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1. Morphological Evolution of Crystalline Materials

It is well known that liquid surfaces evolve in shape due to the effect of
surface tension, which drives configurations towards lower energy. The break-
up of an initially cylindrical fluid thread into spherical droplets, first quantified
experimentally by Plateau and analyzed by Rayleigh, is a popular and illus-
trative example. Solid surfaces, in particular surfaces of crystals, also evolve
according to the analogous principle of minimizing their surface energy. The
evolution in this case, however, is more complicated to describe physically
and mathematically than the analogous phenomena for fluid interfaces, bec-
ause there is a richer variety of competing mechanisms that are available for
the solid to change its shape. In addition, a solid supports strain, which leads
to the surface energy depending on the slope of the crystal surface. In this arti-
cle we summarize the basic physical ideas that underlie crystal surface evolu-
tion, introduce continuum descriptions in terms of continuum thermodynamics
and partial differential equations (PDEs), and provide solutions to some
analytically tractable prototypical problems.

A strong motivation for studying how crystal surfaces evolve is the need
to better understand and harness properties of solid structures and electronic
devices at the nanoscale. In most experimental, and technologically relevant,
situations, such structures are not in thermodynamic equilibrium, and decay
with a lifetime that varies appreciably with the temperature T and, most imp-
ortantly, scales as an integer power of the feature size; thus, smaller structures
decay faster. Hence, there is a need for the quantitative understanding of the
factors that affect surface evolution, such as formation and growth of islands
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and atom clusters. Other problems are related to crystal dissolution, the eff-
ects of catalysts, and surface functionalization (e.g., using physical chemistry
techniques).

1.1. Mechanisms of Surface Evolution of Crystalline
Materials

There are at least four primary mechanisms for solid surfaces to evolve:
(i) Evaporation–condensation processes whereby atoms leave the surface or
deposit on the surface from above. These processes are driven by differences
between the chemical potential of the surface and the adjacent bulk phases
(solid or vapor). (ii) Surface diffusion whereby movable atoms or point defects
(“adatoms”) perform random walks (Brownian motion) along the surface. (iii)
Strain-driven rearrangements of atoms in the bulk of the material. (iv) Atomic
motion driven by external electric fields, which is a phenomenon referred to
as electromigration. Here we focus on mechanisms (i) and (ii).

These mechanisms, and especially their effects on the macroscopic surface
features as well as their quantitative description, depend on the temperature
and the surface orientation.

There are two distinct temperature regimes that mark different macroscopic
behaviors of surfaces both at and away from equilibrium; these regimes are
separated by the orientation-dependent roughening transition temperature TR.
For any fixed T , continuously curved portions of the surface are characterized
by a roughening transition temperature TR < T whereas macroscopically flat
regions of the surface known as “facets” have TR > T [1]. Below TR the surface
consists of distinct steps bounding terraces whose size can vary from a few
nanometers up to a few microns, as shown in Fig. 1a which also illustrates
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Figure 1. (a) A STM (single tunneling

Q1

microscopy) image of a stepped Si (001) surface,
which illustrates kinks, voids, atom clusters, a step and a terrace. (Ref. B.S. Swartzentruber’s
website, Sandia National Laboratories). (b) The contrast between the shape of crystal surfaces
above and below the roughening transition. For T <TR the equilibrium crystal shape has stable
facets while for T > TR the surface is continuously rounded with no facets present (Ref. Fig. 7
from Ref. [3]). (c) The notation used for keeping track of the position of different steps with
position xn(t).
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kinks, clusters of atoms and voids. The increase of the temperature above TR

causes the terraces to shrink as steps are spontaneously created everywhere,
and the surface appears to be “rough,” as shown in Fig. 1b. Accordingly, below
TR the evolution is caused by the lateral motion of the atomic steps and is in
principle more difficult to describe physically and mathematically. Moreover,
the detailed description of these processes is impacted by kinetics at the step
edges, especially those of extremal steps of opposite sign [2].

The physical picture described above implies that the energetics of the solid
surface are different above and below TR, which can be a few hundreds of
degrees K below the melting temperature for solids; this description of sur-
face evolution clearly has important differences from the case of liquid–liquid
interfaces.

1.2. Theoretical Descriptions of Surface Evolution

The aim of most theoretical studies is to describe the surface morphol-
ogy at macroscopic length scales by taking into account the motion of atoms
or steps at smaller length scales. Historically, there have been two different
theoretical approaches: (i) Approaches based on continuum thermodynamics
and principles of continuum mechanics such as mass conservation, which lead
to diffusion-like PDEs or variational principles (e.g., for a recent variational
approach see Ref. [4]). (ii) Simulations of individual atoms or step motion
by solving a large number of coupled equations; for example, the wandering
of an individual step is studied by taking into account the local or nonlocal
interactions with adjacent steps. This second approach often succeeds in pro-
viding detailed information about the surface morphology by accounting for
motions over a wide range of length scales. Nevertheless, the merits of the
first approach include its relative simplicity because it often enables analytical
solutions and, therefore, allows for quantitative predictions for experiments. It
is worthwhile mentioning that the differential equations that arise in this con-
tinuum approach vary in their form and properties of solutions, and are not
generally so familiar to researchers. We take the first approach in the main
body of this article.

There are many different types of problems that have emerged in the
theoretical and experimental studies of morphological surface evolution, as
determined mostly by the geometry and dimensionality of the surface config-
urations both above and below TR. We mention here only four types of such
problems. In particular, there have been studies of: (a) the relaxation or flatten-
ing of a surface with long-wavelength features, an example being a periodic
corrugation with an initial sine in one or two rectilinear coordinates, (b) the rel-
axation of a surface morphology with an initial localized “bump,” or structure
of finite extent, (c) the evolution of the interface between two grain boundaries,
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which is commonly referred to as grooving, and (d) the evolution of surfaces
of revolution in three dimensions such as cones and cylinders (e.g., wires).
Analytical solutions for representative versions of some of these problems are
summarized in this paper.

1.3. Step-flow Models

The basic description of atomistic processes in the framework of step
kinetics that underlies surface evolution was given by Burton et al. [5] and
is referred to as BCF theory; for an overview see Ref. [3]. Figure 1c shows a
cross-section of a 1D step configuration along x with the position of the nth
step denoted by xn(t), where the nth terrace is the region xn< x< xn+1. The
starting point for step-flow models is the conservation of mass, which relates
xn with the adatom surface current (atoms/time), Jn(x), on the nth terrace by

ẋn(t) =
�

a
[Jn−1(xn, t) − Jn(xn, t)], ẋn(t) ≡ dxn

dt
, (1)

where � is the atomic area and a is the step height. The surface current is
Jn = −Ds(∂cn/∂x), where cn = cn(x, t) is the adatom concentration and Ds

is the diffusivity. The concentration cn(x, t) satisfies the diffusion equation,
Ds(∂

2cn/∂x2)=∂cn/∂t ≈ 0, where the time derivative is negligible in the qua-
sistatic approximation. Thus, cn on each terrace is cn(x, t) = An(t)x + Bn(t),
where the time t enters implicitly through the boundary conditions. The requi-
site boundary conditions describe the attachment and detachment of atoms at
the step edges,

−Jn(xn, t) = k[cn(xn, t) − ceq
n ], Jn(xn+1, t) = k[cn(xn+1, t) − ceq

n+1],

(2)

where k is the attachment–detachment rate coefficient and the superscript “eq”
denotes the equilibrium atom density at the step edge. Hence, An and Bn can
be determined in terms of ceq

n , which is related to the step chemical potential,
µn , by

ceq
n = ceq exp

(
µn

kBT

)
≈ ceq

(
1 + µn

kBT

)
, (3)

where we have also indicated the limit |µn| � kBT [6]. Finally, µn is related
to other step positions via the step interaction potential. In particular, for next-
neighbor interactions described by the potential V (xn, xn+1), the step chemical
potential is µn =∂[V (xn, xn+1)+V (xn−1, xn)]/∂x . Hence, (1)–(3) define a sys-
tem of coupled ODEs for the step positions which can be solved numerically
with given initial conditions xn(0) to determine the evolution of a stepped
surface.
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2. Governing Equations for Continuum Descriptions

A basic ingredient of the continuum equations for surface evolution both
above and below roughening is the chemical potential µ [7]. We restrict
the majority of our discussion to the analysis of configurations in one inde-
pendent space dimension where the height profile is denoted h = h(x, t) and
hx ≡ ∂h/∂x . The surface thermodynamics can be described in terms of either of
two energies, the surface free energy per projected area of the high-symmetry
plane, G(hx), or the perhaps more familiar surface free energy per area of the
surface, γ (φ), where φ is the surface orientation, tan φ = hx . The two energies

are related by G = γ
√

1 + h2
x . As above, we denote by � the atomic area.

The chemical potential µ is related to G by µ−µ0 =−�(∂/∂x)(∂G/∂hx),
as shown using a variational principle [8] in the Appendix. It then follows by
elementary calculus that

µ − µ0 = − �
∂

∂x

∂G

∂hx
= −hxx

∂2G

∂h2
x

= − �hxx cos2 φ
∂

∂φ
cos2 φ

∂

∂φ

(
γ (φ)

cos φ

)

= − �

(
γ + d2γ

dφ2

)
hxx

(1 + h2
x)

3/2︸ ︷︷ ︸
κ

, (4)

where in the last step we used cos φ = (1 + h2
x)

−1/2. Also, κ denotes the
curvature of the surface. The term d2γ /dφ2 ≡ γφφ is not present when consid-
ering surface evolution of liquids. In the more general, 2D setting [8], we have
G = G(hx , hy) and use µ− µ0 = −�v((∂/∂x)(∂G/∂hx) + (∂/∂y)(∂G/∂hy))
where �v is the atomic volume. As a result, the chemical potential is µ−µ0 =
−�v(γ +γφ1φ1)κ1 −�v(γ +γφ2φ2)κ2, where κ1 and κ2 are the principal curva-
tures, and φ1 and φ2 are the corresponding angles (surface orientations) along
the normals to these principal curvatures.

2.1. Surface Evolution by Evaporation–Condensation
Above and Below TR

Perhaps the simplest case of surface dynamics is when the evolution
occurs by displacement of atoms by evaporation from, or condensation on,
the surface. The driving force for movement of the atoms is then the differ-
ence of chemical potentials between the surface and the vapor. Thus, with vn

denoting the speed at which the surface is displaced in the normal direction,

vn = −ζ(µ − µ0), (5)
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where ζ > 0 is the product of a surface mobility [9] and the inverse of the step
height.

It is necessary to distinguish two cases, T > TR and T < TR, since below
roughening the existence of steps and facets produces differences in the form
of the relation between surface energy (γ ) and surface orientation (hx ). In the
classical case of evolution above roughening, T > TR, ζ and γ are analytic in
hx . For the special case of constant properties, ζ0 and γ0, Eq. (5) simplifies.

Since vn = ht
/√

1 + h2
x and the curvature is κ = hxx/

(
1 + h2

x

)3/2
, then (4) and

(5) lead to

ht = �ζ0γ0
hxx

1 + h2
x

(T > TR). (6)

In the small-slope limit, |hx | � 1, we simply have the familiar linear dif-
fusion equation. Some examples, for both the linear and nonlinear equations,
are given below.

On the other hand, below the roughening transition, T < TR, the mobility
may be dependent on the surface orientation, e.g., ζ = k0|hx |α with α = 0 or 1
is common. Further, it is usual to consider small slopes and define the height
function h(x, t) relative to a crystallographic plane. In this case, γ + γφφ =
γ̃ |hx |β , where β = 1 when the dominant physical effect at the nanoscale is that
of step–step elastic interactions that decay inversely proportional to the square
of the step distance [10], or G = g0 + g1|hx | + 1

3 g3|hx |3, where 2g3 = γ̃ . For
α = 1 and β = 1 in particular, the surface evolves according to the non-linear
equation

ht = �k0γ̃ h2
x hxx . (7)

A general discussion of the evaporation–condensation dynamics below
roughening is given by Spohn [9]. Again, some examples are provided below.

2.2. Surface Evolution by Surface Diffusion
Above and Below TR

As above, the surface evolves in the normal direction at a speed vn owing
to variations in the flux of atoms along the surface. It is straightforward to give
the development in two independent space dimensions here [11]. If we let j
denote the number of atoms per unit length normal to a contour lying in the
surface and �v the atomic volume as above, then mass conservation requires

vn + �v∇s · j = 0. (8)

For systems out of, but close to, equilibrium the surface flux j is propor-
tional to the gradient of the surface chemical potential (or energy) for an
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atom. The corresponding thermodynamic force on the atom is −∇sµ, and
the flux of atoms then follows from a form of a Stokes–Einstein argument:
j = −(Dscs/kBT )∇sµ, where Ds is the surface diffusivity, cs is the adatom
concentration (number/area; adatoms are those atoms free to diffuse at any
time along the surface), kB is Boltzmann’s constant and T is the absolute tem-
perature. Assuming all material parameters are constants, the surface evolves
according to

vn =
Dscs�v

kBT
∇2

s µ. (9)

Above the roughening transition, the chemical potential change, µ−µ0,
is proportional to the surface curvature. Hence, (9) yields a fourth-order
nonlinear PDE for the height h. In one dimension the PDE is

ht = − Dscs�
2γ0

kBT

√
1 + h2

x

∂2

∂x2

[
hxx

(1 + h2
x)

3/2

]
. (10)

For small slopes, this equation is linearized to ht = − (Dscs�
2γ0/kBT )

hxxxx .
On the other hand, below the roughening transition, the surface energy

depends on the surface orientation. Taking γ + γφφ = γ̃ |hx | in one dimension
for small surface slopes, we obtain the nonlinear PDE

ht = − Dscs�
2γ̃

kBT
(|hx |hxx)xx . (11)

Some solutions of these equations for surface-diffusion-driven evolution
above and below the roughening temperature are given below.

3. Solutions to Prototypical Problems: Surface
Evolution by Evaporation–Condensation
Processes, T > TR

In these last sections we tersely summarize a number of problems that have
been treated analytically, including both the familiar linear second and fourth
order diffusion equations and the more intricate nonlinear equations. We treat
in sequence evaporation–condensation and surface diffusion processes, first
for conditions above, and then for conditions below, the roughening transition.

We begin with evaporation–condensation dynamics. Recall that (6) reduces
to the diffusion equation for |hx | � 1 so that ht = �ζ0γ0 hxx .

Relaxation of periodically corrugated surfaces [12]. For an initial periodic
profile with wavelength λ, h(x, 0) = A sin(2πx/λ), the diffusion equation is
solved by applying Fourier series in the form h(x, t) =

∑∞
n=1 an(t) sin(2nπx/λ),
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where the coefficients an(t) satisfy the ODE ȧn + �ζ0γ0(2πn/λ)2an = 0 and
the initial condition an(0) = A. Hence, the complete solution is

h(x, t) = A
∞∑

n=1

e−�ζ0γ0

(
2πn
λ

)2
t sin

(
2nπx

λ

)
. (12)

For sufficiently long times, which corresponds to t � λ2/(4π2�ζ0γ0),
Eq. (12) simplifies to h(x, t) ∼ Ae−�ζ0γ0(2π)/(λ)2t sin(2πx/λ); thus, the life-
time of the periodic profile is proportional to λ2.

Decay of a localized mound of atoms. Again, we restrict ourselves to the
small-slope approximation. For an initial bump, h(x, 0) = f (x) where f (x) is
of finite extent, and the condition h → 0 sufficiently fast as |x |→∞, h(x, t)
is determined analytically by applying the Laplace transform in t , h̃(x, s) =∫∞

0 dt h(x, t)e−st . In particular, for f (x) = δ(x), we find h̃δ(x, s) = e−√
s|x |/

(2
√

s) whose inversion gives the fundamental solution

hδ(x, t) =
1√

�ζ0γ0t
e− x2

4�ζ0γ0t . (13)

Notice that this solution has the similarity form t−1/2 H(η) where η is the
similarity variable x/

√
4�ζ0γ0t . The solution for an arbitrary initial bump is

obtained by superposition

h(x, t) =

∞∫
−∞

dx ′ hδ(x − x ′, t) f (x ′). (14)

Grooving at a grain boundary [13, 14]. Here we consider the evolution of
a groove which forms at a grain boundary of an otherwise flat surface. It is
thus necessary to solve (6) subject to the condition hx(0, t) = −(cos θ/ sin θ),
where θ is half the dihedral angle formed at the groove. This problem admits
a similarity solution of the form h(x, t) = (2�ζ0γ0t)1/2 H

(
x/(2�ζ0γ0t)1/2

)
where H(η) satisfies the ODE

(
H − ηHη

) (
1 + H 2

η

)
= Hηη. (15)

Thus, the grain deepens at a rate proportional to t1/2. A numerical solution
of (15) is in principle necessary and is straightforward to obtain by the usual
shooting procedure of guessing H(0) with a given Hη(0) until H(η →∞)
→ 0. For the special case of small surface slopes, |Hη| � 1, (15) can be
linearized, and the resulting solution is H(η) = −(cos θ/sin θ)(η erfc(η/

√
2)−√

2/πe−η2/2).
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4. Surface Evolution by Surface-Diffusion
Processes, T > TR

In the small-slope approximation, |hx | � 1, Eq. (10) reads ht = − B hxxxx

where B = (Dscs�
2γ0/kBT ) > 0 is a material parameter with dimension

(length)4/time.
Decay of periodic surface modulations. For an initial periodic profile with

wavelength λ, h(x, 0)=A sin(2πx/λ), (10) is solved again by applying Fourier
series; the coefficients an(t) satisfy the ODE ȧn + B(2πn/λ)4an = 0 and the
initial condition an(0) = A. Hence, the complete solution is

h(x, t) = A
∞∑

n=1

e−B
(

2πn
λ

)4
t sin

(
2nπx

λ

)
. (16)

For sufficiently long times, t � (2π)−4λ4/B, this solution is approximated
by h(x, t) ∼ A e−B(2π/λ)4t sin(2πx/λ); thus, the lifetime of the periodic profile
is proportional to λ4. This scaling with size should be contrasted with the case
of evaporation-condensation for which the lifetime is proportional to λ2.

Decay of a localized mound of atoms. In some circumstances there are
initial conditions that correspond to a mound of material on an otherwise flat
surface. The system proceeds to lower its energy by flattening and so it is of
interest to quantify this decay process. For an initial bump, h(x, 0) = f (x), and
the condition h → 0 sufficiently fast as |x |→∞, h(x, t) is again determined
analytically by applying the Laplace transform of h(x, t) in t . In particular, for
f (x) = δ(x), we find h̃δ(x, s) = 2−1 B−1/4s−3/4 e−s1/4 B−1/4|x |/√2 sin(s1/42−1/2

B−1/4|x | + π/4) whose inversion gives the real solution

hδ(x, t) =
1

2π i

1

2(Bt)1/4

i∞∫
−i∞

dσ σ−3/4 sin
(

ησ 1/4 + π

4

)
, (17)

where η = |x |/(4Bt)1/4. The solution has the similarity form t−1/4 H(η), which,
for long times, could have been deduced immediately. The solution for an
arbitrary bump is given by (14); for sufficiently long times this solution also
obtains a similarity structure. It is inferred that for long times the bump has a
lifetime proportional to the fourth power of its linear size.

5. Surface Evolution by Evaporation–Condensation
Processes, T < TR

Decay of a localized mound of atoms in one space dimension. Here we
consider Eq. (7). The material parameter �k0γ̃ has the units of diffusivity,
(length)2/time. If we consider an arbitrary initial distribution of atoms confined
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to a region |x | ≤ X (t), then global mass conservation requires 2
∫ X (t)

0 h(x, t)
dx = M = constant. For this problem there is a similarity solution that describes
the long-time behavior of a bump, and a wide class of initial distributions
are expected to evolve to the profile predicted by the similarity solution for
times t � �2/(�k0γ̃ ), where � is a length scale characteristic of the initial
distribution. The similarity solution has the form

h(x, t) =

(
M4

96�k0γ̃

)1/6

t−1/6 H(η), where η =
x

(3�k0γ̃ M2/2)1/6t1/6
,

(18)

and the function H(η) thus satisfies the fourth-order ODE −(Hη)η = Hη
2 Hηη.

Conservation of the total mass becomes
∫ ηe

0 H(η)dη = 1, where Xe(t) =

ηe
(
3�k0γ̃ M2/2

)(1/6)
t (1/6) is the finite extent of the evolving surface; the

constant ηe remains to be determined. The ODE for H(η) can be integrated
twice; using the symmetry condition Hη(0) = 0 along with the definition of the
leading edge ηe as H(ηe) = 0 we obtain

H(η) =
(

3

8

)1/2

η2
e

[
1 −

(
η

ηe

)4/3
]3/2

, (19)

which is the form given by Spohn [9]. The parameter ηe is determined from
total mass conservation; we find

η3
e

(
3

8

)1/2 1∫
0

(1 − η4/3)3/2 dη = 1 or ηe =
(

2

6π

)1/6 [�(1/4)

�(3/4)

]1/6

,

(20)

where �(s) is the Gamma function.
Decay of an axisymmetric bump in two dimensions ([9]). For axisymmetric

shapes h = h(r, t) where r =
√

x2 + y2. We take [10]

G = g0 + g1|∇h| + 1
3 g3|∇h|3, (21)

and µ−µ0 = −�v((∂/∂x)(∂G/∂hx) + (∂/∂y)(∂G/∂hy)). The resulting PDE
for small slopes, |∇h| � 1, and hr < 0 follows from (5) and (21) with ζ =
k0|∇h| to be

ht = A
hr

r

[
1 + g3

g1

∂

∂r
(rh2

r )

]
where A = �vk0g1, (22)

with the initial condition h(r, 0)=H(r). Neglecting the g3/g1 term in the PDE
and applying the method of characteristics we obtain h(r, t) ≈ H(√2At + r2

)
.

This solution describes how the initial bump shrinks to zero at long times,
while corrections due to the g3/g1 term then are relatively small and can be
obtained via simple iterations.
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6. Surface Evolution by Surface–Diffusion
Processes, T < TR

Evolution of a periodic profile in one dimension. Kinetic simulations
[15, 16] based on a step-flow model with elastic step–step interactions have
indicated that the height of periodic profiles in one dimension may evolve
as h(x, t) = �(x)�(t), i.e., h has a separable form. From the continuum view-
point the surface evolution can be described by (11), ht = − B (|hx |hxx)xx

where B = (Dscs�
2γ̃ /kBT ). Assuming hx > 0, � and � thus satisfy −�̇/

�2 = C = const. > 0 and (�x�xx)xx = C�(x). Hence, �(t) = (Ct + K )−1 ≈
C−1t−1 for long times, while the ODE for � can only be solved numerically.
The set of boundary conditions that would yield a unique solution to this PDE
is a topic of discussion in the literature (e.g. Ref. [2]).

Evolution of an axisymmetric shape in two dimensions ([17]). Here we
consider the surface-diffusion-driven change in shape of an initially conical
surface (see Fig. 2a). Using (21) and the equation for µ− µ0 in terms of G
along with (9), we obtain a PDE for h(x, y, t) in two dimensions. For axisym-
metric shapes, h = h(r, t), with a growing facet of radius w(t), as shown in
Fig. 2a, the PDE for the slope profile F = −hr is

∂ F

∂t
=

3B

r4
− B

g3

g1

∂

∂r
∇2
[

1

r

∂

∂r

(
r F2

)]
, (23)

where B = (Dscs�
2
vγ0/kBT ). This equation can be studied using a combination

of free-boundary (the facet width w(t) changes in time) and boundary-layer
ideas (there is a region of rapid variation associated with the highest-derivative
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Figure 2. (a) Schematic of an axisymmetric shape with an indication of the step structure on
the atomic scale. (b) Surface slope profiles as a function of a similarity variable. The different
profiles correspond to different values of g3/g1 as described in Ref. [17].
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term in Eq. (23). For g3/g1 < O(1) singular perturbation theory suggests that
the solution F varies rapidly inside a boundary layer of width δb near the facet.
Taking F ≈ a(t) f0(η) for long times where η = [r − w(t)]/δb we obtain δb =
O(ε1/3) and a universal ODE for f0, ( f 2

0 )′′′ = f0 − 1. This equation can only
be solved numerically assuming slope continuity, f0(0) = 0. Solutions are obt-
ained by the routine shooting procedure of starting with f0(η

∗) ≈ c1(η
∗)1/2 +

c3(η
∗)3/2 for η∗ � 1 and finding the coefficients c1 and c3 so that f0(η → ∞) =

1, as dictated by asymptotic matching at η = ∞ with the “outer solution” for
g3/g1 = 0. Different numerical solutions of the ODE are shown in Fig. 2b.
There is excellent agreement (not shown here) between the theoretical
predictions and the results from kinetic simulations.

7. Outlook

The development of continuum descriptions for the time evolution of the
shape of crystalline materials leads to a number of different partial differential
equations. The distinction of the driving forces for surface evolution above
and below the roughening temperature is significant and it is only in fairly
recent years that attention has focussed on the below roughening case. The
use of step-flow models, and the understanding gained from these systems, is
also important for probing kinetic, and other, features of the basic continuum
models. Further advances and comparison of these ideas with experiment will
lead to progress in future years.

Appendix A

Here we derive the first line of equation (4), which relates the chemical
potential µ to the surface energy paramter G(hx). The total surface free
energy in 1 D is G t =

∫
dx G(hx). Close to equilibrium this energy is mini-

mized under the constraint of fixed total mass, �−1
∫

dx h(x, t) = const. Tak-
ing the first variation with respect to h of G t − ∫

dx λ̃ h to be zero for h fixed at
the endpoints, where λ̃ is the change of the chemical potential, or a Lagrange
multiplier, we find

0 =
∫

dx
(

∂G

∂hx
δhx − �−1λ̃δh]

)
= −

∫
dx
(

∂

∂x

∂G

∂hx
+ �−1λ̃

)
δh , (A1)

By definition of the chemical potential, µ− µ0 = λ̃ and the initial starting
point in equation (4) is obtained.
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