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Fick’s law for the diffusion of adsorbed atoms �adatoms� on crystal surfaces below roughening is generalized
to account for surface reconstruction. In this case, material parameters vary spatially at the microscale, and the
coarse graining for crystal steps via Taylor expansions is not strictly applicable. By invoking elements of the
theory of composites in one independent space dimension, we homogenize the microscale description to derive
the macroscopic adatom flux from step kinetics. This approach relies on a multiscale expansion for the adatom
density. The effective surface diffusivity is determined through appropriate discrete averages of microscale
kinetic parameters.

DOI: 10.1103/PhysRevE.79.052601 PACS number�s�: 81.15.Aa, 68.43.Jk, 47.11.St

I. INTRODUCTION

Below the roughening transition, crystal surfaces slightly
miscut with respect to a low-index orientation consist of
nanoscale terraces separated by atomic line defects �steps�
�1,2�. Stepped surfaces have long played a critical role in
crystal growth, thin film epitaxy, surface chemistry and ca-
talysis, yet their near-equilibrium properties remain the sub-
ject of intensive studies. A crucial issue is to understand how
the microscale step kinetics influences surface morphologies
at the macroscale �2�.

Semiconductor surfaces exhibit distinct structural phases
that depend on various conditions such as temperature and
misorientation angle. This surface reconstruction �SR� has
been the focus of theoretical and experimental works �see
�3–6� for reviews�. Hundreds of phases for Si have been
reported �7�. For example, a type of SR on Si�100� is mani-
fested by the formation on each terrace of dimer rows in one
of two possible directions, parallel or perpendicular to step
edges �8–11�. Material parameters, e.g., the terrace diffusiv-
ity, can then vary significantly across neighboring terraces.
Despite such microscopic inhomogeneities, the surface ap-
pears homogeneous at large scales. Here, we derive a mac-
roscopic law for the adatom flux consistent with the SR mi-
crostructure by properly averaging out microscale details.

The notion of averaging is central in the theory of com-
posites �12,13�. Three well-separated scales are assumed: �i�
the microscale, where inhomogeneities are evident; �ii� the
mesoscale, where the system appears homogeneous and the
analysis is carried out conveniently; and �iii� the macroscale.
For the system of crystal steps, the microscale pertains to
essentially one terrace, the mesoscale describes a sample of
many steps, and the macroscale expresses a macroscopically
large sample of the surface. The idea is to decouple the me-
soscale and macroscale descriptions: in the latter, local aver-
ages of fields satisfy homogenized laws with effective mate-
rial parameters.

In this Brief Report, we apply a version of homogeniza-
tion theory �12,14,15� to extend Fick’s macroscopic law of
adatom diffusion, an ingredient of crystal surface evolution,
to terraces characterized by a sequence of distinctly different
kinetic parameters in one space dimension �1D�. Generally,
Fick’s law has the form

Jav = − De��h� · ��av, � = ��x,�y� , �1�

where Jav and �av are local averages of the adatom flux and
density, and De is an effective diffusivity �a scalar coefficient
in 1D�. Previous macroscopic models for stepped surfaces
invoke Eq. �1� by the assumption that microscale material
parameters are constants across terraces and steps �16–22�.
In that case, Eq. �1� is derived via standard coarse graining:
discrete variables for consecutive steps are viewed as inter-
polations of smooth �continuous� functions and are Taylor
expanded accordingly. This approach is deemed inadequate
for SR. Here, we derive De, and the related surface mobility,
via particular averages of terrace diffusivities and step ki-
netic rates. We also discuss the extension of our results to
two independent space dimensions �2D�, where De is strictly
a tensor �22�.

Besides the scale separation outlined above, we postulate
that steps are smooth boundaries �e.g., straight lines in 1D�
and are subject to deterministic linear kinetics. These as-
sumptions follow the celebrated Burton-Cabrera-Frank
�BCF� model �1,23�.

We start with the formalism for diffusion in layered media
described by Holmes �14�, who applies continuity of density
and flux at the microscale. For mathematical convenience,
we take the adatom flux to be continuous at each step edge.
Thus, by mass conservation steps do not move. This assump-
tion appears paradoxical in the context of surface evolution.
In fact, it may be interpreted as an approximation for long
times, as discussed in the conclusions. The adatom density
here is allowed to have a jump discontinuity at every edge
�see Eq. �2��. This approach not only suffices to yield Fick’s
law, whose form and parameters are independent of the step
velocity and energetics, but also aims to shed light on the
nature of this law from a multiscale perspective. Determining
the evolution of the surface height requires, in addition, the
description of the �rather complicated in SR� step interac-
tions. This aspect is not addressed in this Brief Report.

II. 1D MICROSCALE MODEL

The problem geometry is shown in Fig. 1. The step train
is monotonic, with step positions x0 , . . . ,xN and atomic
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height a, where 0�xi−xi−1=O�a� �24�, i=1, . . . ,N�N�1�.
At the ith step edge, we impose the kinetic conditions

f i = ki��i − �i
eq�, − f i = ki��i+1 − �i

eq� �x = xi� , �2�

where �i
eq is the equilibrium adatom density �1� and f i

=Ji�xi�=−Ji+1�xi� is the mass flux at the ith step edge with
attachment-detachment kinetic rate ki. Note that �i�x� and
Ji�x�=−Di�x��x�i are the adatom density and flux, respec-
tively, on the ith terrace, i.e., the region xi−1�x�xi, and
Di�x� denotes the corresponding terrace diffusivity. By Eq.
�2�, the adatom flux is continuous while the density has the
jump �i+1−�i=−�2 /k�f i at xi. This �i�x� satisfies the steady-
state diffusion equation, �x�Di�x��x�i�=0, in the quasisteady
approximation. Each Di�x� and ki has lower and upper posi-
tive bounds �to be invoked later�. In typical situations of SR,
Di and ki may form periodic sequences. The step height, a, is
a constant in our analysis. We will see that our major results
are independent of this assumption �and can in fact include
a’s that vary with i�. Rates ki different for up- and down-step
edges �25,26� can be incorporated directly, as is shown be-
low.

The step train described above is viewed as a mesoscale
constituent element, of size d=O�Na�, of the large-scale
surface morphology of size ��d���. We introduce the small
�nondimensional� parameter �=a /d=O�1 /N�, where �xi
−xi−1� /d=O���. Equation �1� will be derived in the limit
�→0 with N�=O�1� �22�.

III. MULTISCALE EXPANSION

For ��1 the adatom flux and density depend on the mac-
roscopic �slow� variable x and the microscopic �fast� variable
x̃= �x− x̆� /� �12,14�. We choose x̆=x0 so that x̃0� x̃ �x=x0
= �x0− x̆� /�=0 for later algebraic convenience. The density
�i=� is replaced �in an appropriate sense� by the global ex-
pansion

� = ��0��x, x̃� + ���1��x, x̃� + �2��2��x, x̃� + ¯ , �3�

where ��l� are �-independent, bounded coefficients �which
should not be confused with derivatives of ��. The operator
�x is thus replaced by �−1�x̃+�x. Next, we substitute Eq. �3�
into the diffusion equation for �i and condition �2� at every
point x̃i� x̃ �x=xi

. Naturally, we will separate terms sharing the
same powers of � to obtain and solve a cascade of equations

for ��l�. In view of Eq. �3�, the flux Ji=J is expressed for-
mally by �27�

J = − �−1Di��x̃ + ��x����0� + ���1� + �2��2� + ¯� . �4�

The macroscopic limit of ��i ,Ji� is ���0� ,J�0��, anticipated to
be x̃ independent. As is typical in homogenization problems,
fully determining this limit requires applying solvability con-
ditions to higher-order terms ��l�. �Expansion �3� is in es-
sence a singular perturbation.�

IV. HOMOGENIZATION CASCADE AND MAIN RESULTS

By the balance of O��0� terms, ��0� satisfies
�x̃�Di�x��x̃�

�0��=0, by which ��0�=Ai�x�x̃+Bi�x�, where
Ai ,Bi=O�1�. Hence, by Eq. �4�, J=−�−1DiAi+O�1� and the
continuity of flux at every point x̃= x̃i yields DiAi=D1A1. By
Eq. �2� we apply the jump condition �i+1−�i=−�2 /k�J at x̃i,
which entails Bi+1−Bi= �Ai−Ai+1�x̃i+dqiAi where qi
�2Di / �kia�=O�1� �22�. By summing up the differences
Bi+1−Bi we obtain Bi�x� in terms of A1�x� and B1�x�. Conse-
quently, ��0� is found to be

��0��x, x̃� =
D1A1

Di
�x̃ − x̃i� + B1 + A1D1x̃i�Si�x� + Qi�x��,

x̃i−1 � x̃ � x̃i, �5�

where the sums Si�x�� x̃i
−1� j=1

i �x̃j − x̃j−1� /Dj�x� and Qi�x�
�dx̃i

−1� j=1
i−1qj /Dj�x� are bounded below and above �because

so is each Dj and kj� as i→�. Indeed, by defining Dm
�mini�Di	, DM�maxi�Di	, km�mini�ki	, kM�maxi�ki	, we
have DM

−1�Si�Dm
−1 and mi�qm /DM��Qi�mi�qM /Dm�,

where mi��i−1�a / �xi−x0�=O�1� and qm�qM� is the smallest
�largest� value of qi �suppressing the x dependence�. As
i→��x̃i→��, ��0� must also be bounded. Thus, we set
A1�x��0 �14�, which yields the leading-order term

��0��x, x̃� = B�x� ��x̃B � 0,B ª B1� . �6�

In hindsight, this result is obtained if we require that the flux
be O�1�. By Eq. �4�, J=−�−1D1A1�x�+O�1�. Thus, one may
set A1�0 to eliminate the O��−1� term.

To the next higher order, by collection of O��� terms, ��1�

satisfies �x̃�Di�x̃�
�1��=0, which is solved by ��1��x , x̃�

=Ci�x�x̃+Fi�x� for x̃i−1� x̃� x̃i. By Eq. �4�, J=−Di�Ci�x�
+�xB�+O���. Hence, the continuity of the adatom flux yields
Ci= �D1 /Di��C1+�xB�−�xB. The jump condition �i+1−�i
=−�2 /k�J at x̃i yields the recursion formula Fi+1−Fi
=D1�C1+�xB��qiDi

−1d+ �Di
−1−Di+1

−1 �x̃i�. By summing up these
differences we obtain Fi in terms of C1, F1, and B. The
resulting ��1� is

��1� = 
D1

Di
�C1 + �xB� − �xB��x̃ − x̃i� + F1 − x̃i

	��xB − D1�C1 + �xB��Qi�x� + Si�x��	 , �7�

where x̃i−1� x̃� x̃i, and Qi�x� and Si�x� are defined above.
Since ��1��x , x̃� is required to be bounded as i→�, we im-
pose limi→���xB−D1�C1+�xB��Qi�x�+Si�x��	=0. This con-
dition leads to the crucial relation

FIG. 1. Schematic of steps �side view�: a is the step height. For
straight steps �in 1D�, x=xi at the ith step edge.
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Dav�xB = D1�C1 + �xB��1 + qavm
�0�� , �8�

where m�0��d limi→��i / x̃i�=limi→��ia / �xi−x0��=O�1�. The
�discrete� averages Dav and qav are defined by

Dav
−1�x� � lim

i→�
Si�x� = lim

i→�

x̃i

−1�
j=1

i
x̃ j − x̃j−1

Dj�x� � , �9�

qav =
2Dav

kava
= O�1�, kav

−1 � lim
i→�

�1

i
�
j=1

i
1

kj

 . �10�

A few remarks on Eqs. �8�–�10� are in order. First, bearing
in mind that the calculation is carried out at the mesoscale,
we identify m�0� with the local step density or positive sur-
face slope, i.e., the macroscopic variable m�x�= ��xh� at x0
�x �slow coordinate�. Second, formulas �8�–�10� remain
valid in the case with a sequence of step heights, �ai	. This
becomes clear through defining the height change ia�i�
�� j=1

i aj. Then, it suffices to use the slope m�0�

=limi→��ia�i� / �xi−x0��, where qav�2Dav / �kavaav�, aav
� limi→�a�i�. Generally, one can replace x0 by x̆,
where xi�−1� x̆�xi��1� i��N�: m�0� becomes limi→���i
− i��a�i� / ��xi− x̆���, the slope at x̆�x, where summations are
carried out over j
 i�.

Third, Eqs. �8�–�10� form a nontrivial extension of the
averaging carried out in �14� for diffusion in layered media.
For comparison, define the effective diffusivity

De�x;m� �
Dav�x�

1 + qavm�x�
. �11�

The corresponding parameter found in �14�, where continuity
of density is applied, ensues from Eq. �11� in the limit qav
→0, or by taking kj→� for all j, i.e., in the case of
diffusion-limited kinetics. So, the appearance of m= ��xh� in
Eq. �11� is the macroscopic signature of jump discontinuities
of � at the microscale.

Lastly, suppose that an Ehrlich-Schwoebel barrier is
present, so that the kinetic rate �ki,u� for an up-step edge is
different from that �ki,d� for a down-step edge �25,26�. The
jump discontinuity of � at x̃i is �ki,d

−1+ki,u
−1�J. Thus, the kj

−1

term in Eq. �10� is replaced by �kj,u
−1 +kj,d

−1� /2.
It remains to express the adatom flux J�x� in terms of B�x�

by virtue of condition �8�. By Eq. �4�, we have �27�

J = − D1�C1 + �xB� = − De�x; ��xh���xB, � → 0. �12�

This is Fick’s law, Eq. �1�, with De=De1, Jav=J�x�ex, and
B�x�=�av�x� �ex: x-directed unit vector�.

The consideration of the next higher-order term, i.e., the
coefficient ��2� �and the respective flux�, yields the condition
�x�De�xB�=0. This equation is consistent with the mass con-
servation law �th+��xJ=0 ��: atomic area� if �th�0 �i.e.,
when steps do not move�. Consider the tempting assumption
�in lieu of a derivation� that �av�x� is identified with the av-
erage equilibrium density �eq�x�, the continuum limit of �i

eq

in Eq. �2� �see, e.g., �28� for constant kinetic parameters�.
Note that �i

eq=��,i exp��i / �kBT�����,i�1+�i / �kBT��, where
�i is the step chemical potential and kBT is the Boltzmann
energy �1�. The nature of this �av needs to be explored.

V. EXAMPLE

Now consider the special case where Di and ki take two
possible values, i.e., Di=D1 ,D2 and ki=k1 ,k2, a situation
analogous to that in biphasic systems �14�. Thus, we obtain
Dav= �
1D1

−1+
2D2
−1�−1 and kav= �
1�k1

−1+
2�k2
−1�−1, where


n=dn /d and 
n�=Nn /N, dn is the total length occupied by
Dn, and Nn is the total number of step edges having rate
kn�n=1,2�. This result is relevant to the “two region” model
by Zhao, Weeks and Kandel �29� �see also �30��.

Next, we discuss possible extensions and limitations of
our results, pointing to open questions. Issues of interest in-
clude curved steps �in 2D� and the assumption of zero step
velocity used in our derivation of Fick’s law.

VI. DISCUSSION

A. 2D case

We consider kinetic parameters Di=Di�r� �r: position
vector� and ki. The vector adatom flux Ji has now compo-
nents both normal �Ji,�� and parallel �Ji,�� to step edges. The
step configuration can be described by the orthogonal coor-
dinate system �� ,��, where �=�i specifies each step and �
gives the position along the step edge �22,28�. The kinetic
boundary conditions �2� hold with f i=J���i ,�� being the
flux component normal to the step edge at �=�i. The jump
discontinuity of the density in � is proportional to this trans-
verse flux. On each terrace, the normal and longitudinal flux
components are coupled through � ·Ji=0.

The above homogenization results involving x in 1D
should be appropriately extended to 2D. The density � now
has the jump −�2 /ki�Ji,� at �̃i= ��i−�0� /�. The macroscopic
vector flux J should be a generalization of Eq. �12�. The
normal flux component is expected to be

J� = − De�r; ��h�����B�r�� , �13�

where De is defined by Eq. �11�, m is replaced by ��h�, and
x̃ is replaced by �̃= ��−�0� /� times a slowly varying metric
coefficient that has the dimension of length �22�. By analogy
with the case Di=Ds=const �22�, it is plausible that the lon-
gitudinal flux component J� has a slope-independent effec-
tive diffusivity �22�,

J� = − D̆av��B�r� , �14�

where D̆av is a suitable homogenized coefficient. By specu-

lation, D̆av=Dav. Equations �13� and �14� are combined to
give law �1� with

De = Dav��1 + qav��h��−1 0

0 1

 , �15�

which is the representation of the diffusivity tensor in the
�� ,�� coordinates ��av�B�. The detailed study of the 2D
case, especially the effect of terrace anisotropies �which are
common in SR�, is left for future work.

B. Hypothesis of zero step velocity

In our preceding discussions, the adatom flux is consid-
ered as continuous across step edges. This assumption �tech-
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nically speaking� relates Fick’s law directly to microscale
boundary conditions �2�, independently of the step velocity,
as in the case with constant kinetic parameters �22�. How-
ever, it remains to be argued that our hypothesis does not
contradict the use of Fick’s law within surface evolution. A
plausible argument in 1D is provided by an attempt to in-
clude moving steps �thus step velocities� in homogenization.
Then, by mass conservation the adatom flux has the jump
Ji+1−Ji=−�a /��vi�−�−1vid at x̃i, where vi=��dx̃i /dt� is the
ith-step velocity ���a2�. It is realized that incorporation of
this condition in the above multiscale framework calls for
separating time scales as well. For our purposes, steps move
slowly. Take t̃��
t=O�1� where 
�0 �so, t=O��−
�→��,
which is compatible with �yet not derivable from� the usual
quasisteady approach to adatom diffusion �1�. The dominant
balance in powers of � for the fluxes stemming from ��0�, ��1�

does not capture the nonzero velocity: vi=�1+
dx̃i /dt̃ where
dx̃i /dt̃�O�1�, and thus Ji+1−Ji�O��
� which yields con-
tinuous fluxes �zero jumps for Ji’s� to the first 2 orders of the
multiscale expansion. A rigorous argument regarding time
scales is deemed necessary but lies beyond our present
scope.

VII. CONCLUSION

Fick’s law for the diffusion of adatoms in surface recon-
struction was derived systematically via the homogenization

of a BCF-type model in 1D. The effective surface diffusivity
and adatom mobility involve discrete averages of microscale
material parameters. The mathematical procedure applied
here, based on multiscale expansions under singular pertur-
bation, differs from the direct coarse graining of kinetic
boundary conditions for steps applied previously to constant
microscale parameters. An extension of the results to 2D was
discussed but not carried out explicitly.

To firmly connect the macroscopic theory to experimental
situations of reconstructed crystal surfaces, it is desirable to
consider �i� terrace anisotropies �e.g., for Si and GaAs recon-
structed surfaces �31�� and �ii� appropriate statistical en-
sembles of step configurations. In case �ii�, the main param-
eters Di and ki must be viewed as functions of the
microstructure realization in the particular ensemble under
consideration. The study of the homogenized fields as limits
of ensemble averages is a viable direction of near-future re-
search.
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