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Abstract

We develop a Hilbert expansion approach for the derivation of fractional diffusion equations
from the linear Boltzmann equation with heavy tail equilibria.

1 Setting of the result

1.1 Introduction

The linear Boltzmann equation is a simple kinetic equation describing the evolution of a particle
distribution function. It couples free transport and scattering phenomena (due to collisions with the
background). The properties of the scattering process determines the long time behavior of the particle
distribution function. It fixes in particular the profile of the equilibrium velocity distribution.

Asymptotic analysis of such an equation is a very classical problem. Typically, assuming that
the mean free path (i.e. distance between two collisions) is very small and the time scale is very
large, it is possible to derive a hydrodynamic type equation describing the evolution of the density
of particles. Often, the thermodynamical equilibrium is given by a Maxwellian distribution function,
and the mean square displacement of the particle is a linear function of time. The correct time/space
scaling (x = εx′ and t = ε2t′) then leads to a diffusion equation for the density of particles. This
type of diffusion approximation for kinetic equations has been widely studied in several papers, see
for instance [1, 4, 10, 7] (and references therein).

In recent works (see [14], [13], [3]) similar asymptotic analysis are performed when the equilibrium
function is not a Maxwellian distribution, but rather a heavy tail function. In this case, the diffusion
coefficient appearing in the classical diffusion limit is no longer well defined and one has to modify the
time scale to recover an equation for the particle density. This is known in the literature as anomalous
diffusion phenomena (the mean square displacement of the particle is not a linear function of time),
and it leads to fractional diffusion equations.
∗Partially supported by NSF Grant DMS-0901340
†N. Ben Abdallah and M. Puel were partially supported by by ANR project QUATRAIN BLAN07-2 212988.
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Denoting by ε the ratio of the microscopic length scale (mean free path) and macroscopic length
scale, we scale the space variable as x = εx′ and the time variable as t = εαt′. The starting point of
this paper is then the following rescaled Boltzmann equation:

εα∂tf
ε + εv · ∇xf ε = Q(f ε) (1)

where the particle distribution function f ε(t, x, v) depends on the time t > 0, the space variable x ∈ Rn

and the velocity variable v ∈ Rn. The collision operator appearing in the right hand side is a linear
integral operator of the form:

Q(f) =
∫

Rn
σ(x, v, v′)

[
f(v′)F (v)− f(v)F (v′)

]
dv′ (2)

with
σ(x, v, v′) = σ(x, v′, v).

Note that the operator Q is the sum of a gain term

Q+(f) =
∫

Rn
σ(x, v, v′)f(v′) dv′ F (v)

and a loss term
Q−(f) = −ν(v)f(v) with ν(v) =

∫
Rn
σ(x, v, v′)F (v′)dv′.

This operator has a one dimensional kernel spanned by the function F (v) and it preserves the total
mass: ∫

Rn
Q(f) dv = 0 for all f . (3)

The usual diffusion limit corresponds to α = 2. It can be studied using the so-called Hilbert
expansion method, which is based on a formal expansion of the solution in the form

f ε = f0 + εf1 + ε2f2 + rε.

Inserting this expansion in (1) and identifying the terms of same order in ε yields:

Q(f0) = 0 (4)
Q(f1) = v · ∇xf0 (5)
Q(f2) = ∂tf

0 + v · ∇xf1 (6)

and the remainder rε solves

∂tr
ε + ε−1v · ∇xrε = ε−2Q(rε) + ε∂tf

1 + ε2∂tf
2 + εv · ∇xf2.

Equation (4) implies that f0(t, x, v) = ρ(t, x)F (v) and (5) then yields f1 = Q−1(v · ∇xf0) =
Q−1(vF (v)) · ∇xρ (assuming that such an inverse exists, see Proposition 2.2). Finally, in view of
(3), the equation (6) for f2 gives (integrating with respect to v):

∂tρ+∇x · j = 0

where
j =

∫
Rn
vf1 dv =

∫
Rn
v ⊗Q−1(vF (v)) dv∇xρ.

2



We deduce that for f2 to exist, ρ must solve

∂tρ−∇x ·D∇xρ = 0

with diffusion matrix
D = −

∫
Rn
v ⊗Q−1(vF (v)) dv.

Now, assuming that ρ is a (smooth solution) of this diffusion equation, we can define f0, f1 and f2

solutions of (4), (5) and (6), and show that the remainder rε converges strongly to 0 in some L2

space. The main drawback of this method, compared with the moment method, is that it requires
stronger regularity assumptions on the initial data in order to get the appropriate bounds on f0, f1

and f2. On the other hand the method yields strong convergence of the solution (rather than weak
convergence for the moment method). Hilbert expansion type methods have also proved very useful
to study diffusion limits for some non linear collision operators, see [12, 9, 11].

In this paper we are considering a situation in which this limit fails because the diffusion matrix D
above is infinite. This is clearly the case when the equilibrium function F , rather than a Maxwellian
distribution function is a heavy tail distribution function, satisfying

F (v) ∼ κ0

|v|n+α
as |v| → ∞

for some α ∈ (0, 2) (note that this α will be the same as the time scale in (1)). Such a profile has
been mentioned in several context such as astrophysical plasmas ([17, 15] or in the study of granular
plasmas ([5, 8] for inelastic Maxwell models, [16] for inelastic Kac model and [6] for mixture of gases
with Maxwellian collision kernel). A similar study is undertaken in [14] using a relatively simple
method based on the Fourier transform. This method does not generalize easily to more complicated
situation involving space dependent collision kernel σ or non linear operator. In [13], an alternative
method is developed which is based on the weak formulation of the Boltzmann equation (1) and
the choice of particular test functions defined via an auxiliary equation. This method is somewhat
analogous to the well known moment method for the usual diffusion limit. Both approaches provide
the weak convergence of f ε to ρF . The aim of the present paper is to develop a Hilbert expansion
approach for this anomalous diffusion regime. One of the advantages of this new method (compared
with [14, 13]) will be to give strong convergence results. We also believe that this method can be used
to address some nonlinear problems, such as models involving the Boltzmann-Pauli collision operator.

The first difficulty in developing such an expansion method is that since α ∈ (0, 2), it is not
obvious how one should identify the terms with same order (some terms have a fractional order).
The originality of this expansion is thus the splitting of the different terms of equation (1) and their
distribution in the different levels of the expansion. This splitting follows a heuristic based on the
choice of the auxiliary function in [13]. Indeed, we notice that the advection term and the gain loss
of the collision operator are of the same order whereas the gain term is of higher order (in term of ε).
This leads to a rearrangement in the Hilbert expansion as explained in section 3.

We are now going to list our assumptions on σ and F and give the main result of this paper
(Theorem 1.1 below). In Section 2, we will present a proof of this result in the simpler case σ = 1. In
this case, the expansion is relatively simple, and we will explain why in the more general case, a more
complicated expansion needs to be introduced. The main theorem is then proved in Section 3.
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1.2 Main result

In order to simplify the computation, we will assume that there exist some constants σ0 and σ1 such
that

0 < σ0 ≤ σ(x, v, v′) = σ(x, v′, v) ≤ σ1 <∞ for all (x, v, v′) ∈ R3n. (7)

In particular, this implies that the collision frequency

ν(x, v) =
∫

Rn
σ(x, v, v′)F (v′)dv′

satisfies
σ0 ≤ ν(x, v) ≤ σ1 for all (x, v) ∈ R2n.

We also need to assume that the collision frequency is regular enough and has a nice asymptotic
behavior for large v. For simplicity, we will assume:

∂kxν ∈ L∞(Rn × Rn) for all multi-indice k such that |k| ≤ 4

ν(x, v) = ν0(x) ∀|v| > 1
(8)

(this last assumption can of course be replaced with lim|v|→∞ ν(x, v) = ν0(x)).
The most important assumption concerns the behavior of the equilibrium F (v) for large v. We

assume:
F (v) =

κ

|v|n+α
for |v| ≥ 1 (9)

for some α ∈ (0, 2) and
F (v) ≤ κ for all v ∈ Rn. (10)

Finally, we assume that the following symmetry conditions are satisfied:

F (−v) = F (v) , ν(x,−v) = ν(x, v) for all (x v) ∈ R2n. (11)

This implies in particular that the flux
∫

Rn vF (v) dv = 0 (when it is defined, that is when α > 1),
which we know is a necessary condition for the derivation of diffusion type equation.

We can now state our main result:

Theorem 1.1. Assume that (7), (8), (9), (10), (11) hold and let f ε be the solution of (1) with initial
condition fin(x, v) = ρin(x)F (v) such that ρin ∈ H4(Rn), then

||f ε − ρ0F ||L∞(0,∞;L2
F−1 (Rn×Rn)) −→ 0, as ε→ 0, (12)

where ρ0 satisfies {
∂tρ0 + L(ρ0) = 0 in [0,∞)× Rn,
ρ0(0, x) = ρin(x) in Rn (13)

and L is an elliptic operator defined by the singular integral:

L(ρ) = P.V.
∫

Rn
γ(x, y)

ρ(x)− ρ(y)
|y − x|n+α

dy. (14)

with
γ(x, y) = ν0(x) ν0(y)

∫ ∞
0

zαe−z
R 1
0 ν0((1−s)x+sy) ds dz
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Note that γ(x, y) = γ(y, x) and that condition (7) yields

0 < γ1 < γ(x, y) ≤ γ2.

In particular the operator L is a self-adjoint elliptic operator of order α (comparable to (−∆)α/2).
Before giving the proof of this theorem in the general case (Section 3), we will present two simpler

cases that can be handled with a more direct Hilbert method based on the Fourier Transform and
for which the result is obtained in a L1 framework as well as in a L2 framework with less regularity
assumptions on the initial data.

2 Space homogeneous cross sections

2.1 Constant cross section

In this section, we prove Theorem 1.1 in the simpler framework where the cross section σ is constant
(for the sake of simplicity we take σ = 1). We then have

Q(f) =
∫

Rn
f(v′) dv′ F (v)− f(v). (15)

In that case, the use of the Fourier transform (as in [14]) allows for explicit computations and a much
simpler proof.

We have the following proposition:

Proposition 2.1.

Let f ε be the solution of (1) with Q given by (15) where F satisfies (9-11) and with initial condition
fin(x, v) = ρin(x)F (v) such that ρin ∈W 3,1(Rn). Then

||f ε − ρ0F ||L∞(0,∞;L1(Rn×Rn)) −→ 0, as ε→ 0 (16)

where ρ0 satisfies {
∂tρ0 + κ(−∆)

α
2 ρ0 = 0 in [0,∞)× Rn

ρ0(0, x) = ρin(x) in Rn
(17)

with

κ =
∫

Rn

(w · e)2

1 + (w · e)2
1

|w|n+α
dw. (18)

If instead we have ρin ∈ H3(Rn), then

||f ε − ρ0F ||L∞(0,∞;L2
F−1 (Rn×Rn)) −→ 0, as ε→ 0. (19)

The proof relies on the following Hilbert expansion for f ε:

f ε = f ε0 + gε1 + gε2 + rε,

with

Q(f ε0 ) = 0 (20)

(1 + εv · ∇x)gε1 = −εv · ∇xf ε0 (21)

Q(gε2) = εα∂tf
ε
0 −Q+(gε1) (22)
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and rε solution of

∂tr
ε + ε1−αv · ∇xrε = ε−αQ(rε)− ∂tgε1 − ∂tgε2 − ε1−αv · ∇gε2. (23)

In order to investigate these equations, we recall the following result, which holds for general
operators of the form (2), whenever (7) holds (see [7]):

Proposition 2.2.

i) The operators Q+ and Q are bounded operator on L2
F−1(Rn).

ii) The kernel of Q has dimension 1 and is spanned by F .

iii) There exists a constant c > 0 such that

−
∫

Rn
Q(f)f

1
F
dv ≥ c

∫
Rn
|f − ρF |2 1

F
dv.

iv) For all h ∈ L2
F−1(Rn), the equation Q(g) = h has a solution if and only if

∫
h(v) dv = 0, and there

is a unique such solution (denoted Q−1(h)) satisfying
∫

Rn g(v) dv = 0.

v) The operator Q−1 is bounded in L2
F−1(Rn):

‖Q−1(h)‖L2
F−1
≤ C‖h‖L2

F−1
for all h such that

∫
Rn h(v) dv = 0. (24)

vi)
∫
Q(f)sgn(f) dv ≤ 0 for all f .

Equation (20) then yields (using (ii)):

f ε0 (x, v, t) = ρε(x, t)F (v).

and so equation (21) becomes
Tεgε1 = −εv · ∇xρεF

where we introduced the operator
Tε = 1 + εv · ∇x.

Assuming (for the time being) that this operator can be inverted, we can then write

gε1 = −T −1
ε (εv · ∇xρε)F. (25)

Finally, the solvability condition for (22) (using (iv)) is∫ [
εα∂tρ

εF −Q+(gε1)
]
dv = 0

which reads
εα∂tρ

ε −
∫
gε1 dv = 0.

Using (25), we see that this is a condition on ρε, which we can write as

εα∂tρ
ε +

∫
T −1
ε (εv · ∇xρε)F dv = 0. (26)

Because of the simple form of the operator Q, this condition also implies that the right hand side of
(22) is actually 0 (rather than only having zero integral), and thus

gε2 = 0.
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Remarks 2.3. The usual Hilbert expansion consists in writing f ε = ρF + f ε1 + f ε2 + rε where

ν(x, v)f ε1 = Q+(f ε1 )− εv · ∇xρF,

Q(f ε2 ) + εv · ∇xf ε1 = εα∂tρF.

We can see that the scheme that we use here consists in reshuffling the terms Q+(f ε1 ) and εv · ∇xf ε1
in the first order and second order equation.

Note also that while in the usual Hilbert expansion, the first term is solution of the asymptotic
equation, here we have ρε which is solution of an approximation of the limiting model (26).

In order to prove Proposition 2.1, we thus have to show that ρε, solution of (26), exists and that
gε1 and rε go to zero in some appropriate norm.

This is best done using Fourier transform (with respect to x): We denote by ĥ(ξ) the Fourier
transform, with respect to x, of a function h. Taking the Fourier transform in (21), we get:

(1 + iεv · ξ)ĝε1 = −iεv · ξf̂0

and so
ĝε1 = − iεv · ξ

1 + iεv · ξ
F (v) ρ̂ε. (27)

We can thus rewrite (26) as
∂tρ̂ε + aε(ξ) ρ̂ε = 0. (28)

with
aε(ξ) = ε−α

∫
Rn

iεv · ξ
1 + iεv · ξ

F (v) dv.

We now need the following lemma (see also [14]):

Lemma 2.4. For all ξ, aε(ξ) ≥ 0 and

|aε(ξ)− κ|ξ|α| ≤ Cε2−α|ξ|2 −→ 0, (29)

with κ given by (18). Furthermore, there exist positive constants c1 and c2 such that,

c1 min(ε−α, |ξ|α) ≤ aε(ξ) ≤ c2(|ξ|α + ε(2−α)|ξ|2) (30)

Proof of Lemma 2.4. A simple computation (using the properties of F ) yields∫
Rn

iεv · ξ
1 + iεv · ξ

F (v) dv =
∫

Rn

(εv · ξ)2

1 + (εv · ξ)2
F (v) dv

=
∫
|v|≤1

(εv · ξ)2

1 + (εv · ξ)2
F (v) dv

+
∫
|v|≥1

(εv · ξ)2

1 + (εv · ξ)2
1

|v|n+α
dv.

The first integral is clearly bounded by Cε2|ξ|2, and using the change of variable w = εv|ξ| we can
write the second integral as∫

|v|≥1

(εv · ξ)2

1 + (εv · ξ)2
1

|v|n+α
dv = εα|ξ|α

∫
|w|≥ε|ξ|

(w · e)2

1 + (w · e)2
1

|w|n+α
dw
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We deduce

|εαaε(ξ)− εακ|ξ|α| ≤ Cε2|ξ|2 + εα|ξ|α
∫
|w|≤ε|ξ|

(w · e)2

1 + (w · e)2
1

|w|n+α
dw

≤ Cε2|ξ|2

This implies (29) and the second inequality in (30). The first inequality in (30) is obtained by
distinguishing two cases:

If ε|ξ| ≤ 1, then the computation above yields
∫
|v|≥1

(εv·ξ)2
1+(εv·ξ)2

1
|v|n+α dv ≥ cεα|ξ|α and the result

follows.
If ε|ξ| ≥ 1, then we have∫

|v|≥1

(εv · ξ)2

1 + (εv · ξ)2
1

|v|n+α
dv ≥ εα|ξ|α

∫
|w|≥ε|ξ|

1
2

1
|w|n+α

dw

≥ 1

and so
aε ≥ ε−α.

We deduce

Corollary 2.5. For any ρin and ε > 0, there exists a unique ρε solution of (28), given by

ρ̂ε(t, ξ) = e−ta
ε(ξ)ρ̂in(ξ)

Furthermore, ρε satisfies
|| |ξ|kρ̂ε(t)||L∞(Rn) ≤ || |ξ|kρ̂in||L∞(Rn)

and
|| |ξ|k∂tρ̂ε(t)||L∞(Rn) ≤ || |ξ|k+2ρ̂in||L∞(Rn)

for all k ≥ 0. Finally we have

||ρε − ρ0||L∞(0,T ;L1(Rn)) ≤ CT ||ρin||W 2,1(Rn)

and
||ρε − ρ0||L∞(0,T ;L1(Rn)) ≤ CT ||ρin||H2(Rn)

where ρ0 is the unique solution of (17).

Proof. We only prove the last assertion: We note that

∂t(ρ̂ε − ρ̂0) + aε(ξ)(ρ̂ε − ρ̂0) = (κ|ξ|α − aε(ξ))ρ̂0

and so Lemma 2.4 yields
d

dt
|ρ̂ε − ρ̂0| ≤ Cε2−α|ξ|2ρ̂0.

We deduce
d

dt
||ρε − ρ0||L1(Rn) ≤ Cε2−α||ρ0||W 2,1(Rn)

which gives the L1(Rn) convergence of ρε. A similar computation (multiplying by ρ̂ε − ρ̂0) gives the
L2(Rn) convergence.

8



Proof of Proposition 2.1. We now notice that (27) yields

|ĝε1| ≤
|εv · ξ|√

1 + (εv · ξ)2
F (v)ρ̂ε

and thus

||ĝε1||L∞ξ (Rn;L1
v(RN ))) ≤ sup

ξ

{∫
|εv · ξ|√

1 + (εv · ξ)2
F (v) dvρ̂ε(ξ)

}
≤ sup

ξ

{
C(εα|ξ|α + ε|ξ|)ρ̂ε

}
≤ C (εα + ε) ||(1 + |ξ|2)ρ̂ε||L∞(Rn),

and similarly

||∂tĝε1||L∞ξ (Rn;L1
v(RN ))) ≤ sup

ξ

{
C(εα|ξ|α + ε|ξ|)∂tρ̂ε

}
≤ sup

ξ

{
C(εα|ξ|α + ε|ξ|)aε(ξ)ρ̂ε

}
so, using Lemma 2.4, we deduce

||∂tĝε1||L∞ξ (Rn;L1
v(RN ))) ≤ (εα + ε)||(1 + |ξ|3)ρ̂ε||L∞(Rn).

It follows that gε1 and ∂tg
ε
1 converge to 0 strongly in L∞(0,∞;L1(Rn × Rn)). Finally, multiplying

the equation for the remainder rε, (23), by sign(rε) (and using Proposition 2.2 (vi)), we get

∂t||rε||L1(Rn) ≤ ||∂tgε1||L1(Rn).

Using the fact that rε(t = 0) = −gε1(t = 0), we deduce

||rε||L∞(0,T ;L1(R2n)) −→ 0

and so
||f ε − ρεF ||L∞(0,T ;L1(Rn×Rn)) −→ 0.

Similarly, we have (using the computations of Lemma 2.4):∫
Rn
|ĝε1|

2 1
F (v)

dv ≤
∫

Rn

|εv · ξ|2

1 + (εv · ξ)2
F (v) dvρ̂ε2

≤ C(εα|ξ|α + ε2|ξ|2)ρ̂ε2

and so
||ĝε1||L2

F−1 (Rn×Rn) ≤ Cεα||ρε||H1(Rn)

and in a same way
||∂tĝε1||L2

F−1 (Rn×Rn) ≤ Cεα||ρε||H3(Rn).

A similar argument (multiplying (23) by rε/F ) gives the strong convergence in L∞(0,∞;L2
F−1(Rn ×

Rn)).
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2.2 Case of space homogeneous cross section

We now show, in a still relatively simple case, why the general case is more complicated. In this
section, we assume that Q is given by:

Q(f) =
∫

Rn
σ(v, v′)[f(v′)F (v)− f(v)F (v′)] dv′ (31)

with σ depending only on v and v′ (and not on x), and satisfying

0 < σ0 ≤ σ(v, v′) = σ(v′, v) ≤ σ1.

We might try to proceed as in the previous section, writing

f ε = f ε0 + gε1 + gε2 + rε,

with
f ε0 (x, v, t) = ρε(x, t)F (v),

gε1 = −T −1
ε (εv · ∇xρε), F

Q(gε2) = εα∂tρ
εF −Q+(gε1).

where the operator Tε is now defined by Tε(f) = νf + εv · ∇xf .
The solvability condition for gε2 (obtained by integrating this last equation with respect to v) reads

∂tρ
ε = ε−α

∫
Rn
Q+(gε1) dv

= ε−α
∫

Rn
νgε1 dv

= −ε−α
∫

Rn
ν(v)T −1

ε (εv · ∇xρε)F dv.

We thus obtain that ρε must solve
∂tρ

ε + Lε(ρε) = 0

with
Lε(ρ) = ε−α

∫
Rn
ν(v)T −1

ε (εv · ∇xρε)F dv.

Once again, we can identify the nature of this operator using Fourier transform: We get

L̂ε(ρ) = ε−α
∫

Rn

iεv · ξ
ν(v) + iεv · ξ

ν(v)F (v) dvρ̂ε

= aε(ξ)ρ̂ε.

However, unlike the previous section, we do not have Q(gε2) = 0. Instead, we have

Q(gε2) = −εαLε(ρε)F −Q+(gε1)

which, in Fourier, reads:

Q(ĝε2) = −εα
∫

Rn

iεv′ · ξ
ν(v′) + iεv′ · ξ

[ν(v′)− σ(v, v′)]F (v′) dv′ρ̂εF (v)
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and so

|Q(ĝε2)| ≤ 2σ1ε
α

∫
Rn

|εv′ · ξ|√
σ2

0 + (εv′ · ξ)2
F (v′) dv′|ρ̂ε|F (v)

≤ Cεα(εα|ξ|α + ε|ξ|)|ρ̂ε|F (v).

This clearly implies that gε2 goes to zero as ε goes to 0, but it also means that it will be difficult
to control the term ε1−αv · ∇gε2 because of the lack of integrability of vF (at least when α < 1).

For this reason, we need to add a term in the expansion, as explained in the next section.

3 Proof of Theorem 1.1

3.1 A reshuffled Hilbert expansion

In order to prove Theorem 1.1, we use a Hilbert type expansion and some techniques similar to those
first introduced in [13].

We recall that f ε is a solution of

εα∂tf
ε + εv · ∇xf ε = Q(f ε) (32)

where
Q(f) = Q+(f)− νf with Q+(f) =

∫
Rn
σ(x, v, v′)F (v)f(v′)dv′,

and we write the following expansion

f ε = ρε(t, x)F (v) + gε1(t, x, v) + gε2(t, x, v) + gε3(t, x, v) + rε(t, x, v) (33)

where the terms gε1, gε2, gε3 satisfy

(ν(x, v) + εv · ∇x)gε1 = −εv · ∇x(ρεF ) (34)

Q(gε2) = −Q+(gε1)− εα∂tρεF (35)

(ν(x, v) + εv · ∇x)gε3 = −εv · ∇xgε2. (36)

The remainder solves

∂tr
ε + ε1−αv · ∇xrε =

Q(rε)
εα

− ∂tgε1 − ∂tgε2 − ∂tgε3 +
Q+(gε3)
εα

. (37)

We recall that we defined the operator

Tε(g) = νg + εv · ∇xg. (38)

A simple computation (see [13]) shows that this operator is invertible with

T −1
ε (f) =

∫ +∞

0
e
−
∫ z

0
ν(x− εvs, v) ds

f(x− εvz, v) dz (39)

for any function f(x, v). In particular, equations (34) and (36) are solvable without additional condi-
tions, but (35) requires the following solvability condition (obtained by integrating (35) with respect
to v):

∂tρ
ε + Lε(ρε) = 0 (40)
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with

Lε(ρ) = −ε−α
∫

Rn
Q+(gε1)dv

= −ε−α
∫

Rn
ν(x, v)gε1dv

= ε−α
∫

Rn
ν(x, v) T −1

ε (εv · ∇xρε)F dv. (41)

In view of (37), it is clear that in order to prove Theorem 1.1, we need to show that gε1, gε2 and gε3
can be defined and that the terms ∂tgε1, ∂tgε2 ∂tg

ε
3 and Q+(gε3)

εα in the right hand side of (37) go to 0 in
L1(0,∞;L2

F−1(Rn × Rn)).
The first step, detailed in the next section, will be to study the properties of this operator Lε and

show that the equation (40) has a smooth solution ρε. In section 3.3, we will derive some important
estimate on Q−1(h) that will be needed to get some estimates on gε2. In Section 3.4, we derive estimates
on gε1, gε2 and gε3 and their derivatives and show that f ε − ρεF converges to zero strongly. The final
step (Section 3.5) is to show that ρε, solution of (40), converges strongly to ρ0 solution of (13).

3.2 Properties of the operator Lε and the equation (40)

First, of all, we note that for any function ρ(x), (39) and (41) imply

Lε(ρ) = ε−α
∫

Rn
ν(x, v) T −1

ε (εv · ∇xρε)F dv

= ε−α
∫

Rn

∫ +∞

0
e−

R z
0 ν(x−εvs,v) ds εv · ∇xρ(x− εvz)F (v) dz dv.

Alternatively, we can also write

T −1
ε (εv · ∇xρ)

=
∫ +∞

0
e−

R z
0 ν(x−εvs,v) ds εv · ∇xρ(x− εvz) dz

= −
∫ +∞

0
e−

R z
0 ν(x−εvs,v) ds

d

dz

[
ρ(x− εvz)

]
dz

= −
∫ +∞

0
e−

R z
0 ν(x−εvs,v) ds

d

dz

[
ρ(x− εvz)− ρ(x)

]
dz

= −
∫ +∞

0
e−

R z
0 ν(x−εvs,v) dsν(x− εvz, v)

[
ρ(x− εvz)− ρ(x)

]
dz

which leads to

Lε(ρ) = −ε−α
∫

Rn

∫ +∞

0
e−

R z
0 ν(x−εvs,v) dsν(x− εvz, v)

[
ρ(x− εvz)− ρ(x)

]
F (v) dz dv (42)

which is the formula found in [13].
We can now prove the following lemma:

Lemma 3.1. For all k integer, k ≥ 2, the operator Lε is a bounded operator from Hk(Rn) to
Hk−2(Rn):

||Lε(ρ)||Hk−2(Rn) ≤ C||ρ||Hk(Rn) for all ρ ∈ Hk(Rn). (43)
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Proof. We first prove that

||Lε(ρ)||L2(Rn) ≤ C||ρ||H2(Rn) for all ρ ∈ H2(Rn). (44)

A similar computation is performed in [13], and recalled here for the reader’s convenience.
We write

Lε(ρ) = ε−α
∫

Rn
ν(x, v) T −1

ε (εv · ∇xρ)F dv

= Iε1 + Iε2 + Iε3

where
Iε1 = ε−α

∫
|v|≤1

ν(x, v) T −1
ε (εv · ∇xρ)F dv,

Iε2 = ε−α
∫

1≤|v|≤1/ε
ν(x, v) T −1

ε (εv · ∇xρ)F dv,

Iε3 = ε−α
∫
|v|≥1/ε

ν(x, v) T −1
ε (εv · ∇xρ)F dv.

We have

T −1
ε (εv · ∇xρ) =

∫ +∞

0
e−

R z
0 ν(x−εvs,v) ds εv · ∇xρ(x− εvz) dz

=
∫ +∞

0

[
e−

R z
0 ν(x−εvs,v) ds − e−ν(x,v)z

]
εv · ∇xρ(x− εvz) dz

+
∫ +∞

0
e−ν(x,v)z [εv · ∇xρ(x− εvz)− εv · ∇xρ(x)] dz

+
∫ +∞

0
e−ν(x,v)z εv · ∇xρ(x) dz

and so an integration by parts yields

T −1
ε (εv · ∇xρ) =

∫ +∞

0

[
e−

R z
0 ν(x−εvs,v) ds − e−ν(x,v)z

]
εv · ∇xρ(x− εvz) dz

+
∫ +∞

0
e−ν(x,v)z

1
ν(x, v)

ε2v ·D2
xρ(x− εvz) · v dz

+
∫ +∞

0
e−ν(x,v)z εv · ∇xρ(x) dz.

Using the symmetry assumption on F and ν, we deduce:

Iε1 = ε−α
∫
|v|≤1

ν(x, v)
∫ +∞

0

[
e−

R z
0 ν(x−εvs,v) ds − e−ν(x,v)z

]
εv · ∇xρ(x− εvz)F (v) dz dv

+ε−α
∫
|v|≤1

∫ +∞

0
e−ν(x,v)zε2v ·D2

xρ(x− εvz) · v dzF (v) dv

and since F is bounded, and∣∣∣e− R z
0 ν(x−sεv,v)ds − e−zν(x,v)

∣∣∣ ≤ Cz2e−σ1zε|v|
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we deduce
||Iε1 ||L2(Rn) ≤ Cε2−α||ρ||H2(Rn)

Next, Assumption (9) and the change of variable w = εv yields:

Iε2 = ε−α
∫

1≤|v|≤1/ε

∫ +∞

0
e−

R z
0 ν(x−εvs,v) dsν(x, v) ε · ∇xρ(x− εvz) 1

|v|n+α
dz dv

=
∫
ε≤|w|≤1

∫ +∞

0
e−

R z
0 ν(x−ws,w/ε) dsν(x,w/ε) w · ∇xρ(x− wz) 1

|w|n+α
dz dw

and proceeding as with Iε1 , we deduce

Iε2 =
∫
ε≤|w|≤1

ν(x,w/ε)
∫ +∞

0

[
e−

R z
0 ν(x−ws,w/ε) ds − e−ν(x,w/ε)z

]
w · ∇xρ(x− wz) 1

|w|n+α
dz dw

+
∫
ε≤|w|≤1

∫ +∞

0
e−ν(x,w/ε)zw ·D2

xρ(x− wz) · w dz 1
|w|n+α

dw

and so
||Iε2 ||L2(Rn) ≤ C||ρ||H2(Rn).

Finally, to estimate Iε3 , we use the formula

T −1
ε (εv · ∇xρ) = −

∫ +∞

0
e−

R z
0 ν(x−εvs,v) dsν(x− εvz, v)

[
ρ(x− εvz)− ρ(x)

]
dz.

Assumption (9) and the change of variable w = εv then yields:

Iε3 = −
∫
|w|≥1

∫ +∞

0
e−

R z
0 ν(x−ws,w/ε) dsν(x,w/ε) ν(x− wz, v)

[
ρ(x− wz)− ρ(x)

] 1
|w|n+α

dz dw

and so
||Iε3 ||L2(Rn) ≤ C||ρ||L2(Rn).

We now show how to obtain higher order estimates: We have

∂xiL
ε(ρε) = ε−α

∫
Rn
∂xiν(x, v)T −1

ε (εv · ∇xρ)F (v)dv

−ε−α
∫

Rn
ν(x, v)T −1

ε (∂xiνT −1
ε (εv · ∇xρ))F (v) dv

+ε−α
∫

Rn
ν(x, v)T −1

ε (εv · ∇x∂xiρ)F (v)dv.

The last term is just Lε(∂xiρ) which can thus be bounded by the previous step. The first term is
treated in a same way as Lε(ρ) except that we need to use the fact that ∂xiν

ν is even and bounded.
Therefore, we will only detail the computations concerning the second term. We split it into three

integrals corresponding respectively to |v| < 1, 1 < |v| < 1
ε and |v| > 1

ε .
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First of all, we handle the |v| > 1
ε part. For that purpose, we use (9) and the usual change of

variable. It leads to

Iε1 = −ε−α
∫
|v|> 1

ε

ν(x, v)T −1
ε (∂xi

νT −1
ε (εv · ∇xρ))F (v) dv

= −
∫
|w|>1

ν(x,
w

ε
)
∫ +∞

0

e
−
∫ z

0

ν(x− ws, w
ε

) ds
∂xi

ν(x− wz, w
ε

)
∫ +∞

0

e
−
∫ z

0

ν(x− w(s+ z),
w

ε
) ds

ν(x− w(z + z),
w

ε
)[ρ(x− w(z + z))− ρ(x− εvz)] 1

|w|n+α
dvdzdz.

Thus,
||Iε1 ||L2(Rn) ≤ C||ρ||L2(Rn).

Next, for |v| < 1, we write

Iε2 = −ε−α
∫
|v|<1

ν(x, v)T −1
ε (∂xiνT −1

ε (εv · ∇xρ))F (v) dv

= −ε−α
∫
|v|<1

ν(x, v)
∫ +∞

0

e
−
∫ z

0

ν(x− εvs, v) ds
∂xi

ν(x− εvz, v)
∫ +∞

0

e
−
∫ z

0

ν(x− εv(s+ z), v) ds

εv · ∇xρ(x− εv(z + z))F (v)dvdzdz

which can be written

Iε2 = −ε−α
∫
|v|<1

ν(x, v)
∫ +∞

0

e
−
∫ z

0

ν(x− εvs, v) ds
∂xiν(x− εvz, v)

∫ +∞

0

[e
−
∫ z

0

ν(x− εv(s+ z), v) ds
− e−zν(x, v) ]εv · ∇xρ(x− εv(z + z))F (v)dvdzdz

−ε−α
∫
|v|<1

ν(x, v)
∫ +∞

0

e
−
∫ z

0

ν(x− εvs, v) ds
∂xi

ν(x− εvz, v)
∫ +∞

0

e−zν(x, v)

εv · ∇xρ(x− εv(z + z))F (v)dvdzdz.

Since

[e
−
∫ z

0

ν(x− εv(s+ z), v) ds
− e−zν(x, v) ] ≤ ε|v|(z + z)2e−σ1z,

we get

||Iε2 ||L2(Rn) ≤ ||Iε21||L2(Rn) + ε2−α||∇ρ||L2(Rn)

where

Iε21 = −ε−α
∫
|v|<1

ν(x, v)
∫ +∞

0

e
−
∫ z

0

ν(x− εvs, v) ds
∂xi

ν(x−εvz, v)
∫ +∞

0

e−zν(x, v) εv·∇xρ(x−εv(z+z))F (v)dvdzdz.
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On the other hand

Iε21 = −ε−α
∫
|v|<1

ν(x, v)
∫ +∞

0

e
−
∫ z

0

ν(x− εvs, v) ds
∂xi

ν(x− εvz, v)
∫ +∞

0

e−zν(x, v) εv · ∇xρ(x− εv(z + z))F (v)dvdzdz

= −ε−α
∫
|v|<1

ν(x, v)
∫ +∞

0

e
−
∫ z

0

ν(x− εvs, v) ds
[∂xi

ν(x− εvz, v)− ∂xi
ν(x, v)]

∫ +∞

0

e−zν(x, v) εv · ∇xρ(x− εv(z + z))F (v)dvdzdz

−ε−α
∫
|v|<1

ν(x, v)
∫ +∞

0

e
−
∫ z

0

ν(x− εvs, v) ds
∂xi

ν(x, v)
∫ +∞

0

e−zν(x, v) εv · ∇xρ(x− εv(z + z))F (v)dvdzdz

and then, since
[∂xi

ν(x− εvz, v)− ∂xi
ν(x, v)] ≤ ε|v|||ν||W 2,∞ ,

we have

||Iε21||L2(Rn) ≤ ||I22||L2(Rn) + ε2−α||∇ρ||L2(Rn)

where

Iε22 = ε−α
∫
|v|<1

ν(x, v)
∫ +∞

0

e
−
∫ z

0

ν(x− εvs, v) ds
∂xi

ν(x, v)
∫ +∞

0

e−zν(x, v) εv · ∇xρ(x− εv(z + z))F (v)dvdzdz.

In a same way
||Iε22||L2(Rn) ≤ ||Iε23||L2 + ε2−α||∇ρ||L2(Rn)

with

Iε23 = −ε−α
∫
|v|<1

ν(x, v)
∫ +∞

0

e−zν(x, v) ∂xi
ν(x, v)

∫ +∞

0

e−zν(x, v) εv · ∇xρ(x− εv(z + z))F (v)dvdzdz

An integration by part in z gives

Iε23 = −ε−α
∫
|v|<1

∫ +∞

0

e−zν(x, v) ∂xiν(x, v)
∫ +∞

0

e−zν(x, v) ε2v ·D2ρ(x− εv(z + z))vF (v)dvdzdz

−ε−α
∫
|v|<1

∂xi
ν(x, v)

∫ +∞

0

e−zν(x, v) εv · ∇xρ(x− εv(z))F (v)dvdzdz.

Another integration by parts gives

−ε−α
∫
|v|<1

∂xi
ν(x, v)

∫ +∞

0

e−zν(x, v) εv · ∇xρ(x− εv(z))F (v)dvdzdz

= −ε−α
∫
|v|<1

∂xi
ν(x, v)

ν(x, v)

∫ +∞

0

e−zν(x, v) ε2v ·D2ρ(x− εv(z))vF (v)dvdzdz

−ε−α
∫
|v|<1

∂xi
ν(x, v)

ν(x, v)
εv · ∇xρ(x)F (v)dv

in which the last term vanishes (by symmetries).
Finally, we get

||Iε2 ||L2(Rn) ≤ C||ρ||H2(Rn)

and the same computations for ε < |w| < 1 where w is the change of variable w =
v

ε
reads

||Iε3 ||L2(Rn) ≤ C||ρ||H2(Rn)
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where
Iε3 = −ε−α

∫
1<|v|< 1

ε

ν(x, v)T −1
ε (∂xi

νT −1
ε (εv · ∇xρ))F (v) dv.

We obtain finally,

||∂xi
Lε(ρ)||L2(Rn) ≤ C(||Lε(ρ)||L2(Rn) + C(

∑
|k|=2

||∂kxρ||L2(Rn) +
∑
|k|=3

||∂kρ||L2(Rn)).

Proceeding similarly, we can show (43) for all k ≥ 2.

Proposition 3.2. For all ρin ∈ Hk(Rn) (for some k ≥ 0), the equation{
∂tρ+ Lε(ρ) = 0 in R+ × Rn

ρ(0, x) = ρin in Rn
(45)

has a unique solution solution ρε ∈ L∞(0,∞;Hk(Rn)) for all ε > 0. Furthermore, if k ≥ 2, then

||ρε||L∞([0,∞),Hk(Rn)) ≤ C and

||Lε(ρε)||L∞([0,∞),Hk−2(Rn)) = ||∂tρε||L∞([0,∞),Hk−2(Rn)) ≤ C,

with C independent of ε.

Proof. First, we have to prove that ρε exists for ε > 0. For a fixed ε > 0, the operator Lε (defined by
(42)) is clearly a bounded operator on L2(Rn). Furthermore, we have:∫

Rn
Lε(ρ)ρdx = ε−α

∫
Rn

∫
Rn
ρ νT −1

ε (εv · ∇xρ)F dv dx

= −ε−α
∫

Rn

∫
Rn
ρ εv · ∇x

(
T −1
ε (εv · ∇xρ)

)
F dv dx

+ε−α
∫

Rn

∫
Rn
ρ TεT −1

ε (εv · ∇xρ)F dv dx

= ε−α
∫

Rn

∫
Rn
εv · ∇xρ T −1

ε (εv · ∇xρ)F dv dx

= ε−α
∫

Rn

∫
Rn
Tε(g1) g1

1
F
dv dx

where g1 = −T −1
ε (εv · ∇xρ)F . Hence∫

Rn
Lε(ρ) ρ dx = ε−α

∫
Rn

∫
Rn
|g1|2

ν

F
dv dx+ ε−α

∫
Rn

∫
Rn

(εv · ∇g1) g1
1
F
dv dx

= ε−α
∫

Rn

∫
Rn
|g1|2

ν

F
dv dx (46)

≥ 0.

In particular, the operator Lε is monotone and Lax Milgram’s theorem implies that for any f ∈ L2(Rn),
the equation

ρ+ Lε(ρ) = f (47)

has a solution in L2(Rn). We deduce that Lε is maximal monotone, and thus Hille-Yosida’s theorem
implies that there exists a unique ρε in C0(R+, L2(Rn)) ∩ C1(R+∗, L2(Rn)) solution of (45).
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We now prove the uniform estimates on ||ρε||L∞([0,∞],Hk(Rn)). Note that since ∂tρ
ε = −Lε(ρε)

satisfy the same equation as ρε with initial condition ∂tρ
ε(0, ·) = −Lε(ρ0) ∈ Hk−2(Rn), the other

estimates will then follow.
Multiplying equation Equation (41) by ρε and using (46), we now get:

1
2
d

dt
||ρε||2L2(Rn) =

∫
Rn
∂tρ

ερεdx

= −
∫

Rn
Lε(ρε) ρε dx

= −ε−α
∫

Rn

∫
Rn
|gε1|2

ν

F
dv dx.

Since ρε0 is bounded in L2(Rn), this implies in particular

||ρε||L∞(0,∞;L2(Rn)) ≤ C

and
||gε1||L2(0,∞;L2

F−1 (Rn×Rn)) ≤ Cε
α
2 . (48)

Next, we show how one gets a similar estimate on ∇xρε: We write

1
2
d

dt
||∇xρε||2L2(Rn) =

∫
Rn
∂t∇xρε · ∇xρεdx = −

∫
Rn
∇xρε · ∇xLε(ρε)dx

= −ε−α
∫

Rn

∫
Rn
∇xρε · ∇x

(
νT −1

ε (εv · ∇xρε)
)
F dv dx

= −ε−α
∫

Rn

∫
Rn
∇xρε · ∇x

(
TεT −1

ε (εv · ∇xρε)
)
F dv dx

+ε−α
∫

Rn

∫
Rn
∇xρε · ∇x

(
εv · ∇x(T −1

ε (εv · ∇xρε))
)
F dv dx

= −ε−α
∫

Rn

∫
Rn
∇x(εv · ∇xρε) · ∇x

(
T −1
ε (εv · ∇xρε)

)
F dv dx.

Which gives (since gε1 = T −1
ε (εv · ∇xρε)F ):

1
2
d

dt
||∇xρε||2L2(Rn) = −ε−α

∫
Rn

∫
Rn
∇x((ν + εv · ∇x)gε1) · ∇xgε1

1
F
dv dx

= −ε−α
∫

Rn

∫
Rn
∇x(νgε1) · ∇xgε1

1
F
dv dx

= −ε−α
∫

Rn

∫
Rn

(ν|∇xgε1|2 +∇xν · ∇xgε1gε1)
1
F
dv dx

≤ −σ0

2
ε−α

∫
Rn

∫
Rn
|∇xgε1|2

1
F
dv dx+ Cε−α

∫
Rn

∫
Rn
gε1

2 1
F
dv dx

where we used (7) and (8). Using (48), we deduce:

||∇xρε||2L∞(0,∞;L2(Rn)) ≤ C,
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and
||∇xgε1||L2(0,∞;L2

F−1 (Rn×Rn)) ≤ Cε
α
2 .

Proceeding similarly, we can show that for any multi-indice k = (k1, k2, ..., kn), we have:

1
2
d

dt
||∂kxρε||2L2(Rn) ≤ −ε−α

∫
Rn

∫
Rn
ν|∂kxgε1|2

1
F
dv dx+ C

∑
1≤|i|≤|k|

∫
Rn

∫
Rn
|∂ixν||∂k−ix gε1||∂kxgε1)| 1

F
dv dx

≤ −σ0

2
ε−α

∫
Rn

∫
Rn
|∂kxgε1|2

1
F
dv dx+ C

∑
1≤|i|≤|k|

∫
Rn

∫
Rn
|∂k−ix gε1|2

1
F
dv dx.

By induction on |k|, we deduce that

||∂kxρε||2L∞(0,∞;L2(Rn)) ≤ C,

and
||∂kxgε1||L2(0,∞;L2

F−1 (Rn×Rn)) ≤ Cε
α
2 .

Remarks 3.3. Note that as usual with the heat equation, it does not seem possible to derive estimates
in L1(Rn) (and such estimate do not follow from L2 estimates in unbounded domain). This is the
reason why in our main result, Theorem 1.1, we obtain convergence in L2

F−1 rather than L1.

3.3 Some estimates for the collision operator

In this section, we establish a couple of auxiliary results concerning the operator Q that will be needed
in the next section. First, we prove the following consequence of Proposition 2.2:

Corollary 3.4. Let h(v) be such that
∫

Rn h(v)dv = 0 and h/F ∈ L∞(Rn), and let g = Q−1(h). Then
g/F ∈ L∞(Rn) and there exists a constant K such that

‖g/F‖L∞(Rn) ≤ K‖h/F‖L∞(Rn).

Proof. We have
‖h‖L2

F−1 (Rn) ≤ ‖h/F‖L∞(Rn),

and so Proposition 2.2 implies that g = Q−1(h) exists and satisfies

‖g‖L2
F−1 (Rn) ≤ C‖h‖L2

F−1 (Rn) ≤ C‖h/F‖L∞(Rn).

Next, we can write

g =
1
ν

[∫
Rn
σ(x, v, v′)g(v′) dv′ F (v) + h(v)

]
.

We then deduce that

|g(v)| ≤ C(‖g‖L1(Rn)F (v) + |h(v)|)
≤ C(‖g‖L2

F−1 (Rn)F (v) + |h(v)|)

≤ C‖h/F‖L∞(Rn)F (v),

which completes the proof.
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Next, we prove:

Proposition 3.5. There exists C such that for all function h(x, v) we have∥∥∥∥Q+(T −1
ε (εv · ∇xh)F )

F

∥∥∥∥
L2
x(Rn;L∞v (Rn))

≤ Cεα||h||L2
x(Rn;L∞v (Rn)) + C(εα + ε)||∇xh||L2

x(Rn;L∞v (Rn))

for all ε > 0.

Proof. We start by noticing that

Q+(T −1
ε (εv · ∇xh)F )(x, v)

=
∫

Rn
σ(x, v, v′)

∫ +∞

0
e−

R z
0 ν(x−εsv

′,v′) dsεv′ · ∇xh(x− εzv′, v′)F (v′)dzdv′F (v)

is very similar to εαLε(h) (which is of order εα), though the lack of symmetry with respect to v
prevents us from using the result directly (and explain why this term is of smaller order).

In particular, it is still natural to split this integral into three parts:

Q+(T −1
ε (εv · ∇xh)F )(x, v) = (Iε1 + Iε2 + Iε3)F (v)

where

Iε1 =
∫
|v′|≤1

σ(x, v, v′) T −1
ε (εv′ · ∇xh)F (v′) dv′,

Iε2 =
∫

1≤|v′|≤1/ε
σ(x, v, v′) T −1

ε (εv′ · ∇xh)F (v′) dv′,

Iε3 =
∫
|v′|≥1/ε

σ(x, v, v′) T −1
ε (εv′ · ∇xh)F (v′) dv′.

We then note that

Iε1 =
∫
|v′|≤1

σ(x, v, v′)
∫ +∞

0
e−

R z
0 ν(x−εv

′s,v′) ds εv′ · ∇xh(x− εv′z, v)F (v′) dz dv′

and so

|Iε1(v)| ≤ Cε
∫
|v′|≤1

∫ +∞

0
e−σ0z ||∇xh(x− εv′z, ·)||L∞v dz dv′.

We deduce
||Iε1 ||L2

x(Rn;L∞v (Rn))) ≤ Cε||∇xh||L2
x(Rn;L∞v (Rn)).

Next, Assumption (9) and the change of variable w′ = εv′ yields:

Iε2 =
∫

1≤|v′|≤1/ε

∫ +∞

0
σ(x, v, v′)e−

R z
0 ν(x−εv

′s,v′) ds εv′ · ∇xh(x− εv′z, v′) 1
|v′|n+α

dz dv′

= εα
∫
ε≤|w′|≤1

σ(x, v,
w′

ε
)
∫ +∞

0
e−

R z
0 ν(x−w

′s,w
′
ε

) dsw′ · ∇xh(x− w′z, w
′

ε
)

1
|w′|n+α

dz dw′,
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and so

|Iε2(v)| = Cεα
∫
ε≤|w′|≤1

∫ +∞

0
e−σ0z||∇xh(x− w′z, ·)||L∞v

|w′|
|w′|n+α

dz dw′

Using the fact that
∫
ε≤|w′|≤1

|w′|
|w′|n+α dw

′ ≤ C(1 + ε1−α), we deduce

||Iε2 ||L2
x(Rn;L∞v (Rn)) ≤ Cεα

(∫
ε≤|w′|≤1

|w′|
|w′|n+α

||∇xh||2L2
x(Rn;L∞v (Rn)) dw

′

)1/2

×

(∫
ε≤|w′|≤1

|w′|
|w′|n+α

dw′

)1/2

≤ C(ε+ εα)||∇xh||L2
x(Rn;L∞v (Rn)).

Finally, to estimate Iε3 , we use the formula

T −1
ε (εv · ∇xh) = −

∫ +∞

0
e−

R z
0 ν(x−εvs,v) dsν(x− εvz, v)

[
h(x− εvz, v)− h(x)

]
dz.

Assumption (9) and the change of variable w = εv then yields:

Iε3 = −εα
∫
|w′|≥1

∫ +∞

0
e−

R z
0 ν(x−w

′s,w
′
ε

) dsν(x,
w′

ε
) ν(x−w′z, v)

[
h(x−w′z, w

′

ε
)−h(x,

w′

ε
)
] 1
|w′|n+α

dz dw′

and so
||Iε3 ||L2

x(Rn;L∞v (Rn)) ≤ Cεα||h||L2
x(Rn;L∞v (Rn)).

3.4 Convergence of f ε − ρεF

We are now ready to prove that f ε− ρεF converges to zero. More precisely, we are going to show the
following proposition:

Proposition 3.6. Let f ε be a solution of (32) with f ε(0, x, v) = ρin(x)F (v) and ρε be the solution of
(45). Then

||f ε − ρεF (v)||L∞(0,∞;L2
F−1 (Rn×Rn)) ≤ C(εα/2 + ε1−α/2)||ρ||L∞(0,∞;H4(Rn)).

Proof. The expansion (33) gives

||f ε − ρεF (v)||L∞(0,∞;L2
F−1 (R2n)) ≤ ||gε1||L∞L2

F−1
+ ||gε2||L∞L2

F−1
+ ||gε3||L∞L2

F−1
+ ||rε||L∞L2

F−1
.(49)

Furthermore, the remainder rε can be estimated by multiplying the equation (37) by rε/F and inte-
grating with respect to x and v. Proposition 2.2 (iii) then yields

||rε||L∞L2
F−1

≤ ||∂tgε1||L1(0,∞;L2
F−1 (R2n)) + ||∂tgε2||L1(0,∞;L2

F−1 (R2n))

+||∂tgε3||L1(0,∞;L2
F−1 (R2n)) + ε−α||Q+(gε3)||L1(0,∞;L2

F−1 (R2n))

+||gε1(0, ·)||L2
F−1 (R2n) + ||gε2(0, ·)||L2

F−1 (R2n) + ||gε3(0, ·)||L2
F−1 (R2n).

(50)
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We now see that Proposition 3.6 will be proved if we can show that all the norms arising in the right
hand side of (49) and (50) go to zero.

All the necessary estimates are collected in a sequence of Lemmas below, which altogether complete
the proof of Proposition 3.6.

Lemma 3.7. There exists a constant C such that

||gε1||L∞(0,∞;L2
F−1 (R2n)) ≤ Cε

α
2 ||ρε||L∞(0,∞;H1(Rn))

and
||∂tgε1||L∞(0,∞;L2

F−1 (R2n)) ≤ Cε
α
2 ||ρε||L∞(0,∞;H3(Rn)).

Lemma 3.8. There exists a constant C such that

||gε2||L∞(0,∞;L2
F−1 (R2n)) ≤ ||gε2/F ||L∞(0,∞;L2

x(Rn;L∞v (Rn)))

≤ C(εα + ε)||ρε||L∞(0,∞;H2(Rn))

and
||∂tgε2||L∞(0,∞;L2

F−1 (R2n)) ≤ C(εα + ε)||ρε||L∞(0,∞;H4(Rn)).

Lemma 3.9. There exists a constant C such that

||gε3||L∞(0,∞;L2
F−1 (R2n)) ≤ C(εα + ε)||ρε||L∞(0,∞;H2(Rn))

||∂tgε3||L∞(0,∞;L2
F−1 (R2n)) ≤ C(εα + ε)||ρε||L∞(0,∞;H4(Rn))

and
||Q+(gε3)||L∞(0,∞;L2

F−1 (R2n)) ≤ Cεα[εα/2 + ε1−α/2]||ρε||L∞(0,∞;H2(Rn)).

The proof of this last lemma will require the following estimate:

Lemma 3.10. There exists a constant C such that∥∥∥∥∇xgε2F

∥∥∥∥
L∞(0,∞;L2

x(Rn;L∞v (Rn))

≤ C(εα + ε)||ρε||L∞(0,∞;H2(Rn)) + Cεα/2||ρε||L∞(0,∞;H1(Rn)).

The rest of this section is devoted to the proof of these lemmas.

Proof of Lemma 3.7. We recall that (48) yields

||gε1||L2(0,∞;L2
F−1 (R2n))) ≤ Cε

α
2 .

However, we have to work a bit more to get an estimate uniformly in time.
We recall that

gε1(t, x, v) = T −1
ε (εv · ∇xρε)F

= −ε
∫ +∞

0
e−

R z
0 (ν(x−εsv,v) dsv · ∇xρε(x− εzv)F (v)dz. (51)
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Therefore ∫
Rn

∫
Rn

gε1(t, x, v)2

F
dvdx

≤ Cεα
∫

Rn

∫
|w|>ε

(∫ +∞

0
e−

R z
0 (ν(x−sw,w

ε
) dsw · ∇xρε(x− zw)dz

)2

F
(w
ε

) dw dx
εn+α

+ ε2
∫

Rn

∫
|v|≤1

(∫ +∞

0
e−

R z
0 (ν(x−εsv,v) dsv · ∇xρε(x− εzv)dz

)2

F (v)dv dx.

Splitting the first integral and integrating by parts, we get:∫
Rn

∫
Rn

gε1(t, x, v)2

F
dvdx

≤ εα
∫

Rn

∫
|w|>1

(∫ +∞

0
ν(x− zw, w

ε
)e−

R z
0 (ν(x−sw,w

ε
) ds[ρε(x− zw)− ρε(x)]dz

)2 1
|w|n+α

dw dx

+ εα
∫

Rn

∫
1>|w|>ε

(∫ +∞

0
e−

R z
0 (ν(x−sw,w

ε
) dsw · ∇xρε(x− zw)dz

)2 1
|w|n+α

dw dx

+ ε2C

∫
Rn

∫
|v|≤1

(∫ +∞

0
e−σ0z|∇xρε(x− εzv)|dz

)2

dvdx

and so
||gε1||L2

F−1 (R2n) ≤ C(ε
α
2 ||ρε||L2(Rn) + (ε

α
2 + ε)||∇xρε||L2(Rn))

which gives the first inequality in Lemma 3.7.
Differentiating (51) with respect to t (note that only ρε depends on t) and proceeding similarly,

we deduce:

||∂tgε1||L2F−1(R2n) ≤ C(ε
α
2 ||∂tρε||L2(Rn) + (ε

α
2 + ε)||∂t∇xρε||L2(Rn))

≤ C(ε
α
2 ||ρε||H2(Rn) + (ε

α
2 + ε)||∇xρε||H2(Rn)).

Proof of Lemma 3.8. We recall that (35) gives

gε2 = Q−1
(
−Q+(gε1)− εα∂tρεF

)
= Q−1

(
−Q+(T −1

ε (εv · ∇xρε)F ) + εαLε(ρε)F
)

and so Corollary 3.4 yields

||gε2/F ||L∞v (Rn) ≤ C|| −Q+(T −1
ε (εv · ∇xρε)F )/F + εαLε(ρε)||L∞v (Rn)

and so

||gε2/F ||L2
x(Rn;L∞v (Rn)) ≤ C||Q+(T −1

ε (εv · ∇xρε)F )/F ||L2
x(Rn;L∞v (Rn)) + εα||Lε(ρε)||L2(Rn)

≤ C||Q+(T 1
ε (εv · ∇xρε)F )/F ||L2

x(Rn;L∞v (Rn)) + εα||ρε||H2(Rn)
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Furthermore, Proposition 3.5 implies

||Q+(T −1
ε (εv · ∇xρε)F )/F ||L2

x(Rn;L∞v (Rn)) ≤ C(ε+ εα)||ρε||H1(Rn)

which yields the first estimate.

Next, we write

∂tg
ε
2 = Q−1

(
−Q+(T −1

ε (εv · ∇x∂tρε)F ) + εαLε(∂tρε)F
)

and so the same argument as above yields

||∂tgε2||L∞(0,∞;L2
F−1 (R2n)) ≤ C(εα + ε)||∂tρε||L∞(0,∞;H2(Rn)).

Since ∂tρε = −Lε(ρε), we have

||∂tρε||L∞(0,∞;H2(Rn)) = ||ρε||L∞(0,∞;H4(Rn))

and the second estimate follows.

Proof of Lemma 3.9. We note that

||T −1
ε h||L2

F−1 (R2n) ≤ C||h||L2
F−1 (R2n)

for any h in L2
F−1(R2n). Thus, noticing that gε3, satisfies

(ν + εv · ∇x)gε3 = εv · ∇xgε2 or (ν + εv · ∇x)(gε3 − gε2) = νgε2

we get:
||gε3||L2

F−1 (R2n) ≤ C||gε2||L2
F−1 (R2n) ≤ C(εα + ε)||ρε||H2(Rn)

and a similar argument gives the bound on ∂tg
ε
3.

It remains to estimate Q+(gε3). Proposition 3.5 implies∥∥∥∥Q+(gε3)
F

∥∥∥∥
L2
x(Rn;L∞v (Rn))

≤ Cεα
∥∥∥∥gε2F

∥∥∥∥
L2
x(Rn;L∞v (Rn))

+ C(εα + ε)
∥∥∥∥∇xgε2F

∥∥∥∥
L2
x(Rn;L∞v (Rn))

, (52)

and Lemma 3.8 yields
||gε2/F ||L2

x(Rn;L∞v (Rn)) ≤ C(εα + ε)||ρε||H2(Rn).

Furthermore, Lemma 3.10 completes the proof of Lemma 3.9, since it implies∥∥∥∥Q+(gε3)
F

∥∥∥∥
L2
x(Rn;L∞v (Rn))

≤ C[εα(εα + ε) + (εα + ε)2 + εα/2(εα + ε)]||ρε||H2(Rn).

Proof of Lemma 3.10. First, taking the derivative in the equation satisfied by gε2, we obtain:

Q(∇xgε2) = Qx(gε2)−Q+
x (gε1)−Q+(∇xgε1)− εα∇x(Lε(ρε))F. (53)

where Qx denotes the operator defined as Q with ∇xσ instead of σ. We need to derive some bound
on all the terms in the right hand side of (53).
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First, it is easy to check that∥∥∥∥Qx(gε2)
F

∥∥∥∥
L2
x(Rn;L∞v (Rn))

≤ C||gε2/F ||L2
x(Rn;L∞v (Rn))

and ∥∥∥∥Q+
x (gε1)
F

∥∥∥∥
L2
x(Rn;L∞v (Rn))

≤ C||gε1||L2
F−1 (R2n).

Furthermore, ∇xgε1 satisfies

(ν(x, v) + εv · ∇x)∇xgε1 = −∇xνgε1 − εv · ∇x(∇xρεF )

and so
Q+(∇xgε1) = Q+(T −1

ε (−εv · ∇x∇xρεF ))

−Q+(T −1
ε (∇xνgε1)).

Proposition 3.5 implies

||Q+(T −1
ε (−εv · ∇x∇xρεF ))/F ||L2

x(Rn;L∞v (Rn)) ≤ C(εα + ε)||ρε||H2(Rn)

while we clearly have

||Q+(T −1
ε (∇xνgε1))/F ||L2

x(Rn;L∞v (Rn)) ≤ C||T −1
ε (∇xνgε1)||L2

F−1 (R2n)

≤ C||∇xνgε1||L2
F−1 (R2n)

≤ C||gε1||L2
F−1 (R2n)

≤ Cεα/2||ρε||H1(Rn).

We deduce ∥∥∥∥Q+(∇xgε1)
F

∥∥∥∥
L2
x(Rn;L∞(Rn))

≤ C(εα + ε)||ρε||H2(Rn) + Cεα/2||ρε||H1(Rn).

Finally,

εα∇x(Lε(ρε)) = −
∫

Rn
∇x(Q+(gε1)) dv

= −
∫

Rn
Q+(∇xgε1) dv −

∫
Rn
Q+
x (gε1) dv

and so

||εα∇x(Lε(ρε))||L2(Rn) ≤
∥∥∥∥Q+(∇xgε1)

F

∥∥∥∥
L2
x(Rn;L∞v (Rn))

+
∥∥∥∥Q+

x (gε1)
F

∥∥∥∥
L2
x(Rn;L∞v (Rn))

≤ C(εα + ε)||ρε||H2(Rn) + Cεα/2||ρε||H1(Rn).

Putting the pieces together, (53) implies (together with Corollary 3.4) that∥∥∥∥∇xgε2F

∥∥∥∥
L2
xL
∞
v

≤ C(εα + ε)||ρε||H2 + Cεα/2||ρε||H1(Rn).
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3.5 Passage to the limit in the fractional diffusion equation

Proposition 3.6 implies
||f ε − ρεF (v)||L∞(0,∞;L2

F−1 (Rn×Rn)) −→ 0.

To conclude the proof of Theorem 1.1, it thus only remains to show the following proposition:

Proposition 3.11. The solution ρε of (45) converges strongly in L∞(0, T ;L2(Rn)) to ρ0(t, x) solution
of (13). More precisely:

||ρε − ρ0||L∞(0,T ;L2(Rn)) ≤ CTε1−α/2||ρ0||L∞(0,∞;H2(Rn)).

First, we recall the following simpler result (which is proved in [13]):

Proposition 3.12. The solution ρε of (45) converges weak∗ in L∞(0,∞;Hk(Rn)) to ρ0 solution
of (13).

Proof. Let φ(t, x) be a test function in D([0,∞),Rn), the weak formulation of the equation (45) gives∫ ∞
0

∫
Rn
ρε (∂tφ− Lε(φ)) dtdx =

∫
Rn
φ(0, x)ρin(0, x)dx.

Furthermore, it is proved in [13] that for any smooth function φ, Lε(φ) converges to L(φ) uniformly
in x and t. Together with the bounds on ρε given by Proposition 3.2, this implies Proposition 3.12.
Note also that by lower semicontinuity of the norm with respect to the weak convergence, we get:

||ρ0||L∞(0,∞;Hk(BR)) ≤ ||ρε||L∞(0,∞;Hk(Rn)).

Proof of Proposition 3.11. In order to show the strong convergence, we note that

∂t(ρε − ρ0) + Lε(ρε − ρ0) = Lε(ρ0)− L0(ρ0)

and so
d

dt

∫
|ρε − ρ0|2 dx ≤

(∫
|Lε(ρ0)− L0(ρ0)|2 dx

)1/2(∫
|ρε − ρ0|2 dx

)1/2

.

We deduce (∫
|ρε(t)− ρ0(t)|2 dx

)1/2

≤
∫ T

0

(∫
|Lε(ρ0)− L0(ρ0)|2 dx

)1/2

dt

≤ T ||Lε(ρ0)− L0(ρ0)||L∞(0,∞;L2(Rn))

A computation similar to that of the proof of Lemma 3.1 now gives∫
Rn
|Lε(ρ0)− L(ρ0)|2dx ≤

∫
Rn
|Iε2(ρ0) + Iε3(ρ0)− L(ρ0)|2dx+ Cε2−α||ρ0||2L∞(0,∞;H2(Rn)).

where

Iε2(ρ0) =
∫
ε≤|w|≤1

ν(x,w/ε)
∫ +∞

0

[
e−

R z
0 ν(x−ws,w/ε) ds − e−ν(x,w/ε)z

]
w · ∇xρ0(x− wz) 1

|w|n+α
dz dw

+
∫
ε≤|w|≤1

∫ +∞

0
e−ν(x,w/ε)zw ·D2

xρ0(x− wz) · w dz 1
|w|n+α

dw
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and

Iε3(ρ0) = −
∫
|w|≥1

∫ +∞

0
e−

R z
0 ν(x−ws,w/ε) dsν(x,w/ε) ν(x− wz, v)

[
ρ0(x− wz)− ρ0(x)

] 1
|w|n+α

dz dw.

But∫
Rn
|Iε2(ρ0) + Iε3(ρ0)− L(ρ0)|2dx

≤
∫

Rn

(∫ ∞
0

∫
|w|<ε
ν(x,w/ε)

[e−
R z
0 ν(x−ws,w/ε) ds − e−ν(x,w/ε)z]

|w|n+α
w · ∇xρ0(x− wz)dz dw

)2

dx

+
∫

Rn

(∫ ∞
0

∫
|w|<ε

e−ν(x,w/ε)zw ·D2
xρ0(x− wz) · w dz 1

|w|n+α
dw

)2

dx.

and so ∫
Rn
|Iε2(ρ0) + Iε3(ρ0)− L(ρ0)|2dx ≤ C

∫
|w|<ε

|w|2−α−ndw||ρ0||2L∞(0,∞;H2(Rn))

≤ Cε2−α||ρ0||2L∞(0,∞;H2(Rn))

which allows to conclude.
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