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a b s t r a c t

The passage from discrete schemes for surface line defects (steps) to nonlinear macroscopic laws for
crystals is studied via formal asymptotics in one space dimension. Our goal is to illustrate by explicit
computations the emergence from step motion laws of continuum-scale power series expansions for
the slope near the edges of large, flat surface regions (facets). We consider surface diffusion kinetics
via the Burton, Cabrera and Frank (BCF) model by which adsorbed atoms diffuse on terraces and
attach–detach at steps. Nearest-neighbor step interactions are included. The setting is a monotone train
of N steps separating two semi-infinite facets at fixed heights. We show how boundary conditions for
the continuum slope and flux, and expansions in the height variable near facets, may emerge from
the algebraic structure of discrete schemes as N → ∞. Our technique relies on the use of self-similar
discrete slopes, conversion of discrete schemes to sumequations, and their reduction to nonlinear integral
equations for the continuum-scale slope. Approximate solutions to the continuum equations near facet
edges are constructed formally by direct iterations. For elastic-dipole andmultipole step interactions, the
continuum slope is found in agreement with a previous hypothesis of ‘local equilibrium’.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The connection of many-particle schemes to nonlinear partial
differential equations (PDEs) has been the subject of extensive
studies in non-equilibrium statistical mechanics. This perspective
has been explored in various physical contexts; for discussions see,
e.g., [1,2].

In epitaxial phenomena, ‘‘particles’’ are interacting line defects
(steps) of atomic size that move on crystal surfaces by mass
conservation [3]. At the nanoscale, themotion of steps is described
by large systems of differential equations for step positions. At
the macroscale, this description is often reduced conveniently
to nonlinear PDEs for macroscopic variables, e.g., for the surface
height and slope profiles [4–11].

The PDEs are believed to be valid away from macroscopically
flat surface regions known as ‘‘facets’’. Spohn [12] treated edges of
facets as free boundaries, where in principle boundary conditions
for the associated PDEs must be imposed. Such conditions are
often formulated, explicitly or implicitly, within the continuum
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framework [12–16] rather than derived directly from steps. The
incorporation of facets into continuum evolution laws is a rich yet
largely unexplored problem [17,7,18,19].

In this paper we address aspects of the question: what are the
boundary conditions and near-facet expansions for continuum-
scale variables consistent with stepmotion?We focus on two semi-
infinite facets separated by amonotone train ofN steps interacting
entropically and as elastic dipoles in one space dimension (1D).
This setting captures certain features of a finite crystal. From
a continuum viewpoint our main results may not be overall
surprising: in surface diffusion, the large-scale slope and flux
vanish at facet edges. Our technique shows what local behavior (in
space) of the slope emerges from the structure of discrete schemes
for crystal steps. In order to simplify the analysis, we focus on
documented self-similar solutions for the surface slope profile.

The same physical system is studied in [15] for diffusion
limited (DL) kinetics via scaling arguments and numerics for step
equations as well as for the PDE describing the slope profile. In this
work, a self-similarity ansatz is used and verified numerically by
discrete schemes. However, in [15] the continuum surface slope
and flux are assumed to vanish at facet edges, with the slope
behaving as O(x̄1/2) for small distance x̄ from the facet. These
speculations led to numerical continuum solutions in excellent
agreement with step simulation data [15].
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Here, motivated by the analysis by Al Hajj Shehadeh et al. [19],
we aim to shed some light on the studies in [15] by adopting a
two-scale perspective. First, we use self-similar solutions for finite
N to connect the discrete schemes to a continuum description for
the slope as a function of height away from facets. The discrete
schemes are converted to sum equations, which approach integral
equations (see Propositions 1 and 2 of Section 3); the latter
reveal power series expansions in the height variable. Second,
we propose extensions such as multipole nearest-neighbor step
interactions and special kinetics of extremal steps. We address
surface diffusion in the absence of external material deposition. In
fact, the evaporation–condensation case is exactly solvable under
(assumed) self-similarity and will be invoked for comparison
purposes.

1.1. Microscale: Burton–Cabrera–Frank (BCF) model

It is of interest to review elements of epitaxy for crystals; for
extensive reviews see, e.g., [20–23]. The morphological evolution
of crystal surfaces is driven by the motion of atomic steps
separating nanoscale terraces, as was first predicted by Burton,
Cabrera and Frank (‘‘BCF’’) [24]. Three basic ingredients of the
BCF model for surface diffusion are: (i) motion of steps by mass
conservation; (ii) diffusion of adsorbed atoms (‘‘adatoms’’) on
terraces; and (iii) attachment and detachment of atoms at steps.

Another transport process is evaporation–condensation: atoms
are exchanged between step edges and the surrounding vapor.
We neglect atom desorption on terraces and diffusion along
step edges [3], and leave out material deposition from the
above. Hence, the surface is expected to relax by lowering its
energy. Furthermore, we consider entropic and elastic-dipole
nearest-neighbor step interactions [3,25,26]; see Section 4.1 for an
extension.

1.2. Macroscopic limit and previous works

The BCF framework is our starting point. In the macroscopic
limit the step size approaches zero while the step density is kept
fixed. Our analysis is formal, i.e., it invokes simplifying assumptions
whichmay be provable and avoids rigor. For instance, startingwith
a monotone step train (at t = 0), we assume that the discrete
slopes, mj(t) (j: step number, t: time), and continuum-scale slope,
m(h, t) (h: height), are positive on the sloping surface for t > 0 and
the continuum limitmakes sense.We posit self-similarity for finite
N; presumably, this is reached for long enough times [15,19] in
various kinetic regimes, but this property is not proved here. In the
same vein, the persistence of semi-infinite facets during evolution
is hypothesized.

This formal approach enables us to exploremodifications of the
energetics and kinetics of the step model. Our arguments indicate
how microscale mechanisms of step kinetics can possibly control
the slope behavior at the macroscale.

Our work has been inspired by [19], where the relaxation
of the same step configuration is studied rigorously via the l2-
steepest descent of a discrete energy functional under attach-
ment–detachment limited (ADL) kinetics. In this case, the dominant
process is the exchange of atoms at step edges. Notably, [19] in-
vokes ordinary differential equations (ODEs) for discrete slopes at
the nanoscale, and a PDE for the surface slope as a function of
height at the macroscale. In [19], the positivity of discrete slopes
and convergence of the discrete self-similar solution to a contin-
uum self-similar one with zero slope at facet edges are proved; the
condition of zero flux emerges as a ‘‘natural boundary condition’’
from the steepest descent. An analogous method for DL kinetics
appears to be elusive at the moment.

Israeli et al. [27] study self-similar slope profiles under
evaporation–condensation and surface diffusion with ADL kinetics
for three 1D step geometries. Their step trains are semi-infinite,
and thus differ from the finite step train studied here and in [19];
hence, direct comparisons to results of [27] are not compelling. By
contrast to our setting, the self-similar slopes in [19] do not decay
with time. In [27], the condition of zero slope at the facet edge and
a power series expansion for the slope are imposed at the outset.

We adopt the use of the height as an independent variable [6,
19],which is a convenient Lagrangian coordinate ofmotion [28,15].
An advantage of this choice in the present setting, where facets are
at fixed heights, is the elimination of free boundaries, as pointed
out in [19]. We invoke equations for the discrete slopes in surface
diffusion, following [7,29,19].

1.3. Goals and paper organization

Our intention with the present work is twofold. First, we aim to
illustrate explicitly how boundary conditions for the continuum-
scale slope and flux, and power series expansions in the space
coordinate for the slope, are plausibly related to the algebraic
structure of the discrete laws. In surface diffusion, these laws
consist of three schemes: (i) the step velocity in terms of flux;
(ii) the flux in terms of step chemical potential (a thermodynamic
force); and (iii) the step chemical potential in terms of the discrete
slope cubed for elastic-dipole step interactions. Our method
addresses both DL and ADL kinetics.

Our second goal is to test the hypothesis of ‘‘local equilibrium’’
applied for facet edges within the continuum [15,14]. By this
hypothesis, the surface slope vanishes as the square root of the
distance from edges of zero-slope facets, if steps interact as elastic
dipoles. This behavior is speculated by analogy with equilibrium
crystal shapes on the basis of a surface free energy density
proportional to the slope cubed [30–32].

The remainder of the paper is organized as follows. In Section 2,
we formulate ODEs for discrete slopes. In Section 3, we study the
emergence from discrete schemes of continuum-scale expansions
for the slope near facets through iterations of integral equations.
In Section 4, we discuss possible extensions. Section 5 summarizes
our results. The appendices provide technical derivations and a
study of the evaporation–condensation case invoked in the main
text.
Units.We use nondimensional quantities via scaling of coordinates
and other variables. The atomic area, terrace diffusivity, Boltzmann
energy (kBT ) and step–step interaction strength are set equal
to unity, since the respective dimensional parameters can be
consolidated into a time scale.

2. Formulation of step motion laws

The step geometry is shown in Fig. 1. The system consists of
N + 1 steps at positions x = xj(t), where j = 0, . . . ,N and t ≥ 0.
The steps have constant size a, and separate two semi-infinite
plateaus at fixed heights, h = 0 for x < x0(t) and h = H ≫ a
for x > xN(t); cf. [15,19].

Set x̃ = x/H and h̃ = h/H and drop the tildes; thus, (N + 1)ϵ =

1 (where N ≫ 1 and ϵ ≪ 1), 0 ⩽ h ⩽ 1 and a is replaced by
ϵ = a/H . Following [19], we employ the discrete slopes, mj, as
dependent variables:

mj(t) :=
ϵ

xj+1(t)− xj(t)
, j = 0, 1, . . . ,N − 1. (1)

We assume that mj are positive for all t > 0, given that mj > 0 at
t = 0.
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Fig. 1. Geometry in 1D (cross section): the step height is a; the step position is xj;
and the semi-infinite facets are located at heights h = 0 (top) and h = H (bottom).

Next, we describe thermodynamic elements of stepmotion. For
entropic and elastic-dipole step interactions, the energy of the step
train is [3,25,26]

EN =
1
2

N−1−
i=0


ϵ

xi+1 − xi

2

=
1
2

N−1−
i=0

m2
i . (2)

The chemical potential of the jth step is [3]

µj =
δEN
δxj

= ϵ−1


ϵ

xj+1 − xj

3

−


ϵ

xj − xj−1

3


= ϵ−1(m3
j − m3

j−1), (3a)

where j = 1, . . . ,N − 1; for the extremal steps at x = x0, xN we
have

µ0 = ϵ−1m3
0, µN = −ϵ−1m3

N−1. (3b)

In surface diffusion, the step velocity, vj, is driven by the adatom
fluxes across step edges. By contrast, in evaporation–condensation
vj is driven by the step chemical potential [3,12]; see Appendix A.

2.1. Surface diffusion process

The step velocity law is

vj =
dxj
dt

= ẋj = ϵ−1
[ϕj−1(xj)− ϕj(xj)], j = 1, . . . ,N − 1; (4)

ϕj(x) = −∂xρj(x) is the adatom flux on the jth terrace (xj < x <
xj+1), (where the diffusivity is set to unity). The adatom density
ρj(x) obeys ∂2x ρj = ∂tρj ≈ 0 in the quasisteady regime [3]. By
linear kinetics, we have [3]

−ϕj = 2κ(ρj − ρ
eq
j )


xj
, ϕj = 2κ(ρj − ρ

eq
j+1)


xj+1
, (5)

where 2κ is a kinetic rate for the exchange of atoms at a step
edge, the factor of 2 is included for later algebraic convenience, and
ρ
eq
j ≈ 1 + µj is an equilibrium density [3]. By enforcement of (5),

we compute ρj(x) and, thus, φj(x):

ϕj(x) = −
κ

1 + κ(xj+1 − xj)
(µj+1 − µj), j = 0, . . . ,N − 1. (6a)

Eq. (4) needs to be extended to j = 0,N . By taking into account
ρj(x) for j = −1, x < x0 and j = N, x > xN , we find the plateau
fluxes

ϕ−1(x) = 0 x < x0, ϕN(x) = 0 x > xN . (6b)

By combining (4) and (6) with (3), we obtain a system of ODEs
for mj [15,33]. These equations are simplified in the following two
regimes.
ADL kinetics: mj ≫ κϵ. The equations ofmotion are reduced to [19]

ṁj

m2
j

= −ϵ−4(m3
j+2 − 4m3

j+1 + 6m3
j − 4m3

j−1 + m3
j−2), (7a)

for j = 0, . . . ,N − 1, along with the conditions

m−1 = 0 = mN ,

m3
0 − 2m3

−1 + m3
−2 = 0 = m3

N−1 − 2m3
N + m3

N+1.
(7b)

In (7a), we appropriately rescaled time (or set κϵ = 1).
We apply the ansatz mj(t) = P(t)Mj, and find P(t) = (Ct +

K)−1/4; set C = 4. In [19], the existence and uniqueness of this
discrete similarity solution is shown by proving the existence of a
unique positive critical point of a discrete energy. Further, in [19]
the discrete slope evolution is recast to an l2-steepest descent
with respect to this energy; any solution of the ODE system for mj
with a positive definite initial condition approaches the similarity
solution as t → ∞. Numerical evidence is given in [19]. The Mj
obey the fourth-order scheme
M3

j+2 − 4M3
j+1 + 6M3

j − 4M3
j−1 + M3

j−2

=
ϵ4

Mj
, j = 0, . . . ,N − 1, (8a)

M−1 = 0 = MN ,

M3
0 − 2M3

−1 + M3
−2 = 0 = M3

N−1 − 2M3
N + M3

N+1.
(8b)

DL kinetics: κϵ ≫ mj [15]. The step equations reduce to the ODEs

ṁj

m2
j

= −ϵ−4
[mj+1(m3

j+2 − 2m3
j+1 + m3

j )

− 2mj(m3
j+1 − 2m3

j + m3
j−1)

+mj−1(m3
j − 2m3

j−1 + m3
j−2)], j = 0, . . . ,N − 1; (9a)

m−1 = 0 = mN , m−2, mN+1 : finite; (9b)
thus,m−1(m3

0 − 2m3
−1 + m3

−2) = 0 = mN(m3
N−1 − 2m3

N + m3
N+1).

Now suppose mj(t) = P(t)Mj. By (9) we have ṗ/p6 = −C < 0
and find P(t) = (5Ct + K)−1/5; set C = 1. The ensuing difference
equation for Mj is

Mj+1(M3
j+2 − 2M3

j+1 + M3
j )− 2Mj(M3

j+1 − 2M3
j + M3

j−1)

+Mj−1(M3
j − 2M3

j−1 + M3
j−2) =

ϵ4

Mj
, j = 0, . . . ,N − 1, (10a)

with Mj > 0 and termination conditions

M−1 = 0 = MN and M−2, MN+1 : finite. (10b)

3. Limits of discrete schemes and near-facet expansions

In this section we derive expansions for the continuum-scale
slope near facets directly from schemes for discrete self-similar
slopes in surface diffusion.We convert the discrete schemes to sum
equations, and show that, as ϵ ↓ 0 with h = (j + 1)ϵ = O(1)
and (N + 1)ϵ = 1, the sum equations become integral equations
which indicate via iterations the slope behavior as h ↓ 0 and h ↑

1. A mathematical addendum on the manipulation of difference
schemes is given in Appendix B. The evaporation case is treated
in Appendix C, where a continuum similarity solution is computed
exactly in simple closed form.

In the limit ϵ ↓ 0, we assume that the discrete slopes, mj, ap-
proach the surface slope in an appropriateweak sense [33]. In prin-
ciple, given a sequence {uj}

N−1
j=0 (e.g., u = m), we posit a continuous

u(h, t), h ∈ (0, 1), such that for every (smooth) test function ϑ(h)
with ϑj := ϑ((j + 1)ϵ) and t > 0,

ϵ

N−1−
j=0

ϑjuj(t) = (N + 1)−1
N−1−
j=0

ϑjuj(t) −−−→
N→∞

∫ 1

0
ϑ(h)u(h, t)dh,

(11)
and write uj(·) ⇀ u(h, ·); assume convergence of these sums and
integrals.
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3.1. DL kinetics

We first focus on the self-similarity ansatz mj(t) = P(t)Mj =

(5t+K)−1/5Mj observed in [15], and setψj = M3
j . The fourth-order

scheme (10) is split as

ψj+1 − 2ψj + ψj−1 = −
ϵ2ϕj

ψ
1/3
j

,

ϕj+1 − 2ϕj + ϕj−1 = −
ϵ2

ψ
1/3
j

;

(12a)

ψ−1 = 0 = ψN , ϕ−1 = 0 = ϕN; j = 0, 1, . . . ,N − 1. (12b)

Recall that ϕj is the adatom flux on the jth terrace (xj < x < xj+1).

Proposition 1 (A Continuum Limit in DL Kinetics). In the limit ϵ ↓ 0
with mj(t) ⇀ P(t)m(h), discrete scheme (12) reduces to the integral
equation

ψ(h) = m(h)3 = C1h − C2

∫ h

0

z(h − z)
m(z)

dz

+

∫ h

0

∫ z

0

(h − z)(z − ζ )

m(z)m(ζ )
dζdz, (13)

0 < h < 1; thus, limh↓0 m(h) = 0 = limh↓0 ϕ(h) (ϕ: flux).
The constants C1, C2 are subject to respective conditions at h = 1:
limh↑1 m(h) = 0 = limh↑1 ϕ(h). By (13), a sufficiently differentiable
m(h) obeys m[m(m3)hh]hh = 1.

We abuse notation by using the symbol m(h) for the h-
dependent continuum similarity solution. The primary continuum
variables are the slope, m(h), and flux, ϕ(h). Assume that the
integrals in (13) converge and a solution exists appropriately.

Proof. We proceed along the lines of Appendix B.1; see formulas
(B.1)–(B.4) in regard to expressing ψj in terms of the generating
function (polynomial), Ψ (s) =

∑N−1
j=0 ψjsj. Our strategy is to

convert each of the second-order difference equations (12a) to a
sum equation, treating their right-hand sides as forcing terms, fj.
The first one of (12a) leads to

ψj = (1 + j)ψ0 −

j−1−
p=0

[(j + 1)ϵ − (p + 1)ϵ]
ϕp

ψ
1/3
p
ϵ, (14a)

after applying the first pair of conditions (12b); the coefficient ψ0
is given by

(N + 1)ψ0 =

N−1−
j=0

[(N + 1)ϵ − (j + 1)ϵ]
ϕj

ψ
1/3
j

ϵ. (14b)

The second one of equations (12a) with the last pair of conditions
(12b) yields

ϕj = (1 + j)ϕ0 −

j−1−
p=0

(j + 1)ϵ − (p + 1)ϵ

ψ
1/3
p

ϵ, (15a)

where, by analogy with (14b),

(N + 1)ϕ0 =

N−1−
j=0

[(N + 1)ϵ − (j + 1)ϵ]ψ−1/3
j ϵ. (15b)

Now let ϵ ↓ 0 with (N + 1)ϵ = 1 and (j + 1)ϵ = h = O(1). By
(14), we have

ψj ⇀ ψ(h) = m(h)3 = C1h

−

∫ h

0
(h − z)

ϕ(z)
m(z)

dz 0 < h < 1; (16a)

C1 := lim
ϵ↓0
(ϵ−1ψ0) =

∫ 1

0
(1 − z)

ϕ(z)
m(z)

dz. (16b)

By (15), the analogous limit for ϕj is

ϕj ⇀ ϕ(h) = C2h −

∫ h

0

h − z
m(z)

dz 0 < h < 1; (17a)

C2 := lim
ϵ↓0
(ϵ−1ϕ0) =

∫ 1

0

1 − z
m(z)

dz. (17b)

By the definitions of C1 and C2, we infer limh↑1 m(h) = 0 =

limh↑1 ϕ(h). The combination of (16a) and (17a) recovers (13).
Differentiations of the integral equations entail m(m3)hh =

−ϕ,mϕhh = −1, by whichm(m(m3)hh)hh = 1. �

Corollary 1. The constants C1 and C2 in (13) are positive. Further, for
0 < h < 1, the flux ϕ(h) is positive; thus, (a twice continuously
differentiable) m(h)3 is concave.

The first statement in Corollary 1 follows from the definitions
of C1 and C2 and the assumed positivity of the slope. Note that

C1 =

∫ 1

0

1 − z
m(z)

[∫ z

0

ζ (1 − z)
m(ζ )

dζ +

∫ 1

z

z(1 − ζ )

m(ζ )
dζ

]
dz.

The positivity of ϕ(h) = −m(m3)hh follows from (17).
Near-facet expansion. In the spirit of Appendix C.2, notice that if
m(h) = O(hα) as h ↓ 0 for some 0 ⩽ α < 1, the integrals in (13)
generate subdominant contributions of orders (from left to right)
O(h3−α) and O(h4−2α). This observation motivates an iteration
scheme for (13), or the system of (16a) and (17a). Successive local
approximations ofm(h) as h ↓ 0 are constructed via

m(n+1)(h)3 = C1h −

∫ h

0
(h − z)

ϕ(n)(z)
m(n)(z)

dz,

m(0)(h) = (C1h)1/3;

ϕ(n+1)(h) = C2h −

∫ h

0

h − z
m(n)(z)

dz, ϕ(0)(h) = C2h, (18)

wherem ∼ m(n), ϕ ∼ ϕ(n) to n+1 terms; n = 0, 1, . . . . The above
construction produces a formal expansion of m(h) in ascending
powers of h. The first three terms are evaluated in Appendix D; the
result reads

m(h) = (C1h)1/3 −
3
40

C2

C1
h2

+
27
700

C−4/3
1 h8/3

+ O(h11/3)

as h ↓ 0. (19)
Note the powers of h entering (19), i.e., 1/3 (leading order), 2 (first
correction) and 8/3, in comparison to the powers 1/3, 1, 5/3 ap-
pearing in (C.13) of Appendix C for the evaporation–condensation
case.

By the discrete scheme for xj(t), and mj(t) ∼ Mjt−1/5, we find
xj(t) ∼ t1/5Xj for large t; thus, h = h(η) and m(h(η)) = h′(η)

where the similarity variable is η = xt−1/5 [15]. By integration and
inversion of (19), we find an expansion of m(h(η)) in the vicinity
of the facet edge, as η̄ = η− ηf,L ↓ 0, where ηf,L = xf,L(t)t−1/5 and
xf,L(t) is the position of the left facet (h = 0):

m(h(η)) =


2
3

1/2

C1/2
1 η̄1/2 −

8
315

C2η̄
3
+

8
945

η̄4 + O(η̄11/2).

(20)
Note the absence of the powers 1, 3/2, 2, 5/2; cf. Eq. (A5)
in [15]. Likewise, by mirror symmetry we can write the analogous
expansion form(h) as h ↑ 1.
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Remark 1. Integral equation (13) can result from integrating the
slope ODE m[m(m3)hh]hh = 1 under the conditions m → 0 and
ϕ → 0 as h ↓ 0 and h ↑ 1. Our technique exemplifies the passage
to the continuum limit via the integral equation so that these
conditions emerge directly from the difference scheme.

Remark 2. It is tempting to extend the results of Proposition 1
to the time-dependent setting (without self-similarity), where
mj(t) ⇀ m(h, t). The emergent pair of integral relations form(h, t)
and the continuum flux, ϕ(h, t), is

m(h, t)3 = C1(t)h −

∫ h

0
(h − z)

ϕ(z, t)
m(z, t)

dz,

ϕ(h, t) = C2(t)h −

∫ h

0
(h − z)∂t [m(z, t)−1

]dz,

0 < h < 1, t > 0, (21)

provided the integrals converge; C1(t) and C2(t) are subject to the
vanishing ofm and ϕ as h ↑ 1. In principle, it may not be legitimate
to iterate (21) in order to expand m(h, t) near a facet edge, unless
t is sufficiently large. By differentiation of (21), we obtain the PDE
∂tm = −m2∂2h (m∂

2
hm

3) [14,15].

Remark 3. By (21), the slope is m(h(x, t), t) = O((x − xf(t))1/2)
as x → xf(t) (position of the left or right facet edge) for sufficiently
long times, consistent with the hypothesis of local equilibrium
invoked in earlier continuum theories, e.g., in [14]. Further
iterations are suggestive of the nature of the expansion form(h, t)
in the vicinity of large facet edges. To compute coefficients of the
expansion, it is algebraically convenient to make the substitution
m(h, t) =

∑
∞

n=1 An(t)(x − xf(t))n/2 into the PDE for m(h, t); then,
the values A2 = A3 = A4 = A5 = 0 are recovered by dominant
balance [15].

3.2. ADL kinetics

Next, we focus on fourth-order scheme (7), which is also the
subject of [19]. By the similarity solution mj(t) = (4t + K)−1/4Mj,
proved in [19], and ψj = M3

j , the pertinent difference equations
read

ψj+2 − 4ψj+1 + 6ψj − 4ψj−1 + ψj−2 = fj = ϵ4ψ
−1/3
j , (22a)

for j = 0, 1, . . . ,N − 1, along with the conditions

ψ−1 = 0 = ψN ,

ψ0 − 2ψ−1 + ψ−2 = 0 = ψN−1 − 2ψN + ψN+1;
(22b)

recall that ϕj = −(ψj+1 − 2ψj + ψj−1) is the jth-terrace adatom
flux. There are at least two routes to studying (22): either split it
into two second-order schemes by using ϕj as an auxiliary variable,
or leave the fourth-order scheme intact and use onlyψj.We choose
the latter route here.

Proposition 2 (A Continuum Limit in ADL Kinetics). In the limit ϵ ↓

0, discrete scheme (22) reduces to the integral equation

ψ(h) = m(h)3 = C1h − C3h3
+

1
6

∫ h

0

(h − z)3

m(z)
dz,

0 < h < 1; (23)

thus, limh↓0 m(h) = 0 = limh↓0 ϕ(h) (ϕ: flux). The constants C1
and C3 are subject to respective conditions at h = 1: limh↑1 m(h) =

0 = limh↑1 ϕ(h). By (23), (a sufficiently differentiable) m(h) satisfies
m(m3)hhhh = 1; cf. [19].

By our usual practice, we assume that the integral in (23)
converges and a solution of the integral equation exists in some
appropriate sense.
Proof. We treat the fj of (22a) as given forcing terms and solve
for ψj with recourse to the generating polynomial, Ψ (s); see
Appendix B.2 for details. After some algebra, the variables ψj are
found to be

ψj =
1
6

[
(ψ1 − 2ψ0)j2(j + 3)+ 2(ψ0 + ψ1)j + 6ψ0

+ ϵ4
j−2−
p=0

(j − p − 1)(j − p)(j − p + 1)ψ−1/3
p

]
,

j = 0, . . . ,N − 1, (24)

where

ψ1 − 2ψ0 =
−NF(1)+ F ′(1)

N + 1
, (25a)

2(N + 1)(ψ1 + ψ0) = N(2N − 1)F(1)+ (2N2
− 5N + 2)F ′(1)

− 3(N − 1)F ′′(1)+ F ′′′(1), (25b)

ψ0 =
N(2N + 1)F(1)+ N(2N − 5)F ′(1)− 3(N − 1)F ′′(1)+ F ′′′(1)

6(N + 1)
.

(25c)

Recall F(s) =
∑N−1

j=0 fjsj. The prime in (25) denotes the derivative
in s.

Now let N → ∞, and ϵ ↓ 0 with (N + 1)ϵ = 1. By formulas
(25), we find

ψ1 − 2ψ0

ϵ3
−−→
ϵ↓0

−

∫ 1

0

1 − z
m(z)

dz, (26a)

ψ0 + ψ1

ϵ
−−→
ϵ↓0

1
2

∫ 1

0

1 − z − (1 − z)3

m(z)
dz, (26b)

ψ0 = O(ϵ) → 0. (26c)

For fixed height h = (j + 1)ϵ (with j → ∞), we let ψj ⇀ ψ(h),
thus reducing sum equation (24) to integral equation (23) with

C1 := lim
ϵ↓0

ψ0 + ψ1

3ϵ
=

1
6

∫ 1

0

1 − z − (1 − z)3

m(z)
dz, (27a)

C3 := − lim
ϵ↓0

ψ1 − 2ψ0

6ϵ3
=

1
6

∫ 1

0

1 − z
m(z)

dz, (27b)

and the neglect of ψ0. The resulting continuum-scale slope m(h)
vanishes as h ↓ 0. In addition, ϕj ⇀ ϕ(h)with limh↓0 ϕ(h) = 0, as
verified by (23). Eq. (27) imply that the slope and flux also vanish as
h ↑ 1. The differentiation of (23) furnishes the ODEm(m3)hhhh = 1,
where ϕ(h) = −(m3)hh. �

Corollary 2. The constants C1 and C3 entering (23) are positive.
Further, the large-scale flux, ϕ(h) = −(m3)hh, is positive for 0 <
h < 1.

Corollary 2 declares the concavity of ψ(h) = m(h)3 proved
in [19].
Near-facet expansion. In the spirit of Appendix C.2 and Section 3.1,
a formal expansion for the slope near facet edges can plausibly be
derived by iterations of (23). The ensuing slope behavior ism(h) =

(C1h)1/3 + O(h7/3) as h ↓ 0. The leading-order term is compatible
with local equilibrium. Hence, with η = xt−1/4, we have (cf. (20))

m(h(η)) =


2
3

1/2

C1/2
1 η̄1/2 + O(η̄7/2) as η̄ → 0;

η̄ = t−1/4(x − xf(t)).

(28)
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Remark 4. The derivation can be extended to the full time
dependent setting, where mj(t) ⇀ m(h, t). The integral relation
consistent with step laws is

m(h, t)3 = C1(t)h − C3(t)h3

+
1
6

∫ h

0
(h − z)3∂t [m(z, t)−1

]dz, (29)

where 0 < h < 1 and t > 0. The PDE reads ∂tm = −m2∂4hm
3

[19].

4. Extensions

In this section we discuss two possible extensions of our
formulation. First, we address different laws of nearest-neighbor
step interactions; in this case, the slope behavior at facet edges,
i.e., the exponent 1/2 in the leading-order terms of (20) and (28),
is modified accordingly. Second, we propose a toy modelwhere the
kinetics of attachment–detachment at extremal steps is different
from other steps. Our discussion aims to indicate the role that
individual steps may play in the derivation of boundary conditions
in the continuum setting.

Another plausible extension concerns the presence of an
Ehrlich-Schwoebel barrier, by which the attachment–detachment
law for all steps is characterized by different kinetic rates, say κu
and κd, for up- and down-steps [34,35]. In this case, the effective
kinetic rate for the adatom flux is the harmonic average of κu and
κd [11]. Hence, our analysis remains essentially intact.

4.1. Multipole nearest-neighbor step interactions

Next, we discuss continuum-scale implications of the step
energy [11]

EN({xj}Nj=0) =
1
α

N−1−
i=0


ϵ

xi+1 − xi

α
=

1
α

N−1−
i=0

mα
i α > 1, (30)

which in principle includes step multipole interactions for integer
α ⩾ 2 [26]; α = 2 for dipole step interactions. The jth-step
chemical potential is

µj =
δEN
δxj

= ϵ−1(mα+1
j − mα+1

j−1 ), j = 1, . . . ,N − 1; (31)

in addition,µ0 = ϵ−1mα+1
0 andµN = −ϵ−1mα+1

N−1. Formulas for the
adatom flux and step velocity ensue fromSection 2 viam3

j ⇒ mα+1
j

in µj.
For instance, in DL kinetics the discrete scheme for steps now

reads

ṁj

m2
j

= −ϵ−4
[mj+1(mα+1

j+2 − 2mα+1
j+1 + mα+1

j )

− 2mj(mα+1
j+1 − 2mα+1

j + mα+1
j−1 )

+mj−1(mα+1
j − 2mα+1

j−1 + mα+1
j−2 )],

j = 0, . . . ,N − 1; (32a)

m−1 = 0 = mN , m−2, mN+1 : finite. (32b)

Thus, the discrete self-similar slopes read mj(t) = [(α + 3)t +

K ]
−

1
α+3 Mj.
To proceed along the lines of Section 3, let ψj = Mα+1

j ;
or, more generally, ψj(t) = mj(t)α+1. Our manipulations for ψj
remain intact. The analogue of Proposition 1 contains the relation
(cf. (13))

m(h)α+1
= C1h − C2

∫ h

0

z(h − z)
m(z)

dz

+

∫ h

0

∫ z

0

(h − z)(z − ζ )

m(z)m(ζ )
dζdz, (33)

where C1 and C2 are subject to the vanishing of slope and flux at
h = 1.

Iterations of (33) yield a formal expansion of the slope near
the facet edges. We obtain m(h(x, t), t) = O((x − xf(t))1/α) as
x → xf(t), the position of a facet edge, for sufficiently long times.
This behaviormanifests the intimate connection of step interaction
law and near-facet expansion at equilibrium [30].

4.2. Special kinetics of extremal steps

In this section we explore the following scenario. Suppose the
attachment–detachment law for extremal steps (j = 0,N) involves
kinetic rates, say κL for j = 0 and κR for j = N , which may be
different from κ . By linear kinetics, the fluxes impinging on these
steps are taken to be

−ϕ0 = 2κL(ρ0 − ρ
eq
0 ) x = x0;

ϕN−1 = 2κR(ρN−1 − ρ
eq
N ) x = xN .

(34)

At the other steps, the kinetic rates remain 2κ . We study whether
κL or κR can possibly distort nontrivially the previous boundary
conditions in the macroscopic limit, assuming this limit is well
defined. The 0th terrace adatom flux is ϕ0 = −ϵ−1(κ̄ϵ)m0(ρ

eq
1 −

ρ
eq
0 )/(κ̄ϵ + m0), where κ̄ = 2(κ−1

+ κ−1
L )−1. Without loss of

generality, set κR = κ ≠ κL and define β = κ̄/κ > 0. Hence,
we restrict attention to the left facet edge (h = 0). It is tempting
to claim that, in the limit ϵ ↓ 0, the detail of (34) disappears;
and hence we recover a continuum-scale boundary condition
of zero slope and flux. We discuss formally why this claim is
consistent with steps if β = O(1). The situation is subtler if β ≤

O(ϵ3).
We focus on ADL kinetics, where surface processes are limited

by atom attachment–detachment at steps, and scale time by κϵ.
Themotion laws for the discrete slopes are described by (7a) along
with the modified termination conditions

m3
−1 + (1 − β)(m3

1 − 2m3
0) = 0 = m3

N , (35a)

m3
0 − 2m3

−1 + m3
−2 = 0 = m3

N−1 − 2m3
N + m3

N+1. (35b)

Eq. (35b) states that the auxiliary discrete fluxes vanish, in accord
with (7b); hence, we expect that the boundary conditions for
the continuum-scale flux are intact. By contrast, (35a) indicates
a nonzero m−1, which in turn suggests the possibility of a
nonzero continuum-scale slope as h ↓ 0. (In view of (35a), the
mirror symmetry of the system is removed.)

We proceed to convert (7a) to sum equations via the generating
polynomial, Ψ (s); see Appendix B.2. Let ψj = m3

j . After some
algebra, we find (cf. (24))

ψj =
1
6


β(ψ1 − 2ψ0)j2(j + 3)+ 2[ψ0 + ψ1

− 2(β − 1)(ψ1 − 2ψ0)]j + 6ψ0 + ϵ4
j−2−
p=0

(j − p − 1)

× (j − p)(j − p + 1)(d/dt)ψj(t)−1/3

, (36)
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where, with F(s) = ϵ4
∑N−1

j=0 sj(d/dt)ψj(t)−1/3, the requisite
coefficients are

β(ψ1 − 2ψ0) =
−NF(1)+ F ′(1)

N + 1
,

2(N + 1)[ψ0 + ψ1 − 2(β − 1)(ψ1 − 2ψ0)]

=


2N2

− N + 6
β − 1
β

N
N + 1


F(1)

+


2N2

− 5N + 2 − 6
β − 1
β

1
N + 1


F ′(1)

− 3(N − 1)F ′′(1)+ F ′′′(1),

6(N + 1)ψ0 =


2N2

+ N − 6N
β − 1
β

N
N + 1


F(1)

+


2N2

− 5N + 6
β − 1
β

N
N + 1


F ′(1)

− 3(N − 1)F ′′(1)+ F ′′′(1).

Note the termψ0 entering the right-hand side of (36). The question
arises as to whether ψ0 = O(1) as ϵ ↓ 0 by manipulation of the
parameter β .

Consider the limit of (36) as N → ∞ with ϵ(N + 1) = 1.
By Section 3.2, we infer that any contribution of β is negligible if
β = O(1); the macroscopic laws are identical to those for β = 1
(Section 3.2): the slope and flux vanish at the facet edges. These
conditions appear to persist provided β > O(N−3).

Now suppose β = β̆/N3, β̆ = O(1) > 0, while the continuum
limit makes sense, e.g., N4−nF ′(n)(1) →

 1
0 zn−1∂t [m(z, t)−1

]dz =

O(1) as N → ∞; n = 1, 2, 3, 4 and F ′(n)(s) denotes the nth-order
derivative of F(s). We find

m(h, t)3 = C0(t)+ C1(t)h − C3(t)h3

+
1
6

∫ h

0
(h − z)3∂t [m(z, t)−1

]dz; (37)

cf. (29). The coefficients C0(t), C1(t) and C3(t) are found to be

C0(t) = lim
ϵ↓0
ψ0(t) = β̆−1

∫ 1

0
(1 − z)∂t [m(z, t)−1

]dz,

which signifies the nonzero value of the continuum slope as h ↓ 0,
and

C1(t) = lim
ϵ↓0

ψ1(t)+ ψ0(t)− 2(β − 1)[ψ1(t)− 2ψ0(t)]
3ϵ

=
1
6

∫ 1

0
[(1 − 6β̆−1)(1 − z)− (1 − z)3]∂t [m(z, t)−1

]dz,

C3(t) = − lim
ϵ↓0

β[ψ1(t)− 2ψ0(t)]
6ϵ3

=
1
6

∫ 1

0
(1 − z)∂t [m(z, t)−1

]dz.

Note that if β̆ ≫ 1, (37) reduces to the macroscopic limit of
Section 3.2.

A sufficiently small β forces the microscale flux at the top step
to become small; thus, the motion of the extremal step tends to be
‘frozen’ and the density of steps increases in the vicinity of the left
facet edge. Interestingly, our heuristic analysis indicates the critical
scaling β = O(N−3) for this ‘freezing’ to occur.

5. Conclusion and discussion

Inspired by a recent analysis of ADL kinetics for 1D semi-infinite
crystal facets at fixed heights [19], we revisited this system and
derived formal expansions for the continuum surface slope in the

vicinity of each facet. Our starting point was a system of nonlinear
ODEs for discrete slopes according to the BCF model. Each of the
steps interacts with its nearest neighbors through elastic-dipole
and entropic repulsions. The ODEs were converted to a difference
scheme and sum equations via a discrete self-similar solution. In
the macroscopic limit, the sum equations are reduced to integral
relations which unveil via iterations the local behavior of the
continuum slope (and flux) near facets. Our approach is not limited
by the kinetics: DL and ADL kinetics in surface diffusion as well
as evaporation–condensation are treated formally on the same
grounds.

We studied two possible extensions of this approach. First, we
considered multipole nearest-neighbor step interactions. For step
interactions decaying asw−α with the terrace widthw, where α ≥

2, the slope vanishes as O(x̄1/α)with the distance x̄ from the facet
edge, in agreement with notions of local equilibrium. Second, we
studied implications of special kinetics at extremal steps, assuming
the macroscopic limit is meaningful.

The setting, motivated by [15,19], provides an explicit example
of a step flow model consistent with the continuum theory.
The conditions of zero slope and flux (e.g., in DL kinetics)
are compatible with those afforded by a gradient-flow-type
formulation; see, e.g., Odisharia [36], Spohn [12], and Shenoy and
Freund [13]. Ourwork provides a linkage of the underlying particle
structure to the local behavior of continuum-scale variables near
the facet boundary.

Our approach bears limitations. The self-similar solution
studied here is expected to capture the long-time evolution of
the slope. The transient near-facet behavior requires a subtler
analysis. The derived integral equations have not been studied
rigorously; issues of existence and uniqueness of solutions were
not touched upon. In the same vein, the legitimacy of applying
iterations was not addressed (although an exactly solvable case
in evaporation–condensation via self-similarity is pointed out in
Appendix C). Self-similar solutions were applied but not proved to
exist, be unique or stable.

The setting with semi-infinite, 1D and fixed-height facets of
this article forms a simplification of (the more realistic) situations
where facets are finite, have curved boundaries and time-varying
height [7,18]. In such cases, individual steps collapsing on top of
the facets can influence the surface profile macroscopically [7].
The derivation of near-facet expansions for the slope in more
complicated geometries is the subject of work in progress.
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Appendix A. Discrete scheme of the evaporation–condensation
process

For a specific version of this process, the step velocity law
reads [3,12,16]

vj(t) =
dxj
dt

= ẋj(t) = −(µj − µ0), j = 0, 1, . . . ,N, (A.1)

where µ0 is the chemical potential of the surrounding vapor; set
µ0

= 0. In (A.1), we use a constant mobility; see [23,12,16] for
variants of (A.1). In view of (3), we wind up with the discrete
scheme

ϵ−2m2
j (m

3
j+1 − 2m3

j + m3
j−1) = ṁj, j = 0, . . . ,N − 1, (A.2)

along with the termination conditionsm−1 = 0 = mN .
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Heuristically, we can eliminate time via the (particular) self-
similar solution
mj(t) = P(t)Mj (dMj/dt ≡ 0, Mj ≠ 0). (A.3)

By (A.2), we have ṗ/p5 = −C = const.; set C = 1. Thus, P(t) =

(4t + K)−1/4. The Mj satisfy the second-order scheme

M3
j+1 − 2M3

j + M3
j−1 = −

ϵ2

Mj
, j = 0, . . . ,N − 1 (Mj > 0), (A.4a)

M−1 = 0 = MN . (A.4b)

Appendix B. On solutions of difference equations

This appendix has details for the computations of Section 3 and
Appendix C.

B.1. Second-order difference scheme

First, we indicate how to solve the difference scheme

ψj+1 − 2ψj + ψj−1 = fj, j = 0, . . . ,N − 1;
ψ−1 = 0 = ψN ,

(B.1)

where fj are given and can be time dependent. We write

ψj =
1
j!
djΨ (s)
dsj


s=0

=
1

2π i


Γ

Ψ (ζ )

ζ j+1
dζ

(i2 = −1), j = 0, . . . ,N − 1, (B.2)
by applying the Cauchy integral formula, where Γ is a contour
enclosing 0 and Ψ (s) is the generating function (polynomial)
defined for complex s by

Ψ (s) =

N−1−
j=0

ψjsj (s ∈ C). (B.3)

The goal is to find Ψ (s). Multiplying (B.1) by sj and summing over
jwe get
s−1

[Ψ (s)− ψ0 + ψN sN ] − 2Ψ (s)
+ s[Ψ (s)+ ψ−1s−1

− ψN−1sN−1
] = F(s),

where

F(s) =

N−1−
j=0

fjsj. (B.4)

Thus, we obtain

Ψ (s) =
ψ0 − ψ−1s − ψN sN + ψN−1sN+1

+ sF(s)
(1 − s)2

=
P (s)
(1 − s)2

. (B.5)

The point s = 1 is a removable singularity provided P (1) = 0 =

P ′(1).
The coefficient of sj in Ψ (s) is given by (B.2). By taking the

contourΓ in the interior of the unit disk (|ζ | < 1), and eliminating
analytic terms, we have

ψj =
1

2π i


Γ

ψ0 + ζ F(ζ )
(1 − ζ )2

dζ
ζ j+1

, j = 0, . . . ,N − 1. (B.6)

Recalling the binomial expansion (1− ζ )−2
=

∑
∞

k=0(1+ k)ζ k, we
find the series

ψ0 + ζ F(ζ )
(1 − ζ )2

= ψ0 +

∞−
l=0

ζ l+1


l + 2 +

l−
p=0

(1 + l − p)fp


. (B.7)

The coefficient of ζ j, which by (B.6) yields ψj, is singled out for
l = j − 1.

B.2. Fourth-order difference scheme

Next, consider the difference scheme (22). The generating
polynomial, Ψ (s), introduced in (B.3) satisfies

s−2(Ψ − ψ0 − ψ1s + ψN sN + ψN+1sN+1)− 4s−1(Ψ − ψ0

+ψN sN)+ 6Ψ − 4s(Ψ + ψ−1s−1
− ψN−1sN−1)

+ s2(Ψ + ψ−2s−2
+ ψ−1s−1

− ψN−1sN−1
− ψN−2sN−2)

= F(s) =

N−1−
j=0

fjsj.

In view of termination conditions (22b), we find

Ψ (s) =
P (s)
(1 − s)4

; (B.8a)

P (s) = ψ0 + (ψ1 − 4ψ0)s + ψ0s2 + ψN−1sN+1

+ (ψN−2 − 4ψN−1)sN+2
+ ψN−1sN+3

+ s2F(s). (B.8b)

The point s = 1must be a removable singularity in (B.8a); thus, we
should have P (1) = P ′(1) = P ′′(1) = P ′′′(1) = 0, which entails
the equations

ψ1 − 2ψ0 + ψN−2 − 2ψN−1 = −F(1),
ψ1 − 2ψ0 + (N + 2)(ψN−2 − 2ψN−1) = −2F(1)− F ′(1),
2ψ0 + (N + 1)(N + 2)ψN−2 − 2(N2

+ 3N + 1)ψN−1 = −2F(1)
− 4F ′(1)− F ′′(1),

N(N + 1)(N + 2)ψN−2 − 2(N2
− 1)(N + 3)ψN−1 = −6[F ′(1)

+ F ′′(1)] − F ′′′(1). (B.9)

The solution of this system leads to formulas (25).
We now determine ψj in terms of ψ0 and ψ1 with recourse to

(B.2); Γ is a contour enclosing 0 in the interior of the unit disk. By
conveniently removing an analytic part of the integrand, we have
(for j = 0, . . . ,N − 1)

ψj =
1

2π i


Γ

ψ0 + (ψ1 − 4ψ0)ζ + ψ0ζ
2
+ ζ 2F(ζ )

(1 − ζ )4

dζ
ζ j+1

. (B.10)

By virtue of the binomial expansion

(1 − ζ )−4
=

1
3!

∞−
l=0

(l + 1)(l + 2)(l + 3)ζ l
|ζ | < 1,

the integrand in (B.10) has residue at ζ = 0 equal to

1
3!

[
ψ0(j + 1)(j + 2)(j + 3)+ (ψ1 − 4ψ0)j(j + 1)(j + 2)

+ψ0(j − 1)j(j + 1)+

j−2−
p=0

(j − 1 − p)(j − p)(j − p + 1)fp

]
.

By separating distinct powers of j in the first line, we obtain (24).

Appendix C. Continuum limit in evaporation–condensation
kinetics

In this appendix, we convert the discrete scheme (A.4) of
Appendix A to an integral equation for the continuum-scale, self-
similar slope in the limit ϵ ↓ 0.We also find a near-facet expansion
for this slope by direct iterations of the derived integral equation.
This iteration procedure is reasonably validated through an exact
formula for the (assumed) self-similar continuum solution.
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C.1. Integral equation

By ψj = M3
j , the relevant difference scheme reads

ψj+1 − 2ψj + ψj−1 = fj = −
ϵ2

ψ
1/3
j

, ψ−1 = 0 = ψN , (C.1)

where ψj > 0 and j = 0, 1, . . . ,N − 1. We assume ψj ⇀ ψ(h) as
ϵ ↓ 0.

Proposition C.1 (A Continuum Limit in Evaporation–Condensation).
In the limit ϵ ↓ 0, discrete scheme (C.1) reduces to the integral
equation

ψ(h) = m(h)3 = C1h −

∫ h

0

h − z
m(z)

dz 0 < h < 1; (C.2)

thus, limh↓0 m(h) = 0. The constant C1 is

C1 =

∫ 1

0

1 − z
ψ(z)1/3

dz =

∫ 1

0

1 − z
m(z)

dz > 0, (C.3)

which implies limh↑1 m(h) = 0. By (C.2), a sufficiently differentiable
m(h) satisfies the ODE m(m3)hh = −1 for 0 < h < 1.

By abusing notation, we use the symbol m(h) for the space-
dependent part of the self-similar slope; i.e.,m(h, t) = P(t)m(h) =

(4t + K)−1/4m(h). Assume that the integral in (C.2) converges and
a solution exists appropriately.

Proof. Starting with (C.1) and finite N , we express ψj in terms of
a (finite) sum over fj by following the procedure of Appendix B.1.
The associated generating polynomial, Ψ (s), introduced in (B.3) is
found to be

Ψ (s) =
ψ0 + ψN−1sN+1

+ sF(s)
(1 − s)2

, F(s) =

N−1−
j=0

fjsj, (C.4)

where ψ0 and ψN−1 are such that s = 1 is a removable singularity
of Ψ (s):

ψ0 =
−NF(1)+ F ′(1)

N + 1
, ψN−1 = −

F(1)+ F ′(1)
N + 1

. (C.5)

The prime denotes the derivative of F(s). By (B.2) of Appendix B.1,
we find

ψj = (1 + j)ψ0 +

j−1−
p=0

(j − p)fp = (1 + j)ψ0

−

j−1−
p=0

ϵ[(j + 1)ϵ − (p + 1)ϵ]ψ−1/3
p . (C.6)

This is the desired sum equation for ψj.
Let us now focus on the limit of (C.6) as ϵ ↓ 0 with (j + 1)ϵ =

h = O(1). With regard to the computation ofψ0 by (C.5), note that

(N + 1)ψ0 =

N−1−
j=0

[(N + 1)ϵ − (j + 1)ϵ]ψ−1/3
j ϵ

−−→
ϵ↓0

∫ 1

0
(1 − h)ψ(h)−1/3dh, (C.7)

assuming that the respective sum and integral are convergent;
thus,

lim
ϵ↓0
(ϵ−1ψ0) =: C1 =

∫ 1

0

1 − h
ψ(h)1/3

dh =

∫ 1

0

1 − h
m(h)

dh. (C.8)

Let z = (p + 1)ϵ in (C.6); then, by ψp ⇀ ψ(z), we have

j−1−
p=0

[(j + 1)ϵ − (p + 1)ϵ]ψ−1/3
p ϵ ⇀

∫ h

0
(h − z)ψ(z)−1/3dz. (C.9)

In view of (C.8), we wind up with (C.2) and (C.3). The ODE
m(m3)hh = −1 ensues by differentiation (in the usual calculus
sense) of the integral equation. This assertion concludes our formal
derivation. �

C.2. Iteration scheme and near-facet expansion

Proposition C.1 suggests what the behavior of m near facet
edges should be. The integral in (C.2) produces a subdominant
contribution O(h2−α) if m(h) = O(hα) as h ↓ 0 for some 0 ⩽
α < 1. A formal expansion can be derived as follows. Set m(h) ∼

m(n)(h) to n + 1 terms as h ↓ 0, where

m(n+1)(h)3 = C1h −

∫ h

0

h − z
m(n)(z)

dz; m(0)(h) = (C1h)1/3. (C.10)

Consider {m(n)(h)}∞n=0, defined recursively by (C.10). We compute

n = 1 : m(1)(h) =


C1h −

9
10

C−1/3
1 h5/3

1/3

⇒ m(1)(h)− m(0)(h) = −
3
10

C−1
1 h + O(h5/3) as h ↓ 0. (C.11)

More generally, the difference δm(n)
= m(n)

− m(n−1) satisfies

δm(n)
[m(n)2

+ m(n)m(n−1)
+ m(n−1)2

](h)

=

∫ h

0

(h − z)δm(n−1)(z)
m(n−1)(z)m(n−2)(z)

dz (C.12)

for n = 2, . . . ;m(n)(h) ∼ (C1h)1/3 for every n as h ↓ 0. By
inspection of (C.11) and (C.12), we see that δm(n)(h) ∼ anhbn . For
instance, for n = 2 we compute a2 = −(9/280)C−7/3

1 , b2 = 5/3
and

m(2)
∼ m(1)(h)−

9
280

C−7/3
1 h5/3

=


C1h −

9
10

C−1/3
1 h5/3

1/3

−
9

280
C−7/3
1 h5/3,

which leads to a three-term expansion form(h):

m(h) = (C1h)1/3 −
3
10

C−1
1 h −

171
1400

C−7/3
1 h5/3

+ O(h7/3)

as h ↓ 0. (C.13)

Higher-order terms are generated in an analogous fashion, but of
course the algebra becomes increasingly cumbersome with the
order, n. Our construction implies m(n+1)

− m(n)
= O(h(2n/3)+1).

In Appendix C.3, we show that (C.13) is consistent with the exact,
global self-similar solution of the PDE.

The above formal expansion can be converted to a power series
in x−xf,L, where xf,L(t) is the position of the left facet edge. By ẋj =

−µj = −ϵ−1(m3
j −m3

j−1), and the ansatzmj(t) = (4t + K)−1/4Mj,
we ascertain that xj(t) ∼ t1/4Xj for large t . Hence, the similarity
coordinate is η = xt−1/4 and we set h = h(η);m(h(η)) = h′(η).
By integrating (C.13), we obtain

C1/3
1 (η − ηf,L) =

3
2
h2/3

+
9
40

C−4/3
1 h4/3

+
1305
2800

C−8/3
1 h2

+ O(h8/3) as h ↓ 0,
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where ηf,L = xf,L(t)t−1/4. By inverting in the limit η̄ = η−ηf,L ↓ 0,
we find

m(h(η)) =


2
3

3/2

C1/2
1

[
3
2
η̄1/2 −

3
8
C−1
1 η̄3/2

−
971
1600

C−2
1 η̄5/2 + O(η̄7/2)

]
. (C.14)

For the other end point (h ↑ 1), mirror symmetry applies (under
h → 1 − h).

Remark C.1. Integral equation (C.2) can result from integrating
the ODE (m3)hh = −1/m via imposing from the outset m → 0 as
h ↓ 0 and h ↑ 1. Here, this zero-slope condition emerges directly
from the discrete scheme.

Remark C.2. It is tempting to extend the above calculation to the
full time-dependent setting, with focus on ODEs (A.2). Consider
mj(t) ⇀ m(h, t). Formally, 1/m(h) (under self-similarity) is now
replaced by ∂t [m(h, t)−1

] in defining fj. If the integral converges,
the relation form(h, t) now reads

m(h, t)3 = C1(t)h −

∫ h

0
(h − z)∂t [m(z, t)−1

]dz t > 0; (C.15)

C1(t) is given by the t-dependent counterpart of (C.3). Alterna-
tively, differentiate to get the PDE ∂tm = m2∂2h (m

3) [16]. Cau-
tion should be exercised though: in principle, (C.15) may not be
amenable to iterations in the sense described above, unless t is suf-
ficiently large. Hence, it is not advisable to iterate (C.15) to study
transients of the slope near the facet edge.

Remark C.3. This discussion suggests that, for a class of initial
data,

m(h(x, t), t) = O((x − xf(t))1/2) x → xf(t), (C.16)

at the left- or right-facet edge position, xf(t), for sufficiently
long times. This behavior is in agreement with the condition of
local equilibrium at facet edges [30,32]. The integral equation
formulation indicates the form of the expansion for m(h, t) and
readily provides the leading-order term. For the derivation of
higher-order terms, one may use the respective PDE. The starting
point is the power series expansion

∑
∞

n=1 An(x−xf(t))n/2, indicated
by iterations of (C.2).

C.3. Exact, global self-similar solution

It is rather fortuitous thatm(h) can be determined globally [37],
thus rendering possible a comparison with expansion (C.13). By
ψ(h) = m(h)3, the governing ODE is ψ ′′

= −ψ−1/3, where
the prime denotes the derivative in h. If ψ(0) = 0 = ψ(1), by
symmetry we can restrict ψ(h) in (0, 1/2) where ψ ′(h) ⩾ 0 and
ψ ′(1/2) = 0. The ODE is split into the system

ψ ′
= w, w′

= −ψ−1/3, (C.17)

to which we associate a constant of motion via the ‘‘energy’’

E(h) =
1
2
w(h)2 +

3
2
ψ(h)2/3; E ′(h) = 0. (C.18)

Thus, solutions of (C.17) can be parametrized by the constant c =

E(h).
Suppose that we look for solutions consistent with integral

equation (C.2). So, we require that ψ and w solve (C.17) for h ∈

(0, 1/2) under the conditions

ψ(0) = 0, w(1/2) = 0. (C.19)

By definition of E andw we compute h(m) in closed form by

h =

∫ ψ

0

dξ
2c − 3ξ 2/3

=
c

√
3


sin−1 m − m

1 − m2


;

m = m


3
2c

(C.20)

and 0 ≤ h ≤ 1/2 along with w = dψ/dh ⩾ 0. The solution h(m)
for 1/2 < h ≤ 1 is obtained by reflection. In principle, (C.20) (and
its reflection) can be inverted to generatem(h). The constant c can
be found by setting h = 1/2 in (C.20) and using the definition of
E(h) andw(1/2) = 0. Thus, we deduce

1
2

=

∫ ψ(1/2)

0

dξ
2c − 3ξ 2/3

,

c = 3ψ(1/2)2/3/2 ⇒ c =
√
3/π,

(C.21)

and m(1/2) = 3−1/421/2π−1/2.
We proceed to generate a power series of m(h). Eq. (C.20)

becomes

πh =

∞−
l=1

Γ
 1
2 + l


l!Γ

 1
2

 4l
4l2 − 1

m2l+1 m < 1,

where Γ (z) is the Gamma function. The inversion of the last series
yields

m(h)3 =
3πh
2

−
3
10


3πh
2

5/3

−
3

280


3πh
2

7/3

+ O(h3)

as h ↓ 0. (C.22)
This expansion is consistentwith (C.13) byC1 = 31/421/2π−1/2. The
full h-expansion, by inversion of (C.20), is convergent in a vicinity
of h = 0.

Appendix D. Iteration of the integral equation for DL kinetics

In this appendix, we discuss the use of iterations for formally
constructing an expansion of the continuum-scale slope near facet
edges in theDL case (Section 3.1). Consider scheme (18). Because of
the increasingly elaborate algebra, we compute up to three terms
for m(h(η)).

m(1)(h)3 = C1h −

∫ h

0

h − z
(C1z)1/3

C2zdz = C1h −
9
40

C2

C1/3
1

h8/3, (D.1)

ϕ(1)(h) = C2h −

∫ h

0

h − z
(C1z)1/3

dz = C2h −
9
10

C−1/3
1 h5/3

;

⇒
ϕ(1)(h)
m(1)(h)

=
C2

C1/3
1

h2/3
−

9
10

C−2/3
1 h4/3

+ O(h7/3) h ↓ 0.

Accordingly, an approximation form(2)(h) comes from

m(2)(h)3 = C1h −

∫ h

0
(h − z)

ϕ(1)(z)
m(1)(z)

= C1h −
9
40

C2

C1/3
1

h8/3
+

34

700
C−2/3
1 h10/3

+ O(h13/3), (D.2)

which leads to (19), wherem(h(η)) = h′(η). By integrating in ηwe
find

η̄ =
3
2
C−1/3
1 h2/3

+
9

280
C2

C5/3
1

h7/3
−

9
700

C−2
1 h3

+ O(h4) h ↓ 0.

The inversion of this expansion yields

h(η) =


2
3

3/2

C1/2
1 η̄3/2 −

2
315

C2η̄
4
+

8
4725

η̄5 + O(η̄13/2), (D.3)

which is reduced to (20) through differentiation.
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