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The development of surface grooves at grain boundaries that intersect a planar surface is analyzed
for the case that the evolution occurs below the thermodynamic roughening transition by
evaporation–condensation processes. The dynamics are described by a nonlinear partial differential
equation that has a similarity solution, so the resulting groove profile is described by a nonlinear
ordinary differential equation. An approximate analytical solution to the nonlinear problem is
obtained and is in excellent agreement with the numerical solution. The depth and width of the
groove varies ast1/2, where t is time, analogous to the classical results valid above the
thermodynamic roughening temperature. In addition, the approximate analytical solution provides
an explicit relation between the groove width and the dihedral angle, and is in sufficiently good
agreement with the numerical results as to make such numerical solutions unnecessary for this
problem. The results demonstrate explicitly how the groove shape depends on the functional form
of the slope-dependent surface mobility. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1922583g

I. INTRODUCTION

Grain boundary grooving is an important factor in two-
dimensional grain growth of thin films. The deepening of
grain boundary grooves at the surface tends to pin the bound-
aries and impede grain growth, ultimately causing stagnation
of the evolution.1–3 The morphological profile of the sloping
sides is important because the local slope determines the
driving force for grain growth required for the boundary to
break free of the groove. The classical analysis for thermal
grooving, with an isotropic surface free energy, by either
surface diffusion or evaporation–condensation processes was
provided by Mullins.4

Theoretical treatments of morphological evolution have
been extended to anisotropic surface free energy,5,6 but have
not included the singularity in surface free energy at the ori-
entation of a facet. Particularly noteworthy is the treatment
of Xin and Wong,5 who regularized the singularity by replac-
ing it with an analytic approximation. This approach, how-
ever, when applied to the decay of a surface in the absence of
grain boundaries,7,8 has drawn criticism9–11 ssee also Ref. 12,
p. 13707d and has been claimed not to correctly reproduce
the evolution of facet edges.13 Recently, however, an ap-
proach based on partial differential equationssPDEsd has
been developed,14,15 based on the singular surface free en-
ergy of Gruber and Mullins,16 that correctly predicts quanti-
tative features of the evolution of facet edges, such as uni-
versal scaling with physical parameters, when compared to
step-kinetic simulations.11

Here we provide an analysis that treats grain-boundary

grooving and deals directly with the singularity in the surface
free energy. We predict the deepening rate and the morpho-
logical profile of the sloping sides for a surface free-energy
model appropriate for a grain boundary in a thin film exhib-
iting “fiber texture,” a common thin-film grain morphology
in which the surface normal orientation of all grains is the
same low-index direction, but neighboring grains are misori-
ented azimuthally. The method is valid for groove slopes
sufficiently shallow that the entire sloping wall is composed
of a step train with intervening terraces of the facet orienta-
tion. The analysis here is for evolution by evaporation–
condensation processes and should also apply to the junction
between a grain boundary and a crystal–melt interface in an
isothermal, single-component system.

If the grain boundary free energy isgb and the surface
free energy of the solid–vapor interface isg, then it is ener-
getically favorable for a groove to form at the grain bound-
ary whengb,2g. The corresponding dihedral angle 2u at
the base of the groove is given bygb/2g=cosu se.g., Ref.
17d. The groove deepens and widens with time, and the
shape profile smoothly variessin the continuum limitd until it
intersects the planar surface; see Fig. 1. Traditionally, uses of
solutions of the grooving problem include comparing them
with experiments in order to extract estimates for surface
diffusion coefficients18 and features of the surface energy.6,19

Two limits of the grooving of a grain boundary have
been studied, and numerous extensions have been offered for
surface processes above the roughening temperature. In the
first limit, surface evolution occurs by evaporation–
condensation processes, and the surface profilehsx,td fol-
lows from yn=zsm−m0d, wherem is the local chemical po-
tential of the surface,m0 is a reference value of the vapor,yn
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is the local normal velocity of a point on the interface, and
z.0 is the surface mobility. Then,m−m0 is proportional to
the curvature of the interface,k, with a proportionality coef-
ficient related to the surface free energy. The description of
the grain-boundary evolution is then completed by prescrib-
ing the dihedral angle 2u at the base of the groove.

In the classical treatment by Mullins,4 the surface energy
is assumed isotropic and constant, and the mobility is also
assumed to be constant, in which case the resulting problem
can be analyzed simply. For the one-dimensional configura-
tion there is a similarity solution for the surface shape:
hsx,td= t1/2Hshd, where the similarity variableh is propor-
tional to x/ t1/2, which thus establishes the basic form of the
surface evolution. We note that this similarity solution does
not depend on a small-slope approximation. From this result
we see that both the groove depth and width grow as the
square root of time. The similarity functionHshd is known
analytically when the governing equation is linear;4 other-
wise, a numerical solution to an ordinary differential equa-
tion sODEd is necessary17 ssee also Sec. II Ad. As we shall
see in this paper, since below the roughening transition the
surface energy is a nonanalytic function of the surface orien-
tation sor sloped, a new approach is necessary. Perhaps sur-
prisingly, useful analytical approximations are obtained nev-
ertheless.

In the second limit, the surface evolution can be driven
by surface diffusion, in which case shape changes in time are
proportional to the divergence of a surface current, which
itself is proportional to the gradient of the chemical potential.
For the classical case4 and with constant transport coeffi-
cients, yn~¹2k. This description of evolution, when com-
bined with a grain-boundary condition involving surface
slope, gives rise to a similarity solutionhsx,td= t1/4Hshd,
where now the similarity variableh is proportional tox/ t1/4;
the form of this solution does not depend on a small-slope
approximation. As before, the similarity functionHshd is
known analytically when the governing ODE is linear; oth-
erwise, a numerical solution is necessary.

For temperatures below the roughening transitionTR the
chemical potential differs from its classical form because of
the nonanalyticity of the surface free energy as a function of
the surface slope.16 Additionally, the surface mobility also
may depend on the surface slope. In a microscopic picture,
surface evolution is driven by step motion, and facets may
develop where the step separation diverges to become mac-
roscopic. We model the evolution of the entire morphology,
including that of the facet, using a continuum description of
the free-boundary problem.14,15,20In particular, here we ana-
lyze the dynamics of grooving for the case of evaporation–
condensation-driven evolution below the roughening tem-
perature,T,TR. As in the case ofT.TR, summarized

above, it is possible belowTR to construct a similarity solu-
tion of the form hsx,td= t1/2Hshd, where h is a similarity
variable proportional tox/ t1/2 andHshd satisfies a nonlinear
ODE. Although the problem is nonlinear, we shall show that
an approximate analytical description is possible, from
which we extract a relation between the groove width and
the dihedral angle. A calculation of the surface-diffusion-
driven evolution of a groove below the roughening tempera-
ture is given in Ref. 21.

II. THE EVOLUTION OF A GROOVE

A. A brief review of grooving above the roughening
transition

We first describe the time-dependent formation of a
groove that forms at a grain boundary of an otherwise flat
surfacessee Fig. 1d for the case that the evolution corre-
sponds to dynamics above the roughening temperature. We
let the one-dimensional groove profile be denoted byhsx,td,
which satisfies the nonlinear PDE17

]h

]t
= z0g

]2h/]x2

1 + s]h/]xd2 , s1d

wherez0 is the constant surface mobility andg is the isotro-
pic and constant surface free energy.

It is thus necessary to solves1d subject to the condition
]h/]xs0,td=−cotu, where u is half of the dihedral angle.
This problem admits a similarity solution of the form

hsx,td = s2z0gtd1/2Hshd, with h =
x

s2z0gtd1/2, s2d

whereHshd satisfies the nonlinear ODE

SH − h
dH

dh
DF1 +SdH

dh
D2G =

d2H

dh2 . s3d

A numerical solution ofs3d is necessary and is constructed
by a procedure of guessingHs0d with a givendH/dh at h
=0 and shooting untilHsh→`d→0 se.g., Ref. 17d. For the
special case of small surface slopes, Eq.s3d can be linear-
ized, in which case the solution is

Hshd =
cosu

sinu
fÎ2/pe−h2/2 − h erfcsh/Î2dg, s4d

where erfcssd=s2/Îpdes
`e−l2

dl is the complementary error
function. Therefore, the groove deepens according to
hs0,td=s4z0gt /pd1/2cotu; the groove also widens at a rate
proportional tot1/2.

B. General formulation for grooving below the
roughening transition

For a one-dimensional profilehsx,td below the roughen-
ing transitionssee Fig. 1d, we take as the surface free energy
G per unit area projected on the basal plane a common form
that arises from elastic dipole–dipole or entropic step–step
repulsive interactions,22

FIG. 1. The evolution of a grain boundary. Basic notation is indicated.
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GS ]h

]x
D = g0 + g1U ]h

]x
U +

1

3
g3U ]h

]x
U3

, s5d

whereg0 is the free energy of the terrace,g1 is the step line
tension, andg3 is the strength of step–step interactions. In
this case the local surface chemical potential, relative to the
chemical potential of the vaporm0, takes the form9

m − m0 = − 2g3VU ]h

]x
U ]2h

]x2 , s6d

whereV is the atomic volume. In derivings6d from s5d we
assume that]h/]x has not changed sign. Althoughg1 does
not appear in the chemical potentials6d, since the steps are
straight and parallel to the junction between the grain bound-
ary and the vapor, the determination of the dihedral angle
involvesg1.

If adatoms emitted from steps desorb into the vapor after
traveling a characteristic distance that is small compared to
the step spacing, which is the usual case, the rate of interface
motion is proportional to the step density. For small devia-
tions from equilibrium, the surface evolution is described
by20–23

]h

]t
= − kU ]h

]x
Ub

sm − m0d, s7d

where k is a constant andb=1. Alternatively, if adatoms
emitted from surface steps rapidly coat the neighboring ter-
races before desorbing into the vapor, then the step density is
no longer a factor ins7d andb=0. Combining Eqs.s6d and
s7d leads to the nonlinear PDE

]h

]t
= bU ]h

]x
Ua]2h

]x2 , s8d

whereb=2kg3V anda=b+1. Below we consider two cases
fora, a=1 anda=2.

At the grain boundary,x=0, we have the boundary con-
dition

]h

]x
sx = 0,td = −

cosu

sinu
, s9d

where 2u is the dihedral angle. If there is local equilibrium in
the immediate vicinity of the junction between the grain
boundary and the surfaces, then the vanishing variation of
the total surface energy with respect to junction position im-
plies cosu=gb/2g for two grains with mirror symmetry.24 In

this case, the relation ofg to G, i.e., g=G/Î1+s]h/]xd2,
when combined with Eq.s5d, is sufficient to relate the dihe-
dral angle to the surface energiesgi. We also requireh and
]h
]x →0 as uxu→`, which, along with an initial condition, is
sufficient to specify the surface evolution according to Eq.
s8d. Here we only need considerxù0, which is the case of a
groove with a symmetric profile. If the two grains have dif-
ferent surface energies then the grain boundary does not re-
main vertical; the treatment of such a problem is beyond the
scope of the present work. Finally, note that the casea=0
reducess8d to the linearized limit of the classical problem of
grooving aboveTR. In the following we considera.0.

The differential Eq.s8d and the boundary conditions can
be satisfied for anya by the similarity solution

hsx,td = s2btd1/2Hshd, whereh =
x

s2btd1/2. s10d

Substitution into Eq.s8d yields the nonlinear ODE

H − h
dH

dh
= UdH

dh
Uad2H

dh2 s11d

with boundary conditions

dH

dh
s0d = −

cosu

sinu
andH → 0 ash → `. s12d

For mathematical details concerning the case with arbitrary
positive a and the behavior of the solution, see the Appen-
dix. We consider two representative cases fora next.

C. The slope-dependent surface mobility: a=2

In the next two sections we provide numerical results for
the nonlinear differential equation describing grooving below
TR, construct an approximate analytical solution, and show
that the approximate solution is in remarkably good agree-
ment with the numerical results. Hence, for all practical pur-
poses the analytical results should be useful for those inter-
ested in detailed predictions.

Inspection of Eq.s11d shows that asH→0, then H
~ sh0−hd3/2, whereh0 is the location whereH;0; see the
Appendix for details. This finite position where the groove
ends is characteristic of nonlinear equationsshere it is a con-
sequence of the nonanalyticity of the surface free energyd
and does not arise in more familiar, linear diffusion equa-

FIG. 2. The normalized groove shape
Hshd for grooving below the roughen-
ing transition witha=2. The dashed
curve is one term of the approximate
solution s13d, while the crosses repre-
sent the sum of the first two terms. The
solid curve is the numerical solution of
the nonlinear ODEs11d.
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tions. With this observation, it can then be shown that the
solution near the “touch down” pointh0 has the expansion

Hshd = a1sh0 − hd3/2 + a2sh0 − hd5/2 + a3sh0 − hd7/2

+ a4sh0 − hd9/2 + …. s13d

We assume that the surface forms a facetsflat regiond for
h.h0, andHshd connects smoothly to the zero slope of the
facet; see Fig. 1. From the general results given in the Ap-
pendix, Eqs.sA3ad–sA3dd with a=2 yield

a1 =
2Î2h0

3
, a2 = −

1

15Î2h0

,

a3 =
1

3780s2h0d3/2, a4 =
29

68040s2h0d5/2. s14d

Conveniently, we can then numerically solve the ODEs11d
by choosing a value ofh0, integrating backwards untilh
=0, and reading off the value of the slope at the origin,
which identifiesu for the given value ofh0. Also, Eq.s13d,
with the known values of the coefficientsai, then serves as
an approximate analytical solution.

Solutions for the surface profileHshd are shown in Fig.
2 for different values ofh0 and the corresponding value ofu.
Numerical results to the nonlinear ODE are shown by the
solid curves, the dotted line indicates one term of the ana-
lytical approximations13d, and the crosses result from using
two terms ofs13d. We see that the two-term analytical ap-
proximation is in near perfect agreement with the numerical
solutions.

The analytical representation of the solutions13d, when
evaluated ath=0, provides estimates for both the depth of
the groove and the relation betweenh0 andu. Using just one
term we first find, using the boundary conditions12d, Î2h0

=cotu so that

Hs0d =
Î2

3
cot2u. s15d

Using two terms, we arrive at the slightly improved esti-
mates

h0 =
12

11Î2
cotu andHs0d =

228Î2

605
cot2u. s16d

With these results we can obtain an estimate for the time
dependence of the groove depth:

hs0,td = s2btd1/2228Î2

605
cot2u, s17d

which is distinct from the above roughening solution that has
h~cotu.

In addition, with the above results we have an explicit
analytical relation between the groove widthsin similarity
variablesd and the dihedral angle,h0=s12/11Î2dcotu, which
corresponds to the actual groove widthw varying aswa=2

=s12sbtd1/2/11dcotu. Furthermore, the above results make
clear that an excellent approximate analytical solution for all
x and t is provided by combining Eqs.s10d, s13d, s14d, and
s16d.

D. The slope-independent surface mobility: a=1

We next consider the case where the surface evolves
according to Eq.s11d with a=1. We take the same approach
as above to show that asH→0, thenH~ sh0−hd2, whereh0

is the location whereH;0. Thus, we take

Hshd = a1sh0 − hd2 + a2sh0 − hd3 + a3sh0 − hd4

+ a4sh0 − hd5 + …, s18d

wheresA3ad–sA3dd with a=1 yield

FIG. 3. The normalized groove shapeHshd for grooving below the roughening transition witha=1. The dashed curve is one term of the approximate solution
s18d, while the crosses represent the sum of the first two terms. The solid curve is the numerical solution of the nonlinear ODEs11d.
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a1 =
h0

2
, a2 = −

1

12
, a3 =

1

288h0
, a4 =

1

11 520h0
2 .

s19d

A numerical solution ofs11d is generated by choosingh0,
integrating backwards untilh=0, and identifying the angleu
from the value of the slope at the origin.

Typical numerical results for the surface profile for dif-
ferent dihedral angless2ud are shown in Fig. 3. We observe
that just two terms of the analytical approximations18d are
in excellent, in fact near perfect, agreement with the numeri-
cal solutions of the nonlinear ODE. One term of the analyti-
cal approximation yields h0=scotud1/2 and Hs0d
= 1

2scotud3/2, while two terms yield the improved resultsh0

=s2/Î3dscotud1/2 and Hs0d=s10/9Î3dscotud3/2. Thus, for
this version of the mobility function the groove depth varies
in time according to

hs0,td = s2btd1/2 10

9Î3
scotud3/2. s20d

The corresponding groove width is predicted to change in
time as wa=1=s8bt cotu /3d1/2. In summary, we thus have
found an excellent approximate solution for allx and t by
combining the estimate forh0 with Eqs.s10d, s18d, ands19d,
which effectively renders unnecessary the numerical solu-
tions of the governing nonlinear PDE.

III. DISCUSSION

Perhaps surprisingly, for the case of grooving below the
roughening temperatureTR, the similarity solution for the
surface profile has the same scaling formsproportional to
t1/2d as the corresponding solution for the classical form,
wherem−m0 is proportional to the local curvature. The de-
tails are, however, different above and below the roughening
temperature and the functional dependence on the dihedral
angleu is different and dependent on the form of the surface
mobility. It can, nevertheless, be recognized that the math-
ematical reason for the identical form of the time-dependent
scaling follows from the basic transport equation, which has
the form

]h

]t
~ fS ]h

]x
D ]2h

]x2 , s21d

where fs]h/]xd is a function of the step density, with a
boundary condition]h/]xux=0=constant. Equations21d, for
any function f that depends only on the surface slope, and
the boundary condition that also involves the slope, admits a
similarity solution withx< t1/2, from which the constraint on
slope requiresh~ t1/2.

We have shown that for two different forms of the sur-
face mobility,a=1, 2, analytical approximations of the non-
linear PDE describing surface grooving by evaporation–
condensation processes belowTR are in near perfect
agreement with the numerical solutions. These results should
effectively negate the need in the future to solve these dif-
ferential equations for the grooving problem belowTR. Fi-
nally, we have obtained explicit relations that illustrate the
dependence of the groove depth and width on the dihedral

angleu and the functional form of the surface mobility. The
main mathematical results of this paper are conveniently
summarized in Table I.
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APPENDIX
In this Appendix we give some general results that relate

to the analytical solution of the nonlinear ODE that arises in
the description of grooving belowTR by evaporation–
condensation processes. To begin with, we note that the so-
lution of Eq. s11d depends ona. We require thatH→0 as
h→h0, where 0øh,h0. By setting H,a1sh0−hdb1,b1

.0, we findb1=1+1/a:

Hshd ~ sh0 − hd1+s1/ad. sA1d

More generally, an expansion of the form

Hshd = a1sh0 − hdb1 + a2sh0 − hdb2 + a3sh0 − hdb3 + …

+ ajsh0 − hdb j + … sA2d

entails thatb j+1=b j +1s j =1,2,…d. The coefficientsaj of the
first four terms are calculated as functions ofa and h0 by
substitution ofsA2d into s11d:

a1 = a
sh0ad1/a

1 + a
, sA3ad

a2 = −
1

2h0

sh0ad1/a

s1 + ads1 + 2ad
, sA3bd

a3 =
1

24h0
2

− 2a2 + 3a + 3

as1 + ad2s1 + 2ads1 + 3ad
sh0ad1/a, sA3cd

TABLE I. A summary of the main analytical resultssexact or approximated.

a hs0,td h0 vs u width swad vs u

0a

S4z0gt

p
D1/2

cotu
¯

~s2z0gtd1/2

1

s2btd1/2 10

9Î3
scotud3/2 2

Î3
scotud1/2 S8bt cotu

3
D1/2

2

s2btd1/2228Î2

605
scotud2

12

11Î2
cotu

12sbtd1/2

11
cotu

aThe results from a linearized analysisssee Sec. II Ad.
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a4 =
1

48h0
3a2

2a3 + 4a2 − a − 1

s1 + ad2s1 + 2ads1 + 3ads1 + 4ad
sh0ad1/a.

sA3dd

It should be borne in mind thath0 depends only ona andu
because its value is found by applyingsA2d nearh=h0 and
integratings11d to the origin wheres12d is satisfied. Effec-
tively, Eqs.sA2d and sA3d provide an analytical approxima-
tion to the solution of the nonlinear ODEs11d that character-
izes the self-similar groove profile.
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