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Abstract: Inspired by the works of Rodnianski and Schlein [31] and Wu [34,35], we
derive a new nonlinear Schrödinger equation that describes a second-order correction
to the usual tensor product (mean-field) approximation for the Hamiltonian evolution
of a many-particle system in Bose-Einstein condensation. We show that our new equa-
tion, if it has solutions with appropriate smoothness and decay properties, implies a new
Fock space estimate. We also show that for an interaction potential v(x) = εχ(x)|x |−1,
where ε is sufficiently small and χ ∈ C∞

0 even, our program can be easily implemented
locally in time. We leave global in time issues, more singular potentials and sophisticated
estimates for a subsequent part (Part II) of this paper.

1. Introduction

An advance in physics in 1995 was the first experimental observation of atoms with inte-
ger spin (Bosons) occupying a macroscopic quantum state (condensate) in a dilute gas at
very low temperatures [1,4]. This phenomenon of Bose-Einstein condensation has been
observed in many similar experiments since. These observations have rekindled interest
in the quantum theory of large Boson systems. For recent reviews, see e.g. [23,29].

A system of N interacting Bosons at zero temperature is described by a symmetric
wave function satisfying the N -body Schrödinger equation. For large N , this description
is impractical. It is thus desirable to replace the many-body evolution by effective (in an
appropriate sense) partial differential equations for wave functions in much lower space
dimensions. This approach has led to “mean-field” approximations in which the single
particle wave function for the condensate satisfies nonlinear Schrödinger equations (in
3 + 1 dimensions). Under this approximation, the N -body wave function is viewed sim-
ply as a tensor product of one-particle states. For early related works, see the papers by
Gross [15,16], Pitaevskii [28] and Wu [34,35]. In particular, Wu [34,35] introduced a
second-order approximation for the Boson many-body wave function in terms of the
pair-excitation function, a suitable kernel that describes the scattering of atom pairs
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from the condensate to other states. Wu’s formulation forms a nontrivial extension of
works by Lee, Huang and Yang [21] for the periodic Boson system. Approximations
carried out for pair excitations [21,34,35] make use of quantized fields in the Fock space.
(The Fock space formalism and Wu’s formulation are reviewed in Sects. 1.1 and 1.3,
respectively.)

Connecting mean-field approaches to the actual many-particle Hamiltonian evolution
raises fundamental questions. One question is the rigorous derivation and interpre-
tation of the mean field limit. Elgart, Erdős, Schlein and Yau [6–11] showed rigor-
ously how mean-field limits for Bosons can be extracted in the limit N → ∞ by using
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchies for reduced density
matrices. Another issue concerns the convergence of the microscopic evolution towards
the mean field dynamics. Recently, Rodnianski and Schlein [31] provided estimates for
the rate of convergence in the case with Hartree dynamics by invoking the formalism of
Fock space.

In this paper, inspired by the works of Rodnianski and Schlein [31] and Wu [34,35],
we derive a new nonlinear Schrödinger equation describing an improved approximation
for the evolution of the Boson system. This approximation offers a second-order cor-
rection to the usual tensor product (mean field limit) for the many-body wave function.
Our equation yields a corresponding new estimate in Fock space, which complements
nicely the previous estimate [31].

The static version of the many-body problem is not studied here. The energy spectrum
was addressed by Dyson [5] and by Lee, Huang and Yang [21]. A mathematical proof
of the Bose-Einstein condensation for the time-independent case was provided recently
by Lieb, Seiringer, Solovej and Yngvanson [22–25].

1.1. Fock space formalism. Next, we review the Fock space F over L2(R3), follow-
ing Rodnianski and Schlein [31]. The elements of F are vectors of the form ψ =
(ψ0, ψ1(x1), ψ2(x1, x2), . . .), where ψ0 ∈ C and ψn ∈ L2

s (R
3n) are symmetric in

x1, . . . , xn . The Hilbert space structure of F is given by (φ,ψ) = ∑
n

∫
φnψndx .

For f ∈ L2(R3) the (unbounded, closed, densely defined) creation operator a∗( f ) :
F → F and annihilation operator a( f̄ ) : F → F are defined by

(
a∗( f )ψn−1

)
(x1, x2, . . . , xn) = 1√

n

n∑

j=1

f (x j )ψn−1(x1, . . . , x j−1, x j+1, . . . xn),

(
a( f )ψn+1

)
(x1, x2, . . . , xn) = √

n + 1
∫

ψ(n+1)(x, x1, . . . , xn) f (x) dx .

The operator valued distributions a∗
x and ax defined by

a∗( f ) =
∫

f (x)a∗
x dx,

a( f ) =
∫

f (x) ax dx .

These distributions satisfy the canonical commutation relations

[ax , a∗
y ] = δ(x − y),

[ax , ay] = [a∗
x , a∗

y ] = 0.
(1)
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Let N be a fixed integer (the total number of particles), and v(x) be an even potential.
Consider the Fock space Hamiltonian HN : F → F defined by

HN =
∫

a∗
x∆ax dx +

1

2N

∫

v(x − y)a∗
x a∗

yax ay dx dy

=: H0 +
1

N
V . (2)

This HN is a diagonal operator which acts on each ψn in correspondence to the
Hamiltonian

HN ,n =
n∑

j=1

∆x j +
1

2N

n∑

i, j=1

v(xi − x j ).

In the particular case n = N , this is the mean field Hamiltonian. Except for the Intro-
duction, this paper deals only with the Fock space Hamiltonian. The reader is alerted
that “PDE” Hamiltonians such as HN ,n will always have two subscripts. The sign of v
will not play a role in our analysis. However, the reader is alerted that due to our sign
convention, v ≤ 0 is the “good” sign. The time evolution in the coordinate space for
Bose-Einstein condensation deals with the function

eitHn,nψ0 (3)

for tensor product initial data, i.e., if

ψ0(x1, x2, . . . , xn) = φ0(x1)φ0(x2) . . . φ0(xn),

where ‖φ0‖L2(R3) = 1. This approach has been highly successful, even for very singular
potentials, in the work of Elgart, Erdős, Schlein and Yau [6–11]. In this context, the con-
vergence of evolution to the appropriate mean field limit (tensor product) as N → ∞
is established at the level of marginal density matrices γ (N )i in the trace norm topology.
The density matrices are defined as

γ
(N )
i (t, x1, . . . , xi ; x ′

1, . . . x
′
i ) =

∫

ψ(t, x1, . . . , xN )ψ(t, x ′
1, . . . , x ′

N ) dxi+1 · · · dxN .

1.2. Coherent states. There are alternative approaches, due to Hepp [17], Ginibre and
Velo [13], and, most recently, Rodnianski and Schlein [31] which can treat Coulomb
potentials v. These approaches rely on studying the Fock space evolution eitHNψ0,where
the initial data ψ0 is a coherent state,

ψ0 = (c0, c1φ0(x1), c2φ0(x1)φ0(x2), · · · );
see (4) below. The evolution (3) can then be extracted as a “Fourier coefficient” from
the Fock space evolution, see [31]. Under the assumption that v is a Coulomb potential,
this approach leads to strong L2-convergence, still at the level of the density matrices
γ
(N )
i , as we will briefly explain below.

To clarify the issues involved, let us consider the one-particle wave function φ(t, x)
(to be determined later as the solution of a Hartree equation), satisfying the initial con-
dition φ(0, x) = φ0(x). Define the skew-Hermitian unbounded operator

A(φ) = a(φ)− a∗(φ)



M. G. Grillakis, M. Machedon, D. Margetis

and the vacuum state Ω = (1, 0, 0, . . .) ∈ F . Accordingly, consider the operator

W (φ) = e−√
N A(φ),

which is the Weyl operator used by Rodnianski and Schlein [31]. The coherent state for
the initial data φ0 is

ψ0 = W (φ0)Ω = e−√
N A(φ0)Ω

= e−N‖φ‖2/2

(

1, . . . ,

(
N n

n!
)1/2

φ0(x1) . . . φ0(xn), · · ·
)

. (4)

Hence, the top candidate approximation for eitHNψ0 reads

ψ tensor(t) = e−√
N A(φ(t,·))Ω. (5)

Rodnianski and Schlein [31] showed that this approximation works (under suitable
assumptions on v), in the sense that

1

N
‖
(

eitHNψ0, a∗
yax eit HNψ0

)
−

(
e−√

N A(φ(t,·))Ω, a∗
yax e−√

N A(φ(t,·))Ω
)

‖Tr

= O(
eCt

N
) N → ∞;

the symbol Tr here stands for the trace norm in x ∈ R
3 and y ∈ R

3. The first term in the
last relation, including 1

N , is essentially the density matrix γ (N )1 (t, x, y). For the precise
statement of the problem and details of the proof, see Theorem 3.1 of Rodnianski and
Schlein [31].

Our goal here is to find an explicit approximation for the evolution in the Fock space.
For this purpose, we adopt an idea germane to Wu’s second-order approximation for the
N -body wave function in Fock space [34,35].

1.3. Wu’s approach. We first comment on the case with periodic boundary conditions,
when the condensate is the zero-momentum state. For this setting, Lee, Huang and
Yang [21] studied systematically the scattering of atoms from the condensate to states
of opposite momenta. By diagonalizing an approximation for the Hamiltonian in Fock
space, these authors derived a formula for the N -particle wave function that deviates
from the usual tensor product, as it expresses excitation of particles from zero monentum
to pairs of opposite momenta.

For non-periodic settings, Wu [34,35] invokes the splitting ax = a0(t)φ(t, x) +
ax,1(t), where a0 corresponds to the condensate, [a0, a∗

0 ] = 1, and ax,1 corresponds to
states orthogonal to the condensate, [a0, ax,1] = 0 = [a0, a∗

x,1]. Wu applies the following
ansatz for the N -body wave function in Fock space:

N (t) eP[K0]ψ0
N (t), (6)

where ψ0
N (t) describes the tensor product, N (t) is a normalization factor, and P[K0] is

an operator that averages out in space the excitation of particles from the condensate φ to
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other states with the effective kernel (pair excitation function) K0. An explicit formula
for P[K0] is

P[K0] = [2N0(t)]−1
∫

a∗
x,1a∗

y,1 K0(t, x, y) a0(t)
2, (7)

where N0 is the expectation value of particle number at the condensate. This K0 is not
a-priori known (in contrast to the case of the classical Boltzmann gas) but is determined
by means consistent with the many-body dynamics. In the periodic case, (6) reduces to
the many-body wave function of Lee, Huang and Yang [21].

Wu derives a coupled system of dispersive hyperbolic partial differential equations
for (φ, K0) via an approximation for the N -body Hamiltonian that is consistent with
ansatz (6). A feature of this system is the spatially nonlocal couplings induced by K0.
Observable quantities such that the depletion of the condensate can be computed directly
from solutions of this PDE system. This system has been solved only in a limited number
of cases [26,27,35].

1.4. Scope and outline. Our objective in this work is to find an explicit approximation
for the evolution

eitHNψ0

in the Fock space norm, whereψ0 is the coherent state (4). This would imply an approx-
imation for the evolution

eitHN ,Nψ0

in L2(R3N ) as N → ∞. To the best of our knowledge, no such approximation is available
in the mathematics or physics literature. In particular, the tensor product type approxi-
mation (5) for φ satisfying a Hartree equation, as in [31], is not known to be such a Fock
space approximation (nor do we expect it to be).

To accomplish our goal, we propose to modify (5) in two ways. One minor correction
is the multiplication by an oscillatory term. A second correction is a composition with a
second-order “Weyl operator”. Both corrections are inspired by the work of Wu [34,35];
see also [26,27]. However, our set-up and derived equation are essentially different from
these works.

We proceed to describe the second order correction. Let k(t, x, y) = k(t, y, x) be a
function (or kernel) to be determined later, with k(0, x, y) = 0. The minimum regularity
expected of k is k ∈ L2(dx dy) for a.e. t.

We define the operator

B = 1

2

∫ (
k(t, x, y)ax ay − k(t, x, y)a∗

x a∗
y

)
dx dy. (8)

Notice that B is skew-Hermitian, i.e., iB is self-adjoint. The operator eB could be defined
by the spectral theorem; see [30]. However, we prefer the more direct approach of defin-
ing it first on the dense subset of vectors with finitely many non-zero components, where
it can be defined by a convergent Taylor series if ‖k‖L2(dxdy) is sufficiently small. Indeed,
B restricted to the subspace of vectors with all entries past the first N identically zero
has norm ≤ C N‖k‖L2 . Then eB is extended to F as a unitary operator.
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Now we have described all ingredients needed to state our results and derivations.
The remainder of the paper is organized as follows. In Section 2 we state our main result
and outline its proof. In Sect. 3 we study implications of the Hartree equation satisfied by
the one-particle wave function φ(t, x). In Sect. 4 we develop bookkeeping tools of Lie
algebra for computing requisite operators containing B. In Sect. 5 we study the evolution
equation for a matrix K that involves the kernel k. In Sect. 6 we develop an argument for
the existence of solution to the equation for the kernel k. In Sect. 7 we find conditions
under which terms involved in the error term eB V e−B are bounded. In Sect. 8 we study
similarly the error term eB[A, V ]e−B . In Sect. 9 we show that we can control traces
needed in derivations.

2. Statement of Main Result and Outline of Proof

In this section we state our strategy for general potentials satisfying certain properties.
Later in the paper we show that all assumptions of the related theorem are satisfied
locally in time for v(x) = χ(x) ε|x | , ε: sufficiently small, and χ ∈ C∞

0 : even.

Theorem 1. Suppose that v is an even potential. Let φ be a smooth solution of the
Hartree equation

i
∂φ

∂t
+∆φ + (v ∗ |φ|2)φ = 0 (9)

with initial conditions φ0, and assume the three conditions listed below:

1. Assume that we have k(t, x, y) ∈ L2(dxdy) for a.e. t , where k is symmetric, and
solves

(iut + ugT + gu − (1 + p)m) = (i pt + [g, p] + um)(1 + p)−1u, (10)

where all products in (10) are interpreted as spatial compositions of kernels, “1” is
the identity operator, and

u(t, x, y) := sh(k) := k +
1

3!kkk + · · · ,

δ(x − y) + p(t, x, y) := ch(k) := δ(x − y) +
1

2!kk + · · · ,
g(t, x, y) := −∆xδ(x − y)− v(x − y)φ(t, x)φ(t, y)− (v ∗ |φ|2)(t, x)δ(x − y),

m(t, x, y) := v(x − y)φ(t, x)φ(t, y).

(11)

2. Also, assume that the functions

f (t) := ‖eB[A, V ]e−BΩ‖F

and

g(t) := ‖eB V e−BΩ‖F

are locally integrable (V is defined in (2)).
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3. Finally, assume that
∫

d(t, x, x) dx is locally integrable in time, where

d(t, x, y) =
(

ish(k)t + sh(k)gT + gsh(k)
)

sh(k)

− (ich(k)t + [g, ch(k)]) ch(k)

−sh(k)mch(k)− ch(k)msh(k).

Then, there exist real functions χ0, χ1 such that

‖e−√
N A(t)e−B(t)e−i

∫ t
0 (Nχ0(s)+χ1(s))dsΩ − eitHNψ0‖F

≤
∫ t

0 f (s)ds√
N

+

∫ t
0 g(s)ds

N
. (12)

Recall that we defined (see Sect.1)

ψ0 = e−√
N A(0)Ω an arbitrary coherent state (initial data),

A(t) = a(φ(t, ·))− a∗(φ(t, ·)),
B(t) = 1

2

∫ (
k(t, x, y)ax ay − k(t, x, y)a∗

x a∗
y

)
dx dy.

A few remarks on Theorem 1 are in order.

Remark 1. Written explicitly, the left-hand side of (10) equals

iut + ugT + gu − (1 + p)m =
(

i
∂

∂t
−∆x −∆y

)

u(t, x, y)

−φ(t, x)
∫

v(x − z)φ(t, z)u(t, z, y) dz − φ(t, y)
∫

u(t, x, z)v(z − y)φ(t, z) dz

−(v ∗ |φ|2)(t, x)u(t, x, y)− (v ∗ |φ|2)(t, y)u(t, x, y)

−v(x − y)φ(t, x)φ(t, y)

−φ(t, y)
∫

(1 + p)(t, x, z)v(z − y)φ(t, z) dz.

The main term in the right-hand side equals

i pt + [g, p] + um = i
∂

∂t
p(t, x, y) +

(−∆x +∆y
)

p(t, x, y)

−φ(t, x)
∫

v(x − z)φ(t, z)p(t, z, y) dz

+φ(t, y)
∫

p(t, x, z)v(z − y)φ(t, z) dz

−(v ∗ |φ|2)(t, x)p(t, x, y) + (v ∗ |φ|2)(t, y)p(t, x, y)

+
∫

u(t, x, z)v(z − y)φ(t, z)φ(t, x) dz.

Remark 2. The algebra, as well as the local analysis presented in this paper do not depend
on the sign of v. However, the global in time analysis of our equations would require v
to be non-positive.
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Remark 3. Our techniques would allow us to consider more general initial data of the
form ψ0 = e−√

N A(0)e−B(0)Ω . For convenience, we only consider the case of tensor
products (B(0) = 0) in this paper.

Proof. Since e
√

N A and eB are unitary, the left-hand side of (12) equals

‖ei
∫ t

0 (Nχ0(s)+χ1(s))dseB(t)e
√

N A(t)eitHN e−√
N A(0)Ω −Ω‖F .

Define

Ψ (t) = eB(t)e
√

N A(t)eit H e−√
N A(0)Ω.

In Corollary 1 of Sect. 5 we show that our equations for φ, k insure that

1

i

∂

∂t
Ψ = LΨ,

where L = L̃ − Nχ0 − χ1 for some L̃: Hermitian, i.e. L̃ = L̃∗, where L̃ commutes
with functions of time, χ0, χ1 are real functions of time, and, most importantly (see
Corollary 1 of Sect. 5 and the remark following it),

‖L̃Ω‖F ≤ N−1/2‖eB[A, V ]e−BΩ‖F + N−1‖eB V e−BΩ‖F . (13)

We apply energy estimates to

(
1

i

∂

∂t
− L̃

)

(ei
∫ t

0 (Nχ0(s)+χ1(s))dsΨ −Ω) = L̃Ω.

Explicitly,

∂

∂t

(
‖(ei

∫ t
0 (Nχ0(s)+χ1)dsΨ −Ω)‖2

F
)

= 2	
(
∂

∂t
(ei

∫ t
0 (Nχ0(s)+χ1)dsΨ −Ω), ei

∫ t
0 (Nχ0(s)+χ1)dsΨ −Ω

)

= 2	
((

∂

∂t
− i L̃

)

(ei
∫ t

0 (Nχ0(s)+χ1)dsΨ −Ω), ei
∫ t

0 (Nχ0(s)+χ1)dsΨ −Ω

)

= 2	
(

i L̃Ω, ei
∫ t

0 (Nχ0(s)+χ1)dsΨ −Ω
)

≤2
(

N−1/2‖eB[A, V ]e−BΩ‖F +N−1‖eB V e−BΩ‖F
)

‖(ei
∫ t

0 (Nχ0(s)+χ1)dsΨ−Ω)‖F .

Thus

∂

∂t
‖(ei

∫ t
0 (Nχ0(s)+χ1)dsΨ −Ω)‖ ≤ N−1/2‖eB[A, V ]e−BΩ‖F + N−1‖eB V e−BΩ‖F

and (12) holds. This concludes the proof. 
�
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3. The Hartree Equation

In this section we see how far we can go by using only the Hartree equation for the
one-particle wave function φ.

Lemma 1. The following commutation relations hold (where the t dependence is
suppressed, A denotes A(φ) and V is defined by formula (2)):

[A, V ] =
∫

v(x − y)
(
φ(y)a∗

x ax ay + φ(y)a∗
x a∗

yax

)
dx dy,

[A, [A, V ]]
=

∫

v(x − y)
(
φ(y)φ(x)ax ay + φ(y)φ(x)a∗

x a∗
y + 2φ(y)φ(x)a∗

x ay

)
dx dy,

+2
∫ (

v ∗ |φ2|
)
(x)a∗

x ax dx,

[

A,
[

A, [A, V ]
]]

= 6
∫ (

v ∗ |φ2|
)
(x)

(
φ(x)a∗

x + φ(x)ax
)

dx,

[

A,
[

A, [A, [A, V ]]
]]

= 12
∫ (

v ∗ |φ2|
)
(x)|φ(x)|2 dx . (14)

Proof. This is an elementary calculation and is left to the interested reader.

Now, we consider Ψ1(t) = e
√

N A(t)eit H e−√
N A(0)Ω for which we have the basic

calculation in the spirit of Hepp [17], Ginibre-Velo [13], and Rodnianski-Schlein [31];
see Eq. (3.7) in [31].

Proposition 1. If φ satisfies the Hartree equation

i
∂φ

∂t
+∆φ + (v ∗ |φ|2)φ = 0

while

Ψ1(t) = e
√

N A(t)eit H e−√
N A(0)Ω,

then Ψ1(t) satisfies

1

i

∂

∂t
Ψ1(t) =

(

H0 +
1

2
[A, [A, V ]]

+N−1/2[A, V ] + N−1V − N

2

∫

v(x − y)|φ(t, x)|2|φ(t, y)|2dx dy

)

Ψ1(t).

Proof. Recall the formulas
(
∂

∂t
eC(t)

)(
e−C(t)

)
= Ċ +

1

2! [C, Ċ] +
1

3!
[
C, [C, Ċ]] + · · ·

and

eC He−C = H + [C, H ] +
1

2! [C, [C, H ]] + · · ·
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Applying these relations to C = √
N A we get

1

i

∂

∂t
ψ1(t) = L1ψ1, (15)

where

L1 = 1

i

(
∂

∂t
e
√

N A(t)
)

e−√
N A(t) + e

√
N A(t)He−√

N A(t)

= 1

i

(

N 1/2 Ȧ +
N

2
[A, Ȧ]

)

+ H + N 1/2[A, H0]

+N−1/2[A, V ] +
N

2
[A, [A, H0]]

×1

2
[A, [A, V ]] +

N 1/2

3!
[

A,
[

A, [A, V ]
]]

+
N

4!
[

A,
[

A, [A, [A, V ]]
]]

.

Eliminating the terms with a weight of
√

N , or setting

1

i
Ȧ + [A, H0] +

1

3!
[

A,
[

A, [A, V ]
]]

= 0, (16)

is exactly equivalent to the Hartree equation (9). By taking an additional bracket with A
in (16), we have

1

i
[A, Ȧ] + [A, [A, H0]] +

1

3!
[

A,
[

A, [A, [A, V ]]
]]

= 0,

and thus simplify (15) to

1

i

∂

∂t
ψ1(t) =

(

H0 +
1

2
[A, [A, V ]]

+N−1/2[A, V ] + N−1V − N
1

4!
[

A,
[

A, [A, [A, V ]]
]])

ψ1.

This concludes the proof. 
�
The first two terms on the right-hand side are the main ones. The next two terms are

O
(

1√
N

)
and O

( 1
N

)
. The last term equals

− N

2

∫

v(x − y)|φ(t, x)|2|φ(t, y)|2dx dy := −Nχ0.

Notice that ‖L1(Ω)‖ is not small because of the presence of a∗
x a∗

y in [A, [A, V ]]. In
order to eliminate these terms, we introduce B (see (8)) and take

ψ = eBψ1.

Accordingly, we compute

1

i

∂

∂t
ψ = Lψ,
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where

L = 1

i

(
∂

∂t
eB

)

e−B + eB L1e−B

= L Q + N−1/2eB[A, V ]e−B + N−1eB V e−B − Nχ0,

and

L Q = 1

i

(
∂

∂t
eB

)

e−B + eB
(

H0 +
1

2
[A, [A, V ]]

)

e−B (17)

contains all quadratics in the operators a, a∗.
Equation (10) for k turns out to be equivalent to the requirement that L has no terms

of the form a∗a∗. Terms of the form aa∗ will occur, and will be converted to a∗a at the
expense of χ1.

In other words, we require that L Q have no terms of the form a∗a∗. For a similar
argument (but for a different set-up), see Wu [35].

4. The Lie Algebra of “Symplectic Matrices”

In this section we describe the bookkeeping tools needed to compute L Q of (17) in
closed form. The results of this section are essentially standard, but they are included
here for the sake of completeness.

We start with the remark that

[a( f1) + a∗(g1), a( f2) + a∗(g2)] =
∫

f1g2 − f2g1

= − (
f1 g1

)
J

(
f2
g2

)

, (18)

where

J =
(

0 −δ(x − y)
δ(x − y) 0

)

.

This observation explains why we have to invoke symplectic linear algebra. We thus
consider the infinite-dimensional Lie algebra sp of “matrices” of the form

S(d, k, l) =
(

d k
l −dT

)

for symmetric kernels k = k(t, x, y) and l = l(t, x, y), and arbitrary kernel d(t, x, y).
(The dependence on t will be suppressed when not needed.) This situation is analogous
to the Lie algebra of the finite-dimensional complex symplectic group, with x , y playing
the role of i and j . We also consider the Lie algebra Quad of quadratics of the form

Q(d, k, l) := 1

2

(
ax a∗

x

)
(

d k
l −dT

) (−a∗
y

ay

)

= −
∫

d(x, y)
ax a∗

y + a∗
yax

2
dx dy +

1

2

∫

k(x, y)ax ay dx dy

−1

2

∫

l(x, y)a∗
x a∗

y dx dy (19)
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(k, l and d as before). Furthermore, we agree to identify operators which differ (formally)
by a scalar operator. Thus,

∫
d(x, y)ax a∗

y is considered equivalent to
∫

d(x, y)a∗
yax . We

recall the following result related to the metaplectic representation (see, e.g. [12]).

Theorem 2. Let S = S(d, k, l), Q = Q(d, k, l) related as above. Let f , g be functions
(or distributions). Denote

(ax , a∗
x )

(
f
g

)

:=
∫

(
f (x)ax + g(x)a∗

x

)
dx .

We have the following commutation relation:
[

Q, (ax , a∗
x )

(
f
g

)]

= (ax , a∗
x )S

(
f
g

)

, (20)

where products are interpreted as compositions. We also have

eQ(ax , a∗
x )

(
f
g

)

e−Q = (ax , a∗
x )e

S
(

f
g

)

, (21)

provided that eQ makes sense as a unitary operator (Q: skew-Hermitian).

Proof. The commutation relation (20) can be easily checked directly, but we point out
that it follows from (18). In fact, using (18), for any rank one quadratic we have

[(
a( f1) + a∗(g1)

) (
a( f2) + a∗(g2)

)
, a( f ) + a∗(g)

]

= − (
ax a∗

x

)
((

f2
g2

)
(

f1 g1
)

+

(
f1
g1

)
(

f2 g2
)
)

J

(
f
g

)

.

Thus, for any R we have
[
(
ax a∗

x

)
R

(
ay
a∗

y

)

, a( f ) + a∗(g)
]

= − (
ax a∗

x

) (
R + RT

)
J

(
f
g

)

.

Now specialize to R = 1
2 S J , S ∈ sp, and use ST = J S J to complete the proof.

The second part, Eq. (21), follows from the identity

eQCe−Q = C + [Q,C] +
1

2! [Q, [Q,C]] + · · · ,

or, in the language of adjoint representations, Ad(eQ)(C) = ead(Q)(C), which is applied
to C = a( f ) + a∗(g). 
�

A closely related result is provided by the following theorem.

Theorem 3. 1. The linear map I : sp → Quad defined by

S(d, k, l) → Q(d, k, l)

is a Lie algebra isomorphism.
2. Moreover, if S = S(t), Q = Q(t) and I(S(t)) = Q(t) is skew-Hermitian, so that

eQ is well defined, we have

I
((

∂

∂t
eS

)

e−S
)

=
(
∂

∂t
eQ

)

e−Q . (22)
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3. Also, if R ∈ sp, we have

I
(

eS Re−S
)

= eQI(R)e−Q . (23)

Remark 4. In the finite-dimensional case, this is (closely related to) the “infinitesimal
metaplectic representation”; see p. 186 in [12] . In the infinite dimensional case, we must
be careful, as some of our operators are not of trace class. For instance,

∫
ax a∗

x does not
make sense.

Proof. First, we point out that (21) implies (23), at least in the case where R is the “rank
one” matrix

R =
(

f
g

)
(
h i

)
.

Notice that (21) can also be written as

eQ (
f g

)
(

ax
a∗

x

)

e−Q = (
f g

)
eST

(
ax
a∗

x

)

.

In conclusion, we find

eQ (
ax a∗

x

)
R

(−a∗
y

ay

)

e−Q

= eQ (
ax a∗

x

)
(

f
g

)
(
h i

)
J

(
ay
a∗

y

)

e−Q

= eQ (
ax a∗

x

)
(

f
g

)

e−QeQ (
h i

)
J

(
ay
a∗

y

)

e−Q

= (
ax a∗

x

)
eS

(
f
g

)
(
h i

)
JeJ S J

(
ay
a∗

y

)

= (
ax a∗

x

)
eS Re−S

(−a∗
y

ay

)

,

since ST = J S J if S ∈ sp, and JeJ S J = e−S J .
We now give a direct proof that (19) preserves Lie brackets. Denote the quadratic

building blocks by Qxy = ax ay , Q∗
xy = a∗

x a∗
y , Nxy = 1

2

(
ax a∗

y + a∗
yax

)
. One can verify

the following commutation relations, which will be also needed below:
[
Qxy, Q∗

zw

] = δ(x − z)Nyw + δ(x − w)Nyz + δ(y − z)Nxw + δ(y − w)Nxz, (24)
[
Qxy, Nzw

] = δ(x − w)Qyz + δ(y − w)Qxz, (25)
[
Nxy, Q∗

zw

] = δ(x − z)Q∗
yw + δ(x − w)Qyz, (26)

[
Nxy, Nzw

] = δ(x − w)Nzy − δ(y − z)Nxw. (27)

Using (24) we compute
[

1

2

∫

k(x, y)ax aydxdy,−1

2

∫

l(x, y)a∗
x a∗

ydxdy

]

= −
∫

(kl)(x, y)Nxy dx dy,
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which corresponds to the relation
[(

0 k
0 0

)

,

(
0 0
l 0

)]

=
(

kl 0
0 −lk

)

.

The other three cases are similar.
To prove (22), expand both the left-hand side and the right-hand side as

I
((

∂

∂t
eS

)

e−S
)

= I
(

Ṡ +
1

2
[S, Ṡ] + · · ·

)

= Q̇ +
1

2
[Q, Q̇] + · · ·

=
(
∂

∂t
eQ

)

e−Q .

The proof of (23) is along the same lines. 
�
Remark 5. Note on rigor: All the Lie algebra results that we have used are standard
in the finite-dimensional case. In our applications, S will be K , where K is a matrix
of the form (29), see below, and Q will be B = I(K ). The unbounded operator B is
skew-Hermitian and eBψ is defined by a convergent Taylor series if ψ ∈ F has only
finitely many non-zero components, provided ‖k(t, ·, ·)‖L2(dx dy) is small. We then
extend eB to all F as a unitary operator. The norm ‖k(t, ·, ·)‖L2(dx dy) iterates under
compositions; thus, the kernel eK is well defined by its convergent Taylor expansion. In
the expression

eB Pe−B = P + [B, P] + · · · (28)

for P , a first- or second-order polynomial in a, a∗, we point out that the right-hand side
stays a polynomial of the same degree, and converges when applied to a Fock space
vector with finitely many non-zero components. For our application, we need to know
if (28) is true when applied to Ω . The same comment applies to the series

(
∂

∂t
eB

)

e−B = Ḃ +
1

2
[B, Ḃ] + · · · .

5. Equation for Kernel k

Now apply the isomorphism of the previous section to the operator

B = I(K )
for

K =
(

0 k(t, x, y)
k(t, x, y) 0

)

. (29)

This agrees to the letter with the isomorphism (19). The next two isomorphisms, (30) and
(31), require special treatment because aa∗ terms mirroring the a∗a terms are missing
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in (2), (14). However, the discrepancy only happens on the diagonal. Once the relevant
terms are commuted with B, they fit the pattern exactly. It isn’t quite true that

H0 = I
((−(∆δ)(x − y) 0

0 (∆δ)(x − y)

))

= I
((−∆ 0

0 ∆

))

(30)

since, strictly speaking,

I
((−(∆δ)(x − y) 0

0 (∆δ)(x − y)

))

=
∫

a∗
x∆ax + ax∆a∗

x

2
dx

is undefined. However, one can compute directly that [∆x ax , a∗
y ] = (∆δ)(x − y).Using

that, we compute

[B, H0] = 1

2

∫ (
(∆x +∆y)k(x, y)ax ay + (∆x +∆y)k(x, y)a∗

x a∗
y

)
dx dy.

This commutator is in agreement with (29), (30), and the result can be represented
in accordance with (19), namely

[B, H0] = I
([(

0 k
k 0

)

,

(−(∆δ)(x − y) 0
0 (∆δ)(x − y)

)])

.

We also have

eB H0e−B − H0

= I
(

eK
(−(∆δ)(x − y) 0

0 (∆δ)(x − y)

)

e−K −
(−(∆δ)(x − y) 0

0 (∆δ)(x − y)

))

,

since eB H0e−B − H0 = [B, H0] + 1
2 [B, [B, H0]] + · · ·. The same comment applies to

the diagonal part of

1

2
[A, [A, V ]] = I

(−v12φ1φ2 − (
v ∗ |φ|2) δ12 v12φ1φ2

−v12φ1φ2 v12φ1φ2 +
(
v ∗ |φ|2) δ12

)

, (31)

where v12φ1φ2 is an abbreviation for the product v(x − y)φ(x)φ(y), etc. Formula (31)
isn’t quite true either, but becomes true after commuting with B.

To apply our isomorphism, we quarantine the “bad” terms in (30) and the diagonal
part of (31). Define

G =
(

g 0
0 −gT

)

and M =
(

0 m
−m 0

)

,

where

g = −∆δ12 − v12φ1φ2 − (v ∗ |φ|2)δ12,

m = v12φ1φ2,

and split

H0 +
1

2
[A, [A, V ]] = HG + I(M),
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where

HG = H0 +
∫

v(x − y)φ(y)φ(x)a∗
x ay dx dy

+
∫ (

v ∗ |φ2|
)
(x)a∗

x ax dx . (32)

By the above discussion we have

[B, HG ] = I([K ,G]) and

[eB, HG ]e−B = I([eK ,G]e−K ).

Write

L Q = 1

i

(
∂

∂t
eB

)

e−B + eB
(

H0 +
1

2
[A, [A, V ]]

)

e−B

= 1

i

(
∂

∂t
eB

)

e−B + HG + [eB, HG ]e−B + eBI(M)e−B

= HG + I
((

1

i

∂

∂t
eK

)

e−K + [eK ,G]e−K + eK Me−K
)

= HG + I(M1 + M2 + M3). (33)

Notice that if K is given by (29), then

eK =
(

ch(k) sh(k)
sh(k) ch(k)

)

,

where

ch(k) = I +
1

2
kk +

1

4!kkkk + · · · , (34)

and similarly for sh(k). Products are interpreted, of course, as compositions of operators.
We compute

M1 = 1

i

(
ch(k)t sh(k)t
sh(k)t ch(k)t

) (
ch(k) −sh(k)

−sh(k) ch(k)

)

= 1

i

(
ch(k)t ch(k)− sh(k)t sh(k) −ch(k)t sh(k) + sh(k)t ch(k)

∗ ∗
)

[eK ,G] =
([ch(k), g] −sh(k)gT − gsh(k)

∗ ∗
)

and

M2 = [eK ,G]e−K =
([ch, g] ch + (shgT + gsh)sh −[ch, g]sh − (shgT + gsh)ch

∗ ∗
)

,

where sh is an abbreviation for sh(k), etc, and

M3 = eK Me−K =
(−shm ch − chmsh shmsh + chmch

∗ ∗
)

.

Now define

M = M1 + M2 + M3.

We have proved the following theorem.
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Theorem 4. Recall the isomorphism (19) of Theorem 3.

1. If L Q is given by (17), then

L Q = H0 +
∫

v(x − y)φ(y)φ(x)a∗
x ay dx dy

+
∫ (

v ∗ |φ2|
)
(x)a∗

x ax dx + I (M) . (35)

2. The coefficient of ax ay in I (M) is −M12 or

(ish(k)t + sh(k)gT + gsh(k))ch(k)− (ich(k)t − [ch(k), g])sh(k)

−sh(k)msh(k)− ch(k)mch(k).

3. The coefficient of a∗
x a∗

y equals minus the complex conjugate of the coefficient of ax ay.

4. The coefficient of − ax a∗
y + a∗

y ax

2 is M11, or

d(t, x, y) =
(

ish(k)t + sh(k)gT + gsh(k)
)

sh(k)

− (ich(k)t + [g, ch(k)]) ch(k)

−sh(k)mch(k)− ch(k)msh(k). (36)

Corollary 1. If φ and k satisfy (9) and (10) of Theorem1, then the coefficients of ax ay
and a∗

x a∗
y drop out and L Q becomes

L Q = H0 +
∫

v(x − y)φ(t, y)φ(t, x)a∗
x ay dx dy +

∫ (
v ∗ |φ2|

)
(x)a∗

x ax dx

−
∫

d(t, x, y)
ax a∗

y + a∗
yax

2
dx dy,

where d is given by (36) and the full operator reads

L = H0 +
∫

v(x − y)φ(y)φ(t, x)a∗
x aydxdy +

∫ (
v ∗ |φ2|

)
(x)a∗

x ax dx

−
∫

d(t, x, y)a∗
yax dx + N−1/2eB[A, V ]e−B + N−1eB V e−B − Nχ0 − χ1

:= L̃ − Nχ0 − χ1,

and

χ0 = 1

2

∫

v(x − y)|φ(t, x)|2|φ(t, y)|2dx dy,

χ1(t) = −1

2

∫

d(t, x, x)dx .

Remark 6. Notice that

L̃Ω =
(

N−1/2eB[A, V ]e−B + N−1eB V e−B
)
Ω,

and therefore we can derive the bound

‖L̃Ω‖ ≤ N−1/2‖eB[A, V ]e−BΩ‖ + N−1‖eB V e−BΩ‖.
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Also, L is (formally) self-adjoint by construction. The kernel d(t, x, y), being the sum of
the (1,1) entry of the self-adjoint matrices

( 1
i
∂
∂t eK

)
e−K , [eK ,G]e−K = eK Ge−K − G

and the visibly self-adjoint term −sh(k)mch(k) − ch(k)msh(k), is self-adjoint; thus, it
has a real trace. Hence, L̃ is also self-adjoint.

In the remainder of this paper, we check that the hypotheses of our main theorem are
satisfied, locally in time, for the potential v(x) = χ(x) ε|x | .

6. Solutions to Equation 10

Theorem 5. Let ε0 be sufficiently small and assume that v(x) = ε0|x | , or v(x) = χ(x) ε0|x |
for χ ∈ C∞

0 (R
3). Assume that φ is a smooth solution to the Hartree equation (16),

‖φ‖L2(dx) = 1. Then there exists k ∈ L∞([0, 1])L2(dxdy) solving (10) with initial
conditions k(0, x, y) = 0 for 0 ≤ t ≤ 1. The solution k satisfies the following addi-
tional properties:

1.

‖
(

i
∂

∂t
−∆x −∆y

)

k‖L∞[0,1]L2(dxdy) ≤ C,

2.

‖
(

i
∂

∂t
−∆x −∆y

)

sh(k)‖L∞[0,1]L2(dxdy) ≤ C,

3.

‖
(

i
∂

∂t
−∆x +∆y

)

p‖L∞[0,1]L2(dxdy) ≤ C.

4. The kernel k agrees on [0, 1] with a kernel k̃ for which

‖̃k‖
X

1
2 ,

1
2 + ≤ C;

see (38) for the definition of the space Xs,δ and, of course, 1
2 + denotes a fixed number

slightly bigger than 1
2 .

Proof. We first establish some notation. Let S denote the Schrödinger operator

S = i
∂

∂t
−∆x −∆y

and let T be the transport operator

T = i
∂

∂t
−∆x +∆y .

Let ε : L2(dxdy) → L2(dxdy) denote schematically any linear operator of operator
norm ≤ Cε0, where C is a “universal constant”. In practice, ε will be (composition with)
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a kernel of the type φ(t, x)φ(t, y)v(x − y), or multiplication by v ∗ |φ|2. Also, recall
the inhomogeneous term

m(t, x, y) = v(x − y)φ(t, x)φ(t, y).

Then, Eq. (10), written explicitly, becomes

Sk = m + S(k − u) + ε(u) + ε(p) + (T p + ε(p) + ε(u))(1 + p)−1u. (37)

Note that ch(k)2 −sh(k)sh(k) = 1; thus, 1+ p = ch(k) ≥ 1 as an operator and (1+ p)−1

is bounded from L2 to L2. We plan to iterate in the norm N (k) = ‖k‖L∞[0,1]L2(dxdy) +
‖Sk‖L∞[0,1]L2(dxdy). Notice that ‖m‖L2(dxdy) ≤ Cε0.

Now solve

Sk0 = m

with initial conditions k0(0, ·, ·) = 0, where N (k0) ≤ Cε0. Define u0, p0 corresponding
to k0.

For the next iterate, solve

Sk1 = m + S(k0 − u0) + ε(u0) + ε(p0) + (T p0 + ε(p0) + ε(u0))(1 + p0)
−1u0;

the non-linear terms satisfy

‖S(u0 − k0)‖L∞[0,1]L2(dxdy)

= ‖ 1

3!
(
(Sk0)k0k0 − k0(Sk0)k0 + k0k0Sk0

)
+ · · · ‖L∞[0,1]L2(dxdy)

= O(N (k0)
3).

Also, recalling that p0 = ch(k0)− 1, we have

‖T (p0)‖L∞[0,1]L2(dxdy) = ‖1

2

(
(Sk0)k0 − k0(Sk0)

)
+ · · · ‖L∞[0,1]L2(dxdy)

= O
(

N (k0)
2
)
.

Thus, N (k1) ≤ Cε0 + Cε2
0 . Continuing this way, we obtain a fixed point solution in this

space which satisfies the first three requirements of Theorem 5.

In fact, we can apply the same argument to
(
∂
∂t

)N
Dak, since

(
∂
∂t

)N
Dam ∈ L∞[0, 1]

L2(dx dy) for 0 ≤ a < 1
2 . However, we cannot repeat the argument for D1/2k.

We would like to have ‖SD1/2k‖L∞[0,1]L2(dx dy) finite. Unfortunately, this misses
“logarithmically” because of the singularity of v.

Fortunately, we can use the well-known Xs,δ spaces (see [2,18,20]) to show that
‖|S|s D1/2u‖L2(dt)L2(dx dy) is finite locally in time for (all) 1 > s > 1

2 . This assertion
will be sufficient for our purposes. Recall the definition of Xs,δ:

‖|ξ |s
(
|τ − |ξ |2| + 1

)δ
û‖L2(dτdξ) := ‖u‖Xs,δ . (38)

Going back to (37), we write

S(k) = m + F,
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where we define the expression

F(k) := S(k − u)− ε(u) + pm + (T (p) + ε(p) + um) (1 + p)−1u.

The idea is to localize in time on the right-hand side:

S(̃k) = χ(t) (m + F),

where χ ∈ C∞
0 (R), χ = 1 on [0, 1]. Then, k̃ = k on [0, 1].

As we already pointed out, we can estimate ‖S
(
∂
∂t

)N
Dak‖L2[0,1]L2(dx dy) ≤ C for

0 ≤ a < 1
2 . We can further localize k̃ in time to insure that these relations hold globally

in time. By using the triangle inequality |τ−|ξ |2|+ |τ | ≥ |ξ |2, we immediately conclude
that

‖|ξ | 3
2 − (

|τ − |ξ |2| + 1
) 1

2 +
k̂χ‖L2(dτdξ) ≤ C.


�

7. Error Term eB V e−B

The goal of this section is to list explicitly all terms in eB V e−B and to find condi-
tions under which these terms are bounded. Recall that V is defined by V = ∫

v(x0 −
y0)Q∗

x0 y0
Qx0 y0 dx0 dy0. For simplicity, shb(k) denotes either sh(k) or sh(k), and chb(k)

denotes either ch(k) or ch(k).
Let x0 
= y0; we obtain

eB Q∗
x0 y0

Qx0 y0 e−B = eB Q∗
x0 y0

e−BeB Qx0 y0 e−B .

According to the isomorphism (19), we have

Q∗
x0 y0

= I
(

0 0
−2δ(x − x0)δ(y − y0) 0

)

,

where the operator

eB Q∗
x0 y0

e−B = I
((

ch(k) sh(k)
sh(k) ch(k)

)(
0 0

−2δ(x − x0)δ(y − y0) 0

) (
ch(k) −sh(k)

−sh(k) ch(k)

))

is a linear combination of the terms
∫

chb(k)(x, x0)chb(k)(y0, y)Q∗
xydx dy,

∫

shb(k)(x, x0)chb(k)(y0, y)Nxydx dy, (39)
∫

shb(k)(x, x0)shb(k)(y0, y)Qxydx dy.
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A similar calculation shows that eB Qx0 y0 e−B is a linear combination of
∫

chb(k)(x, x0)chb(k)(y0, y)Qxydx dy,
∫

shb(k)(x, x0)chb(k)(y0, y)Nxydx dy, (40)
∫

shb(k)(x, x0)shb(k)(y0, y)Q∗
xydx dy.

Thus, eB Q∗
x0 y0

Qx0 y0 e−B is a linear combination of the nine possible terms obtained
by combining the above.

Now we list all terms in eB V e−BΩ . Terms in eB V e−B ending in Qxy are automati-
cally discarded because they contribute nothing when applied to Ω . The remaining six
terms are listed below.

∫

chb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x2, x0)chb(k)(y0, y2)

v(x0 − y0)Q
∗
x1 y1

Nx2 y2Ωdx1 dy1 dx2 dy2 dx0 dy0, (41)
∫

chb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x2, x0)shb(k)(y0, y2)

v(x0 − y0)Q
∗
x1 y1

Q∗
x2 y2

Ωdx1 dy1 dx2 dy2 dx0 dy0, (42)
∫

shb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x2, x0)chb(k)(y0, y2)

v(x0 − y0)Nx1 y1 Nx2 y2Ωdx1 dy1 dx2 dy2 dx0 dy0, (43)
∫

shb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x2, x0)shb(k)(y0, y2)

v(x0 − y0)Nx1 y1 Q∗
x2 y2

Ωdx1 dy1 dx2 dy2 dx0 dy0, (44)
∫

shb(k)(x1, x0)shb(k)(y0, y1)shb(k)(x2, x0)chb(k)(y0, y2)

v(x0 − y0)Qx1 y1 Nx2 y2Ωdx1 dy1 dx2 dy2 dx0 dy0, (45)
∫

shb(k)(x1, x0)shb(k)(y0, y1)shb(k)(x2, x0)shb(k)(y0, y2)

v(x0 − y0)Qx1 y1 Q∗
x2 y2

Ωdx1 dy1 dx2 dy2 dx0 dy0. (46)

To compute the above six terms, recall (24) through (27) as well as (1). In general,
NxyΩ = 1/2δ(x − y)Ω , while

∫
f (x, y)Q∗

xydxdyΩ = (0, 0, f (x, y), 0, . . .) up to
symmetrization and normalization.

The resulting contributions (neglecting symmetrization and normalization) follow.
From (41):

ψ(x1, y1) =
∫

chb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x2, x0)

×chb(k)(y0, x2)v(x0 − y0)dx2 dx0 dy0. (47)

From (42):

ψ(x1, y1, x2, y2) =
∫

chb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x2, x0)

×shb(k)(y0, y2)v(x0 − y0)dx0 dy0. (48)
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From (43):

ψ =
∫

shb(k)(x1, x0)chb(k)(y0, x1)shb(k)(x2, x0)

×chb(k)(y0, x2)v(x0 − y0)dx1 dx2 dx0 dy0. (49)

From (44), with the N and Q∗ reversed, we get

ψ(x2, y2) =
∫

shb(k)(x1, x0)chb(k)(y0, x1)shb(k)(x2, x0)

×shb(k)(y0, y2)v(x0 − y0)dx1 dx0 dy0, (50)

as well as the contribution from [N , Q∗], i.e.

ψ(y1, y2) =
∫

shb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x1, x0)

×shb(k)(y0, y2)v(x0 − y0)dx1 dx0 dy0. (51)

The contribution of (45) is zero, and, finally, the contribution of (46), using (24), consists
of four numbers, which can be represented by the two formulas

ψ =
∫

shb(k)(x1, x0)shb(k)(y0, x1)shb(k)(x2, x0) (52)

×shb(k)(y0, x2)v(x0 − y0)dx1 dx2 dx0 dy0

and

ψ =
∫

|shb(k)|2(x1, x0)|shb(k)|2(y0, y1)v(x0 − y0)dx1 dy1 dx0 dy0. (53)

We can now state the following proposition.

Proposition 2. The state eB V e−BΩ has entries on the zeroth, second and fourth slot of
a Fock space vector of the form given above. In addition, if

‖
(

i
∂

∂t
−∆x −∆y

)

sh(k)‖L1[0,T ]L2(dxdy) ≤ C1,

‖
(

i
∂

∂t
−∆x +∆y

)

p‖L1[0,T ]L2(dxdy) ≤ C2,

and v(x) = 1
|x | , or v(x) = χ(x) 1

|x | , then

∫ T

0
‖eB V e−BΩ‖2

F dt ≤ C,

where C only depends on C1 and C2.
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Proof. This follows by writing ch(k) = δ(x − y)+ p and applying Cauchy-Schwartz and
local smoothing estimates as in the work of Sjölin [32], Vega [33]; see also Constantin
and Saut [3]. In fact, we need the following slight generalization (see Lemma 2 below):
If

‖
(

i
∂

∂t
−∆x1 −∆x2 ±∆x3 · · · ±∆xn

)

f (t, x1, . . . xn)‖L1[0,T ]L2(dtdx) ≤ C,

with initial conditions 0, then

‖ f (t, x1, x2, . . .)

|x1 − x2| ‖L2[0,T ]L2(dxdy) ≤ C. (54)

We will check a typical term, (48). This amounts to proving the following three terms
are in L2.

1.

ψpp(t, x1, y1, x2, y2)

=
∫

p(t, x1, x0)p(t, y0, y1)shb(k)(t, x2, x0)shb(k)(t, y0, y2)v(x0−y0) dx0 dy0.

We use Cauchy-Schwartz in x0, y0 to get

∫ T

0

∫

|ψpp|2dt dx1 dx2 dy1 dy2

≤ sup
t

∫

|p(t, x1, x0)p(t, y0, y1)|2dx1 dx0 dy1 dy0

×
∫ T

0

∫

|shb(k)(t, x2, x0)shb(k)(t, y0, y2)v(x0−y0)|2dt dx2 dx0 dy2 dy0 ≤C.

The first term is estimated by energy, and the second one is an application of (54)
with f = shb(k)shb(k). Notice that, because of the absolute value, we can choose
either sh(k) or sh(k) to insure that the Laplacians in x0, y0 have the same signs.

2.

ψpδ(t, x1, y1, x2, y2)

=
∫

p(t, x1, x0)shb(k)(t, x2, x0)shb(k)(t, y1, y2)v(x0 − y1) dx0.

Here, we use Cauchy-Schwartz in x0 to estimate, in a similar fashion,

∫ T

0

∫

|ψpδ|2dt dx1 dx2 dy1 dy2

≤ sup
t

∫

|p(t, x1, x0)|2dx1 dx0

×
∫ T

0

∫

|shb(k)(t, x2, x0)shb(k)(t, y1, y2)v(x0−y1)|2dt dx2 dx0 dy2 dy0 ≤C.
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3.

ψδδ(x1, y1, x2, y2) = shb(k)(t, x2, x1)shb(k)(t, y1, y2)v(x1 − y1),

which is just a direct application of (54).

All other terms are similar. 
�
We have to sketch the proof of the local smoothing estimate that we used above.

Lemma 2. If f : R
3n+1 → C satisfies

‖
(

i
∂

∂t
−∆x1 −∆x2 ±∆x3 · · · ±∆xn

)

f (t, x1, . . . xn)‖L1[0,T ]L2(dxdy) ≤ C

with initial conditions f (0, · · · ) = 0, then

‖ f (t, x1, x2, . . .)

|x1 − x2| ‖L2[0,T ]L2(dx) ≤ C.

Proof. We follow the general outline of Sjölin, [32]. Using Duhamel’s principle, it suf-
fices to assume that

(

i
∂

∂t
−∆x1 −∆x2 ±∆x3 · · · ±∆xn

)

f (t, x1, · · · xn) = 0 (55)

with initial conditions f (0, · · · ) = f0 ∈ L2. Furthermore, after the change of variables
x1 → x1 + x2√

2
, x2 → x2−x1√

2
, it suffices to prove that

‖ f (t, x1, x2, . . .)

|x1| ‖L2[0,T ]L2(dx) ≤ C,

where f satisfies the same equation (55). Changing notation, denote x = (x2, x3, . . .)

and let < ξ >2 be the relevant expression ±|ξ2|2 ± |ξ3|2 . . .. Write

f (t, x1, x) =
∫

eit (|ξ1|2+<ξ>2)eix1·ξ1+i x ·ξ f̂0(ξ1, ξ) dξ1 dξ.

Thus, we obtain
∫ | f (t, x1, x)|2

|x1|2 dtdx1dx

=
∫ ∫

eit (|ξ1|2−|η1|2+<ξ>2−<η>2) eix1·(ξ1−η1)+i x ·(ξ−η)

|x1|2
× f̂0(ξ1, ξ) f̂ 0(η1, η)dξ1 dξ dη1 dηdt dx dx1

= c
∫

δ(|ξ1|2 − |η1|2) 1

|ξ1 − η1| f̂0(ξ1, ξ) f̂ 0(η1, ξ)dξ1dη1dξ

≤
∫

| f̂0(ξ1, ξ)|2dx1 dξ,

because one can easily check that

sup
ξ1

∫

δ(|ξ1|2 − |η1|2) 1

|ξ1 − η1|dη1 ≤ C.

Thus, the kernel δ(|ξ1|2 − |η1|2) 1
|ξ1−η1| is bounded from L2(dη1) to L2(dξ1). 
�
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8. Error Terms eB[A, V ]e−B

We proceed to check the operator eB[A, V ]e−B . The calculations of this section are
similar to those of the preceding section with the notable exception of (60)–(63). Recall
the calculations of Lemma 1 and write

eB[A, V ]e−B =
∫

v(x − y)
(
φ(y)eBa∗

x e−BeBax aye−B (56)

+φ(y)eBa∗
x a∗

ye−BeBax e−B
)

dx dy.

Now fix x0. We start with the term (56). According to Theorem 2, we have

eBa∗
x0

e−B =
∫ (

sh(k)(x, x0)ax + ch(k)(x, x0)a
∗
x

)
dx,

while eBax0 ay0 e−B has been computed in (40). The relevant terms are
∫

shb(k)(x, x0)chb(k)(y0, y)Nxydx dy and
∫

shb(k)(x, x0)shb(k)(y0, y)Q∗
xydx dy.

Combining these two terms, there are three non-zero terms (which will act on Ω):

1.
∫

v(x0 − y0)φ(y0)shb(k)(x1, x0)shb(k)(x2, x0)

×shb(k)(y0, y2)ax1 Q∗
x2 y2

Ωdx1dx2 dy2 dx0 dy0. (57)

This term contributes terms of the form

ψ(t, y2)=
∫

v(x0−y0)φ(t, y0)(shb(k)(t, x1, x0))
2shb(k)(t, y0, y2)dx1 dx0 dy0

(58)

as well as the term

ψ(t, x2) =
∫

v(x0 − y0)φ(t, y0)shb(k)(t, x1, x0)shb(k)(t, x2, x0)

×shb(k)(t, y0, x1)dx1 dx0 dy0, (59)

which we know how to estimate. The second contribution is:
2.

∫

v(x0 − y0)φ(y0)chb(k)(x1, x0)shb(k)(x2, x0)Ω

×chb(k)(y0, y2)a
∗
x1

Nx2 y2 dx1dx2 dy2 dx0 dy0. (60)

Commuting a∗
x1

with ax2 , we find that (60) contributes

ψ(t, y2) =
∫

v(x0 − y0)φ(t, y0)chb(k)(t, x1, x0)shb(k)(t, x1, x0)

×chb(k)(t, y0, y2)dx1 dx0 dy0. (61)
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We expand chb(k)(t, x1, x0) = δ(x1 − x0) + p(k)(t, x1 − x0). The contributions of
p are similar to previous terms, but δ(x1 − x0) presents a new type of term, which
will be addressed in Lemma 3. These contributions are

ψδp(t, y2) =
∫

v(x1 − y0)φ(t, y0)shb(k)(t, x1, x1)p(k)(t, y0, y2) dx1 dy0

(62)

and

ψδδ(t, y2) = φ(t, y2)

∫

v(x1 − y2)shb(k)(t, x1, x1)dx1. (63)

The last contribution of (56) is:
3.

∫

v(x0 − y0)φ(y0)chb(k)(x1, x0)shb(k)(x2, x0)shb(k)(y0, y2)a
∗
x1

Q∗
x2 y2

Ω

×dx1dx2 dy2 dx0 dy0 ∼ ψ(x1, x2, y2),

where

ψ(t, x1, x2, y2) =
∫

v(x0−y0)φ(t, y0)

×chb(k)(t, x1, x0)shb(k)(t, x2, x0)shb(k)(t, y0, y2)dx0 dy0,

modulo normalization and symmetrization. This term, as well as all the terms in
(57), are similar to previous ones and are omitted.

We can now state the following proposition:

Proposition 3. The state eB[A, V ]e−BΩ has entries in the first and third slot of a Fock
space vector of the form given above. In addition, if

‖
(

i
∂

∂t
−∆x −∆y

)

sh(k)‖L1[0,T ]L2(dxdy) ≤ C1,

‖
(

i
∂

∂t
−∆x +∆y

)

p‖L1[0,T ]L2(dxdy) ≤ C1

and

‖shb(k)(t, x, x)‖L2([0,T ]L2(dx)) ≤ C3, (64)

and v(x) = χ(x)
|x | for χ a C∞

0 cut-off function, then

∫ T

0
‖eB[A, V ]e−BΩ‖2

F ≤ C,

where C only depends on C1, C2, C3.

Proof. The proof is similar to that of Proposition 2, the only exception being the terms
(62), (63). It is only for the purpose of handling these terms that the Coulomb potential
has to be truncated, since the convolution of the Coulomb potential with the L2 function
shb(k)(x, x) does not make sense. If v is truncated to be in L1(dx), then we estimate
the convolution in L2(dx), and take φ ∈ L∞(dydt). 
�
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To apply this proposition, we need the following lemma.

Lemma 3. Let u ∈ X
1
2 ,

1
2 +. Then,

‖u(t, x, x)‖L2(dt dx) ≤ C‖u‖
X

1
2 ,

1
2 + .

Proof. As it is well known, it suffices to prove the result for u satisfying
(

i
∂

∂t
−∆x −∆y

)

u(t, x, y) = 0

with initial conditions u(0, x, y) = u0(x, y) ∈ H
1
2 . This can be proved as a “Morawetz

estimate”, see [14], or as a space-time estimate as in [19]. Following the second approach,
the space-time Fourier transform of u (evaluated at 2ξ rather than ξ for neatness) is

ũ(τ, 2ξ) = c
∫

δ(τ − |ξ − η|2 − |ξ + η|2)̃u0(ξ − η, ξ + η)dη

= c
∫
δ(τ − |ξ − η|2 − |ξ + η|2)
(|ξ − η| + |ξ + η|)1/2 F(ξ − η, ξ + η)dη,

where F(ξ −η, ξ +η) = (|ξ −η|+ |ξ +η|)1/2ũ0(ξ −η, ξ +η). By Plancherel’s theorem,
it suffices to show that

‖ũ‖L2(dτdξ) ≤ C‖F‖L2(dξdη).

This, in turn, follows from the pointwise estimate (Cauchy-Schwartz with measures)

|̃u(τ, 2ξ)|2 ≤ c
∫
δ(τ − |ξ − η|2 − |ξ + η|2)

|ξ − η| + |ξ + η| dη

×
∫

δ(τ − |ξ − η|2 − |ξ + η|2)|F(ξ − η, ξ + η)|2dη,

and the remark that
∫
δ(τ − |ξ − η|2 − |ξ + η|2)

|ξ − η| + |ξ + η| dη ≤ C.


�

9. The Trace
∫

d(t, x, x)dx

This section addresses the control of traces involved in derivations. Recall that

d(t, x, y) =
(

ish(k)t + sh(k)gT + gsh(k)
)

sh(k)

− (ich(k)t + [g, ch(k)]) ch(k)

−sh(k)mch(k)− ch(k)msh(k).

Notice that if k1(x, y) ∈ L2(dx dy) and k2(x, y) ∈ L2(dx dy) then
∫

|k1k2|(x, x)dx ≤
∫

|k1(x, y)||k2(y, x)|dy dx

≤ ‖k1‖L2‖k2‖L2 .
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Recall from Theorem 5 that if v(x) = ε
|x | or v(x) = χ(x) ε|x | then ish(k)t + sh(k)gT +

gsh(k), ich(k)t + [g, ch(k)] and sh(k) are in L∞([0, 1])L2(dxdy). This allows us to
control all traces except the contribution of δ(x − y) to the second term. But, in fact, we
have

ich(k)t + [g, ch(k)] = (
ikt −∆x k −∆yk

)
k − k

(
ikt −∆x k −∆yk

)
+ · · · ,

which has bounded trace, uniformly in [0, 1].
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8. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross-Pitaevskii hierarchy for the dynamics of

Bose-Einstein condensate. Commun. Pure Appl. Math. 59, 1659–1741 (2006)
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