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Grooving of a grain boundary by evaporation—condensation below
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The development of surface grooves at grain boundaries that intersect a planar surface is analyzed
for the case that the evolution occurs below the thermodynamic roughening transition by
evaporation—condensation processes. The dynamics are described by a nonlinear partial differential
equation that has a similarity solution, so the resulting groove profile is described by a nonlinear
ordinary differential equation. An approximate analytical solution to the nonlinear problem is
obtained and is in excellent agreement with the numerical solution. The depth and width of the
groove varies ast'?, wheret is time, analogous to the classical results valid above the
thermodynamic roughening temperature. In addition, the approximate analytical solution provides
an explicit relation between the groove width and the dihedral angle, and is in sufficiently good
agreement with the numerical results as to make such numerical solutions unnecessary for this
problem. The results demonstrate explicitly how the groove shape depends on the functional form
of the slope-dependent surface mobility.2005 American Institute of Physics
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I. INTRODUCTION grooving and deals directly with the singularity in the surface
free energy. We predict the deepening rate and the morpho-
Grain boundary grooving is an important factor in two- |ogical profile of the sloping sides for a surface free-energy
dimensional grain growth of thin films. The deepening of model appropriate for a grain boundary in a thin film exhib-
grain boundary grooves at the surface tends to pin the boungting “fiber texture,” a common thin-film grain morphology
aries and impede grain growth, ultimately causing stagnatioih which the surface normal orientation of all grains is the
of the evolution:* The morphological profile of the sloping same low-index direction, but neighboring grains are misori-
sides is important because the local slope determines thented azimuthally. The method is valid for groove slopes
driving force for grain growth required for the boundary to sufficiently shallow that the entire sloping wall is composed
break free of the groove. The classical analysis for thermabf a step train with intervening terraces of the facet orienta-
grooving, with an isotropic surface free energy, by eithertion. The analysis here is for evolution by evaporation—
surface diffusion or evaporation-condensation processes wasndensation processes and should also apply to the junction

provided by Mullins’ between a grain boundary and a crystal-melt interface in an
Theoretical treatments of morphological evolution haveisothermal, single-component system.
been extended to anisotropic surface free engfdyt have If the grain boundary free energy ig, and the surface

not included the singularity in surface free energy at the orifree energy of the solid—vapor interfacejisthen it is ener-

entation of a facet. Particularly noteworthy is the treatmengetically favorable for a groove to form at the grain bound-

of Xin and Wong? who regularized the singularity by replac- ary wheny,<2y. The corresponding dihedral angle 2t

ing it with an analytic approximation. This approach, how-the base of the groove is given by/2y=cosé (e.g., Ref.

ever, when applied to the decay of a surface in the absence 7). The groove deepens and widens with time, and the

grain boundarie&? has drawn criticisiti* (see also Ref. 12, shape profile smoothly variéi the continuum limit until it

p. 13707 and has been claimed not to correctly reproducéntersects the planar surface; see Fig. 1. Traditionally, uses of

the evolution of facet edges.Recently, however, an ap- solutions of the grooving problem include comparing them

proach based on partial differential equatiof®DE9 has  with experiments in order to extract estimates for surface

been developetf,*® based on the singular surface free en-giffusion coefficients® and features of the surface enefdy.

ergy of Gruber and Mulling® that correctly predicts quanti- Two limits of the grooving of a grain boundary have

tative features of the evolution of facet edges, such as unpeen studied, and numerous extensions have been offered for

versal scaling with physical parameters, when compared tgyrface processes above the roughening temperature. In the

step-kinetic simulations: first limit, surface evolution occurs by evaporation—
Here we pI‘OVide an analySiS that treats grain'boundartondensaﬂon processes, and the surface prb(xet) fol-

lows from v,= (o), Wherew is the local chemical po-

¥Electronic mail: has@deas.harvard.edu tential of the surfacey, is a reference value of the vapay,
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above, it is possible belov to construct a similarity solu-
tion of the form h(x,t)=tY2H(7), where » is a similarity
variable proportional ta/tY2 andH(7) satisfies a nonlinear
ODE. Although the problem is nonlinear, we shall show that
an approximate analytical description is possible, from
which we extract a relation between the groove width and
the dihedral angle. A calculation of the surface-diffusion-
driven evolution of a groove below the roughening tempera-
is the local normal velocity of a point on the interface, andture is given in Ref. 21.
{>0 is the surface mobility. Theny— g is proportional to
the curvature of the interface, with a proportionality coef-
ficient related to the surface free energy. The description off THE EVOLUTION OF A GROOVE
the grain-boundary evolution is then completed by prescrib- ] ) ) )
ing the dihedral angle @at the base of the groove. A. A p_nef review of grooving above the roughening

In the classical treatment by Mullifghe surface energy transition
is assumed isotropic and constant, and the mobility is also We first describe the time-dependent formation of a
assumed to be constant, in which case the resulting problegroove that forms at a grain boundary of an otherwise flat
can be analyzed simply. For the one-dimensional configurasurface(see Fig. 1 for the case that the evolution corre-
tion there is a similarity solution for the surface shape:sponds to dynamics above the roughening temperature. We
h(x,t)=tY2H(#), where the similarity variable; is propor- let the one-dimensional groove profile be denotechby;t),
tional to x/tY2, which thus establishes the basic form of thewhich satisfies the nonlinear PBE
surface evolution. We note that this similarity solution does 2

S : ah &hlax

not depend on a small-slope approximation. From this result — = py———,
we see that both the groove depth and width grow as the Jt 1 +(ohléx)

square root of time. The similarity functidf(7) is known  \here, is the constant surface mobility andis the isotro-
analytically when the governing equation is lindaother- pic and constant surface free energy.

v_vise, a numerical solution to an ordinary differential equa- It is thus necessary to sol\@) subject to the condition
tion (ODE) is necessary (see also Sec. Il AAs we shall  sh/ax(0,t)=—cot6, where 6 is half of the dihedral angle.

see in this paper, since below the roughening transition thghis problem admits a similarity solution of the form
surface energy is a nonanalytic function of the surface orien-

FIG. 1. The evolution of a grain boundary. Basic notation is indicated.

(1)

taFio.n (or slopg, a new approach 'is necessary. Perhaps SUT- h(x,t) = (2L ) Y2H(7),  with 7= — (2)
prisingly, useful analytical approximations are obtained nev- (2801
ertheless. - .
In the second limit, the surface evolution can be drivenWhereH(n) satisfies the nonlinear ODE
by surface diffusion, in which case shape changes in time are dH dH\?| d’H
: . ; - |1+ —| |=—=. (3)
proportional to the divergence of a surface current, which dy dy d7?

itself is proportional to the gradient of the chemical potential.

For the classical ca$eand with constant transport coeffi- A numerical solution of(3) is necessary and is constructed
cients, v, V2«. This description of evolution, when com- DY @ procedure of guessirtd(0) with a givendH/dx at 7
bined with a grain-boundary condition involving surface =0 and shooting untiH(»—«)—0 (e.g., Ref. 17. For the
slope, gives rise to a similarity solution(x,t)=tY*H(»),  SPecial case of small surface slopes, E).can be linear-
where now the similarity variable is proportional tox/t'/4,  ized, in which case the solution is

the form of this solution does not depend on a small-slope cosf — o _

approximation. As before, the similarity functidf(z) is H(7) :?MHZ/W_” 2~ perfc(5/\2)], (4)
known analytically when the governing ODE is linear; oth-

erwise, a numerical solution is necessary. where erf«js):(Z/\e’;)f;"e‘”sz is the complementary error

For temperatures below the roughening transifigrthe  function. Therefore, the groove deepens according to
chemical potential differs from its classical form because ofh(0,t)=(4¢,yt/ m)Ycot 6; the groove also widens at a rate
the nonanalyticity of the surface free energy as a function oproportional tot*/2.
the surface slopt Additionally, the surface mobility also
may depend on the surface slope. In a microscopic picture,
surface evolution is driven by step motion, and facets ma . .
develop where the step separation diverges to become mac: General formu]gﬂon for grooving below the

- . . roughening transition
roscopic. We model the evolution of the entire morphology,
including that of the facet, using a continuum description of ~ For a one-dimensional profile(x,t) below the roughen-
the free-boundary problefit:*>?°In particular, here we ana- ing transition(see Fig. ], we take as the surface free energy
lyze the dynamics of grooving for the case of evaporation-G per unit area projected on the basal plane a common form
condensation-driven evolution below the roughening temthat arises from elastic dipole—dipole or entropic step—step
perature, T<Tg. As in the case ofT>Tg, summarized repulsive interaction¥’
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3 6=244 ,m =17 1 | N - 8=52.1, =06 ] FIG. 2. The normalized groove shape
25R " ] 04 . H(z) for grooving below the roughen-
H e 0=288" 1 =14 H L. 4 6=62.6 , 1 =04 ing transition witha=2. The dashed
A N ‘o 1 037 N I curve is one term of the approximate
15} SR > « % §=37.6" n.=1 % 6=755", 110=0-2 solution (13), while the crosses repre-
T 02 1 sent the sum of the first two terms. The
1 solid curve is the numerical solution of
05 | 01r 1 the nonlinear ODE11).
0 - s o% : : :
0 05 1 15 2 0 01 02 03 04 05 06 07
n n
oh ohl 1 |onl|3 this case, the relation of to G, i.e., y=G/+/1+(dh/x)?,
Gl g/~ %* 0| | + 38 | (5 when combined with Eq(5), is sufficient to relate the dihe-

_ _ _ dral angle to the surface energigs We also requiréh and
whereg, is the free energy of the terracg, is the step line &' _, g as|x| -, which, along with an initial condition, is
tension, andy; is the strength of step—step interactions. Insyfficient to specify the surface evolution according to Eq.
this case the local surface chemical potential, relative to theg). Here we only need considee 0, which is the case of a

chemical potential of the vapqr,, takes the forr groove with a symmetric profile. If the two grains have dif-
ohl #h ferent surface energies then the grain boundary does not re-
M= o=~ 203 x| 9’ (6) main vertical; the treatment of such a problem is beyond the

scope of the present work. Finally, note that the cas®
where() is the atomic volume. In derivings) from (5) we  reduceg8) to the linearized limit of the classical problem of
assume thaph/x has not changed sign. Althougf does  grooving abovelg. In the following we consider> 0.

not appear in the chemical potenti@), since the steps are The differential Eq(8) and the boundary conditions can
straight and parallel to the junction between the grain boundbe satisfied for anyr by the similarity solution

ary and the vapor, the determination of the dihedral angle

involvesg,. h(x,t) = (2B)Y2H(7), wherey= ——. (10
If adatoms emitted from steps desorb into the vapor after (28)
traveling a characteristic distance that is small compared t@pstitution into Eq(8) yields the nonlinear ODE
the step spacing, which is the usual case, the rate of interface
motion is proportional to the step density. For small devia- _ dH - dH adZ_H (11)
tionoszgrom equilibrium, the surface evolution is described dy |dy| dy?
byz with boundary conditions
h_ k oh|® 7 dH 0
a IX (1= po), ™ —(0)=—(:9—S andH —0 as»yp— . (12
dn sin@

where k is a constant and=1. Alternatively, if adatoms , ) . , .
emitted from surface steps rapidly coat the neighboring terFor_r.nathemaUcaI detalls_ concerning thg case with arbitrary
races before desorbing into the vapor, then the step density ROSitive a and the behavior of the solution, see the Appen-
no longer a factor if7) andb=0. Combining Eqs(6) and dix. We consider two representative casesdanext.

(7) leads to the nonlinear PDE

oh_ | on| e

= —, 8 C. The slope-dependent surface mobility:  a=2
at ax| ox? ® pereep /

] In the next two sections we provide numerical results for
where3=2kgs(2 anda=b+1. Below we consider two cases ihe nonlinear differential equation describing grooving below
fora, @=1 anda=2. Tk, construct an approximate analytical solution, and show
At the grain boundaryx=0, we have the boundary con- ihat the approximate solution is in remarkably good agree-

dition ment with the numerical results. Hence, for all practical pur-
cosé poses the analytical results should be useful for those inter-
5(X: 0 =- Sng’ (9)  ested in detailed predictions.

Inspection of Eq.(11) shows that asH—0, thenH
where @ is the dihedral angle. If there is local equilibrium in = (7,—7)%?, where 7, is the location wher¢d=0; see the
the immediate vicinity of the junction between the grain Appendix for details. This finite position where the groove
boundary and the surfaces, then the vanishing variation ofnds is characteristic of nonlinear equatidnere it is a con-
the total surface energy with respect to junction position im-sequence of the nonanalyticity of the surface free energy
plies cosf=1y,/ 2y for two grains with mirror symmetr§/‘.‘ln and does not arise in more familiar, linear diffusion equa-
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FIG. 3. The normalized groove shabéx) for grooving below the roughening transition wiitx 1. The dashed curve is one term of the approximate solution
(18), while the crosses represent the sum of the first two terms. The solid curve is the numerical solution of the nonlinékt) ODE

tions. With this observation, it can then be shown that the V2
solution near the “touch down” poing, has the expansion H(0) = ?cotze. (15)
H(7n) = ay(50— 7)%%+ ay(o— 1)+ ag(no— 1)’ Using two terms, we arrive at the slightly improved esti-
mates
+ay(mo— 1)+ ... (13)
, 12 2282
We assume that the surface forms a fadkit region for M= 11 Ecow andH(0) = 505 cot?é. (16)
\

7> 10, andH(7) connects smoothly to the zero slope of the

facet; see Fig. 1. From the general results given in the Athh h it btai timate for the ti
pendix, Eqs(A3a—(A3d) with a=2 yield | ese results we can obtain an estimate for the time

dependence of the groove depth:

2427, 1 5
a =2V2M 2282

- PN — 1/2
o3 15277 h(0.0) = (280"~ cof, 17

which is distinct from the above roughening solution that has
- 1 _ 29 (14) hecot 6.
37 3780270%7 7 6804027702 In addition, with the above results we have an explicit
analytical relation between the groove widiin similarity
Conveniently, we can then numerically solve the O ~ Variables and the dihedral angles=(12/11/2)cot §, which
by choosing a value ofy, integrating backwards unti, ~ Corresponds to the actual groove widihvarying asw,=;
=0, and reading off the value of the slope at the origin,=(12(8)"?/11)cot6. Furthermore, the above results make
which identifiesé for the given value ofy,. Also, Eq.(13), clear th_at an e_xcellent appro_xi_mate analytical solution for all
with the known values of the coefficients, then serves as X andt is provided by combining Eq$10), (13), (14), and
an approximate analytical solution.
Solutions for the surface profild(») are shown in Fig.
2 for different values of, and the corresponding value éf
Numerical results to the nonlinear ODE are shown by thep. The slope-independent surface mobility: ~ a=1
solid curves, the dotted line indicates one term of the ana-

lytical approximation(13), and the crosses result from using , )
two terms of(13). We see that the two-term analytical ap- 2ccording to Eq(11) with a=1. We take the same approach

— )2
proximation is in near perfect agreement with the numericaS 2P0ve to show that &b— 0, thenH > (7,—7)%, where
solutions. is the location wheréd=0. Thus, we take

The analytical representation of the solutidr8), when B ) 3 4
evaluated aty=0, provides estimates for both the depth of H(7) = aq(0 = 1)+ 8g(70 = 7)°+ 8g(70 = 7))

We next consider the case where the surface evolves

the groove and the relation betwegpand ¢. Using just one +a (- 7>+ ..., (18)
term we first find, using the boundary conditi¢t®), V27,
=cot 6 so that where (A3a)—(A3d) with a=1 vyield
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o 1 1 1 TABLE I. A summary of the main analytical resultsxact or approximaje
U= 2Ty BT oee s BT 1502
770 11 5209 @ h(0,1) 7o VS 0 width (w,,) vs 6
( 19) Oa 4{074 2 o (zévo yt) 1/2
A numerical solution of(11) is generated by choosingp, (T) cotd

integrating backwards unti=0, and identifying the anglé
from the value of the slope at the origin. 1

Typical numerical results for the surface profile for dif- (2812 10 (cot)*? 2 (cotg)™2 (
ferent dihedral angle€6) are shown in Fig. 3. We observe 93 V3
that just two terms of the analytical approximatici8) are
in excellent, in fact near perfect, agreement with the numeri-, _ ”
cal solutions of the nonlinear ODE. One term of the analyti- (Zﬁt)m@(cot@z 1_icot9 12897 o
cal approximation yields 7,=(cot6)¥? and H(0) 605 112 11
=2(cot §)*?, while two terms yield the improved resulig
=(2/3)(cot )2 and H(0)=(10/9y3)(cot§)*2 Thus, for
this version of the mobility function the groove depth varies
in time according to

8pt cotﬂ)”2
3

*The results from a linearized analys&ee Sec. Il A

10 angle § and the functional form of the surface mobility. The
h(0,t) = (28t)Y2—=(cot #)*., (200 main mathematical results of this paper are conveniently
9V3 summarized in Table I.

The corresponding groove width is predicted to change in

time asw,-,=(88tcot/3)*2 In summary, we thus have

found an excellent approximate solution for a&llandt by = ACKNOWLEDGMENTS
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Perhaps surprisingly, for the case of grooving below the
roughening temperatur@g, the similarity solution for the
surface profile has the same scaling fofproportional to
t1?) as the corresponding solution for the classical form,
where u— ug is proportional to the local curvature. The de-
tails are, however, different above and below the roughenin I X ,
temperature and the functional dependence on the dihedr € descn.ptlon of grooving be,IOVW,R by evaporation—
angled is different and dependent on the form of the surfaceCO,ndens""tIon processes. To begin with, we note that the so-
mobility. It can, nevertheless, be recognized that the mathl—'Jtlon of Eq. (11) depends orw. W_e require thaH —>ﬁO as
ematical reason for the identical form of the time-dependent’ 70! where 0< <. By setting H~a(7- 7)™,
scaling follows from the basic transport equation, which has>0’ we find B, =1+1/a:

APPENDIX
In this Appendix we give some general results that relate
g; the analytical solution of the nonlinear ODE that arises in

the form H(ay) o (0 = )", (A1)
2|
Z—Tx f((i—h> 3—2, (21)  More generally, an expansion of the form
X/ ox

_ _ o H(7) = ay(10 = 7)1+ ag(mo = 7)P2+ ag(mo = )P+ .
where f(dh/dx) is a function of the step density, with a

boundary conditionsh/ dx|,—g=constant. Equatiori21), for +ay(mo— )i+ .. (A2)

any functionf that depends only on the surface slope, andyptails that;,;=B;+1(j=1,2,...). The coefficients; of the

the boundary condition that also involves the slope, admits &st four terms are calculated as functions efand 7 by
similarity solution withx~t2, from which the constraint on  gpstitution of(A2) into (11):

slope require$ioctl/2, .
We have shown that for two different forms of the sur- _ a(??oa) “

face mobility,a=1, 2, analytical approximations of the non- =% 1+ (A33)

linear PDE describing surface grooving by evaporation—

condensation processes belofg are in near perfect 1 (pe)lle

agreement with the numerical solutions. These results should 8=~ 5~ , (A3b)
. . : 70 (1+a)(1+ 20)

effectively negate the need in the future to solve these dif-

ferential equations for the grooving problem beldw. Fi- 1 20?430+ 3

nally, we have obtained explicit relations that illustrate the  g,= 5 5
dependence of the groove depth and width on the dihedral 2475 a(1+ )1+ 2a)(1 + 3a)

(mo)¥'®,  (A3c)
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A= 1 203+ 40”2 -a-1
“7 487302 (1 + @)*(1 + 20)(1 + 3a)(1 + 4a)

(o).

(A3d)

It should be borne in mind thag, depends only o and 6
because its value is found by applyit§2) near »= 7, and
integrating(11) to the origin wherg(12) is satisfied. Effec-

tively, Egs.(A2) and(A3) provide an analytical approxima-

tion to the solution of the nonlinear OD@1) that character-
izes the self-similar groove profile.
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