthermore, the action L(t) defined in (3.18) is bounded by ‖ψN‖H1‖ψN‖3
L2 . Con-

sequently, we reach the desired space-time estimate (3.1). Note that the right-hand
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side of (3.1) is bounded by the energyEN (t) of the system; cf. (2.41). This statement
concludes the proof.

Estimate (3.1) can be modified to become (3.5) by means exactly analogous to
those developed in Sec. 2. For initial data that form a tensor product, we have the
bound ∑

a�=b

∫
R×R3

dtd�xa−b

{
(ρ̃a,b(t, �xab))2

} ≤ N2
√
E1‖ψN‖3

L2, (3.64)

which is manifestly independent of the number, N , of particles.
We close this section with a few comments. By defining the function

D( �X; �X ′) :=
∑
a<b

|�xa−b − �x′a−b| (3.65)

and the correlation function

C(t) :=
∫

d �Xd �X ′{D( �X; �X ′)ρ(t, �X)ρ(t, �X ′)}, (3.66)

we deduce the relations

Ċ(t) = L(t), L̇(t) ≥ 0. (3.67)

Because L(t) is increasing and bounded by the total energy EN (t), we conclude
that

lim
t→±∞L(t) = L±, (3.68)

i.e. C(t) in (3.66) is a convex function with a unique minimum, and is asymptotically
linear at t = ±∞.

4. Correlations and BBGKY Hierarchy

This section has two parts. The first part serves a brief review of the description of
the many-body Hamiltonian evolution for Bosons in terms of a BBGKY hierarchy
for particle reduced density matrices [7–10,26,27]. In the second part, we derive an
estimate for the one-particle marginal γ1; see (4.17) and (4.20).

4.1. Review of BBGKY hierarchy for k-particle marginals

We start again with the N -body Schrödinger equation (3.6). The ultimate goal is to
investigate aspects of this evolution for large N . Following EESY [7–10], we apply
the idea that the two-body interaction V is scaled in some way by incorporating
the notion that pair collisions are relatively rare and weak. One particular scaling
for V is [7–10]

V (|�xa − �xb|) = N2V1(N |�xa − �xb|) =
1
N

{
N3V1(N |�xa − �xb|)

}
, (4.1)

which is equivalent to (1.6) with a scattering length l = O(N−1). The scaling with
N is chosen so that the quantity inside the curly brackets approaches a constant
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times the delta function as N → ∞. We remind the reader that because of Boson
symmetry the N -body wave function ψN is invariant under permutations of the
space variables, i.e.

ψN (t, �x1, �x2, . . . , �xN ) = ψN (t, �xπ(1), �xπ(2), . . . , �xπ(N)), (4.2)

where π(a) is a permutation of the indices {1, 2, . . . , N}. Although we are interested
in the time evolution of the system, for the sake of convenience we will omit the
time (t) dependence whenever this is not relevant to the discussion.

A description of the particle system via a BBGKY hierarchy was proposed by
Spohn [26, 27] and forms the starting point in the analysis by EESY [7–10]. A key
element of this methodology is the density matrix γN := |ψN 〉〈ψN |, which is a trace
class operator represented by

γN (t, �x1, . . . , �xN |�x′1, . . . , �x′N ) := ψN (t, �x1, . . . , �xN )ψ∗
N (t, �x′1, . . . , �x

′
N ). (4.3)

By virtue of (3.6), the evolution equation for γN is

i∂tγN + (−∆N + ∆N ′)γN +
∑

a�=b,a′ �=b′
(Vab − Va′b′)γN = 0, (4.4)

where ∆N =
∑

a ∆a denotes the 3N -dimensional Laplacian, Vab := V (|�xa − �xb|),
and the primed indices indicate the coordinates (�x′1 . . . �x

′
N ).

Next, we describe features of the k-particle marginals γk stemming from γN .
For this purpose, it is convenient to define �XN := (�x1, �x2, . . . , �xN ) and �X ′

N :=
(�x′1, . . . , �x

′
N ). In order to average over some of the coordinates, we also define [7–10]

�Xk = (�x1, . . . , �xk), �XN−k = (�xk+1, . . . , �xN ); (4.5)

thus, �XN = ( �Xk, �XN−k) for k = 1, 2, . . . , N . The k-particle marginals as formed via
the partial averaging

γk( �Xk| �X ′
k ) =

∫
d�YN−k{γN ( �Xk, �YN−k| �X ′

k ,
�YN−k)}. (4.6)

Note that because of (4.2) it does not matter which variables we average out.
We now describe the evolution law for γk using (4.4) and definition (4.6).

By (3.3), let ∇a±b be the gradient operator corresponding to �xa±b. In view of
∆a − ∆a′ = ∇a+a′ · ∇a−a′ , setting a = a′ and integrating over a+ a′ for the aver-
aged variables γk yields zero. Define the sets Jk := {1, 2, . . . , k}, J ′

k := {1′, 2′, . . . , k′}
and Jc

k = {k+1, . . . , N}, the complement of Jk. The above averaging also produces
zero for the potentials Vab and Va′b′ if a, b ∈ Jc

k or a′, b′ ∈ Jc′
k when we identify the

variables a = a′ and b = b′, i.e. we identify the coordinates (�xk+1, . . . , �xN ) with
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(�x′k+1, . . . , �x
′
N ). Consequently, the evolution equation for γk reads

i∂tγk − (∆k − ∆′
k)γk +

 ∑
a,b∈Jk

a�=b

Vab −
∑

a′,b′∈J′
k

a′ �=b′

Va′b′

 γk

+
∑

a∈Jk,a′∈J′
k

∑
b∈Jc

k

∫
d�YN−k[V (|�xa − �yb|) − V (|�xa′ − �yb|)]

× γN (�x1 . . . �xa . . . �xk, �yk+1 . . . �yb . . . �yN |�x′1 . . . �x′a . . . �x′k, �yk+1 . . . �yb . . . �yN )

= 0. (4.7)

We proceed to write (4.7) as a BBGKY-type hierarchy for γk. Because of Boson
symmetry, integrations over b ∈ Jc

k are reduced to

(N − k)
∑
a∈Jk

∫
d�YN−k−1d�yk+1[V (|�xa − �yk+1|) − V (|�x′a − �yk+1|)]

×γN(�x1 . . . �xa . . . �xk, �yk+1, �YN−k−1|�x′1 . . . �x′a . . . �x′k, �yk+1, �YN−k−1). (4.8)

With the definitions Hk := −∆k +
∑

a,b∈Jk
Vab where a �= b and

Ca,a′
V,k+1[γk+1] =

∫
d�yk+1[V (|�xa − �yk+1|) − V (|�x′a − �yk+1|)])

×γk+1(Xk, yk+1|X ′
k, yk+1), (4.9)

(4.7) takes the form

i∂tγk + (Hk −Hk′)γk + (N − k)
∑
a∈Jk

∑
a′∈J′

k

Ca,a′
V,k+1[γk+1] = 0. (4.10)

This set of coupled of equations constitutes a finite BBGKY-type hierarchy for γk

where k = 1, 2, . . . , N . Evidently, each γk depends on N .

4.2. Estimate for one-particle density matrix γ1

So far, we have essentially reviewed the formulation by EESY [7–10]. In the follow-
ing, we exploit this framework to derive an estimate that involves γ1. We assume
that the interaction potential V1 of (1.6) is integrable, V1 ∈ L1(R3).

For finite N , the first equation of hierarchy (4.10) reads

i∂tγ1 − (∆1 − ∆1′)γ1 + (N − 1)C1,1′
V,2 [γ2] = 0, (4.11)

where γ2 = γ2(�x1, �x2|�x′1, �x′2). To motivate the analysis for finite N given below, we
first consider the simpler case where N → ∞, in which the interaction potential
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approaches a constant times a delta function. As N → ∞, by the scaling of (4.1),
we have the limit

VN (·) := (N − 1)N2V1(N |�xa − �yk+1|) → gδ(|�xa − �yk+1|), (4.12)

where g is a fixed positive parameter (g > 0). In effect, we arrive at the basic
collapse mechanism that reduces γ2 to a function of 6 variables, viz.

B2[γ2] := g {γ2(�x1, �x1|�x′1, �x1) − γ2(�x1, �x
′
1|�x′1, �x′1)} . (4.13)

Thus, (4.11) becomes

i∂tγ1 − (∆1 − ∆1′)γ1 + B2[γ2] = 0. (4.14)

The partial Fourier transform of (4.14) has the relatively simple structure of a
transport law (see (4.18)). Next, we derive an estimate for the forcing term B2[γ2]
of (4.14). Notice that the operator B2 acting on γ2 is written as

B2[γ2] = g

∫
d�YN−2{ψN(�x1, �x1; �YN−2)ψ∗

N (�x1, �x
′
1; �YN−2) − ψN (�x1, �x

′
1; �YN−2)

×ψ∗
N (�x′1, �x

′
1; �YN−2)}. (4.15)

By writing

ρ̃(�x1, �x2) :=
∫

d�YN−2

{
1
2
|ψN (�x1, �x2, �YN−2)|2

}
(4.16)

and denoting B2[γ2] by B2(�x1, �x
′
1), we have the estimate

‖B2(t)‖2
L2

1−1′ (L
1
1+1′)

=
∫

d�x1−1′

[∫
d�x1+1′ |B2(�x1+1′ , �x1−1′)|

]2
≤ 2

∫
d�x1−1′

[∫
d�x1+1′{

√
ρ̃(�x1, �x1)

√
ρ̃(�x1, �x

′
1)}
]2

≤
(∫

d�x1ρ̃(�x1, �x1)
)[∫

d�x1−1′

(∫
d�x1+1′ ρ̃(�x1, �x

′
1)
)]

= c

∫
d�x1ρ̃(�x1, �x1), (4.17)

by the definition of ρ and ρ̃. It should be borne in mind that the density ρ̃ depends
on t.

In order to study the implication of (4.17), let us write ∆1−∆1′ = ∇1+1′ ·∇1−1′

and B2(�x1, �x1′) = B2(�x1+1′ , �x1−1′). We proceed to derive an estimate involving γ1.
By taking the Fourier transform of (4.14) in the �x1+1′ variable and denoting the
dual variable by �v, we arrive at the transport equation

∂tγ̂1 − 2π�v · ∇1−1′ γ̂1 = B̂2(t, �v, �x1−1′), (4.18)
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where γ̂1(t, �v, �x1−1′) denotes the Fourier-transformed function. For the sake of some
simplicity, we assume that the initial data for γ1 are zero, i.e. γ1(t = 0) = 0. Thus,
the solution to (4.18) is

γ̂1(t, �v, �x1−1′) =
∫ t

0

B̂2(s, �v, �x1−1′ − 2πs�v )ds. (4.19)

On the basis of (4.19), we derive the estimate

sup
t,�v

‖γ̂1‖2
L2 = sup

t,�v

∥∥∥∥∫ t

0

ds
∫

d�y{ei2π�y·�vB2(s, �y, �x1−1′ − 2πs�v )}
∥∥∥∥2

L2
1−1′

≤
∥∥∥∥∫ t

0

ds
∥∥∥∥B2(s)

∥∥∥∥
L1

1+1′

∥∥∥∥2

L2
1−1′

≤ |t|
∫ t

0

ds
∥∥∥∥B2(s)

∥∥∥∥2

L2
1−1′ (L

1
1+1′)

. (4.20)

The combination of (4.20) with (4.17) and (2.1) provides the desired estimate for
γ1 as N → ∞.

This analysis applies directly to the case of finite N with minor modifications.
First, (4.18)–(4.20) remain intact under the replacement (N−1)C1,1′

V,2 ≡ B2 in (4.11).
Second, in view of Remark 2.3 and for V1 ∈ L1(R3), estimate (4.17) becomes∥∥∥B2(t)

∥∥∥2

L2
1−1′(L

1
1+1′ )

≤
(∫

d�dVN (�d)
∫

d�x1ρ̃(�x1, �x1 + �d)
)[∫

d�x1−1′

(∫
d�x1+1′ ρ̃(�x1, �x

′
1)
)]

= c

∫
d�dVN (�d)

∫
d�x1ρ̃(�x1, �x1 + �d)

≤ ‖VN‖L1 sup
�d

∫
d�x1ρ̃(�x1, �x1 + �d). (4.21)

Next, we explain how one obtains estimates for γ1 that are manifestly indepen-
dent of the number, N , of particles (in the spirit of Secs. 2 and 3). For this purpose,
we consider initial data for ψN that form a tensor product, and retain the potential
V . Equation (4.11) for finite large N can be written as

i∂tγ1 − (∆1 − ∆1′)γ1 + [(N − 1)/N ]CV [γ2] = 0, (4.22)

where

CV [γ2] =
∫

d�z ṼN (�z)[γ(�x1, �x1′ − �z|�x1, �x1′) − γ2(�x1, �x1′ |�x1′ , �x1′ − �z)], (4.23)

and ṼN (�z) := N3V (N�z). This scaled potential is expected to approach a delta
function. Thus, any acceptable estimate should involve only ‖ṼN‖L1, since this is
the only N -independent quantity.
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Notice that the γ2 in (4.23) is bounded by the marginal densities of (4.16),

|γ2(t, �x1, �x2|�x1′ , �x2′)| ≤
√
ρ(t, �x1, �x2)

√
ρ(t, �x1′ , �x2′). (4.24)

Using (4.24), the form of CV by (4.23) and Cauchy–Schwartz, we find∫ T

0

dt‖CV [γ2]‖L1
1+1′

≤ ‖ṼN‖L1 sup
�z

(∫
dtd�x1 {ρ(t, �x1, �x1 − �z)}

)1/2

×
(∫

[0,T ]×R3
dtd�x1+1′ {ρ(t, �x1, �x1′)}

)1/2

. (4.25)

The first observation is that the quantity∫
dtd�x1 {ρ(t, �x1, �x1 − �z)} (4.26)

is estimated by C
√
E1 where E1 is the energy per particle (EN (t = 0) = NE1).

Therefore, if we square and integrate with respect to the 1 − 1′ variables, we have∥∥∥∥∥
∫ T

0

dt

∥∥∥∥∥ CV [γ2]‖L1
1+1′

‖2
L2

1−1′
≤ CT. (4.27)

The last inequality implies the estimate

sup
�v

‖γ̂1(t)‖L2 ≤
√
|t|C. (4.28)

Similarly, if we raise (4.25) to the fourth power and integrate, we obtain

sup
�v

‖γ̂1(t)‖L4 ≤ |t|1/4C. (4.29)

Here, we used ∫
d�x1−1′

(∫
[0,T ]×R3

dtd�x1+1′ρ(t, �x1, �x1′)

)2

≤ T

∫
dtd�x1−1′

(∫
d�x1+1′ρ(t, �x1, �x1′)

)2

(4.30)

along with the fact that the quantity∫
dtd�x1−1′

(∫
d�x1+1′ρ(t, �x1, �x

′
1)
)2

(4.31)

is estimated by C
√
E1. The derived estimates for γ1 are independent of N but do

depend on time because we treat CV [γ2] simply as forcing in the transport equation.
It is natural to ask whether this analysis can be extended to k-particle marginals

for k > 1. However, evolution equations (4.10) satisfied by γk cannot be converted
to simple transport laws if k > 1 because of the presence of interaction potentials.
Hence, the procedure applied hitherto is not directly applicable to the case with
k > 1. The derivation of estimates for γk>1 is left for future work.
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