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Abstract

We develop a Hilbert expansion approach for the derivation of fractional diffusion equations
from the linear Boltzmann equation with heavy tail equilibria.

1 Setting of the result

1.1 Introduction

The linear Boltzmann equation is a simple kinetic equation describing the evolution of a particle
distribution function. It couples free transport and scattering phenomena (due to collisions with the
background). The properties of the scattering process determines the long time behavior of the particle
distribution function. It fixes in particular the profile of the equilibrium velocity distribution.

Asymptotic analysis of such an equation is a very classical problem. Typically, assuming that
the mean free path (i.e. distance between two collisions) is very small and the time scale is very
large, it is possible to derive a hydrodynamic type equation describing the evolution of the density
of particles. Often, the thermodynamical equilibrium is given by a Maxwellian distribution function,
and the mean square displacement of the particle is a linear function of time. The correct time/space
scaling (x = ex’ and t = %t') then leads to a diffusion equation for the density of particles. This
type of diffusion approximation for kinetic equations has been widely studied in several papers, see
for instance [1, 4, 10, 7] (and references therein).

In recent works (see [14], [13], [3]) similar asymptotic analysis are performed when the equilibrium
function is not a Maxwellian distribution, but rather a heavy tail function. In this case, the diffusion
coefficient appearing in the classical diffusion limit is no longer well defined and one has to modify the
time scale to recover an equation for the particle density. This is known in the literature as anomalous
diffusion phenomena (the mean square displacement of the particle is not a linear function of time),
and it leads to fractional diffusion equations.
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Denoting by e the ratio of the microscopic length scale (mean free path) and macroscopic length
scale, we scale the space variable as © = €2’ and the time variable as t = ¢*t. The starting point of
this paper is then the following rescaled Boltzmann equation:

YO0 fC +ev-Viff=Q(f°) (1)

where the particle distribution function f¢(¢, z,v) depends on the time ¢ > 0, the space variable z € R"
and the velocity variable v € R™. The collision operator appearing in the right hand side is a linear
integral operator of the form:

Q) = | ale0 ) FWFE) - F0)FE)]d &)
with
o(z,v,v") = o(z,v,v).

Note that the operator @ is the sum of a gain term

QT (f) = /n o(z,v,v")f(v) dv' F(v)

and a loss term

Q (f)=—-v(v)f(v) withv(v)= /n o(z,v, v )F (' )dv'.

This operator has a one dimensional kernel spanned by the function F'(v) and it preserves the total
mass:

Q(f)dv=0 for all f. (3)

]Rn
The usual diffusion limit corresponds to @ = 2. It can be studied using the so-called Hilbert
expansion method, which is based on a formal expansion of the solution in the form

fe=f+eft+22 05

Inserting this expansion in (1) and identifying the terms of same order in ¢ yields:

Q(f°) = 0 (4)
QUfYY = v-Vuf° (5)
QUf*) = 0f'+v-Vuf (6)

and the remainder ¢ solves
O + e v Vur® =e2Q(r%) + o ft + 20 4 ev - Vi f2

Equation (4) implies that fO(¢t,z,v) = p(t,z)F(v) and (5) then yields f!' = Q !(v - V,f°) =
Q Y(vF(v)) - Vzp (assuming that such an inverse exists, see Proposition 2.2). Finally, in view of
(3), the equation (6) for f2? gives (integrating with respect to v):

dp+Vy-j=0

where

Jj= /nvfldv = /nv®Q_1(vF(v))dexp.



We deduce that for f? to exist, p must solve
Oip—Vyz - DVep=0

with diffusion matrix

D=— / 0 ® Q  (wF(v)) dv.

Now, assuming that p is a (smooth solution) of this diffusion equation, we can define f°, f! and f?
solutions of (4), (5) and (6), and show that the remainder r° converges strongly to 0 in some L?
space. The main drawback of this method, compared with the moment method, is that it requires
stronger regularity assumptions on the initial data in order to get the appropriate bounds on f0, f1
and f2. On the other hand the method yields strong convergence of the solution (rather than weak
convergence for the moment method). Hilbert expansion type methods have also proved very useful
to study diffusion limits for some non linear collision operators, see [12, 9, 11].

In this paper we are considering a situation in which this limit fails because the diffusion matrix D
above is infinite. This is clearly the case when the equilibrium function F', rather than a Maxwellian
distribution function is a heavy tail distribution function, satisfying

Ko
~J
’,U’n—l—a

F(v)

as |v| — oo

for some a € (0,2) (note that this a will be the same as the time scale in (1)). Such a profile has
been mentioned in several context such as astrophysical plasmas ([17, 15] or in the study of granular
plasmas ([5, 8] for inelastic Maxwell models, [16] for inelastic Kac model and [6] for mixture of gases
with Maxwellian collision kernel). A similar study is undertaken in [14] using a relatively simple
method based on the Fourier transform. This method does not generalize easily to more complicated
situation involving space dependent collision kernel ¢ or non linear operator. In [13], an alternative
method is developed which is based on the weak formulation of the Boltzmann equation (1) and
the choice of particular test functions defined via an auxiliary equation. This method is somewhat
analogous to the well known moment method for the usual diffusion limit. Both approaches provide
the weak convergence of f¢ to pF. The aim of the present paper is to develop a Hilbert expansion
approach for this anomalous diffusion regime. One of the advantages of this new method (compared
with [14, 13]) will be to give strong convergence results. We also believe that this method can be used
to address some nonlinear problems, such as models involving the Boltzmann-Pauli collision operator.

The first difficulty in developing such an expansion method is that since o € (0,2), it is not
obvious how one should identify the terms with same order (some terms have a fractional order).
The originality of this expansion is thus the splitting of the different terms of equation (1) and their
distribution in the different levels of the expansion. This splitting follows a heuristic based on the
choice of the auxiliary function in [13]. Indeed, we notice that the advection term and the gain loss
of the collision operator are of the same order whereas the gain term is of higher order (in term of ¢).
This leads to a rearrangement in the Hilbert expansion as explained in section 3.

We are now going to list our assumptions on ¢ and F' and give the main result of this paper
(Theorem 1.1 below). In Section 2, we will present a proof of this result in the simpler case 0 = 1. In
this case, the expansion is relatively simple, and we will explain why in the more general case, a more
complicated expansion needs to be introduced. The main theorem is then proved in Section 3.



1.2 Main result

In order to simplify the computation, we will assume that there exist some constants oy and o7 such
that
0< o9 <o(x,v,v)=0(x,v,v) <o <oo forall (z,v, ) € R (7)

In particular, this implies that the collision frequency

v(z,v) :/ o(z,v,v")F(v)dv
satisfies
oo < v(z,v) <oy forall (z,v) € R*™.

We also need to assume that the collision frequency is regular enough and has a nice asymptotic
behavior for large v. For simplicity, we will assume:

OFv € L®°(R™ x R™) for all multi-indice k such that |k| < 4
v(z,v) =vp(z) Vv >1

(8)

(this last assumption can of course be replaced with lim,_,o v(z,v) = vo()).
The most important assumption concerns the behavior of the equilibrium F'(v) for large v. We

assume:
K

F(U) — W fOr ‘v’ Z 1 (9)

for some a € (0,2) and
Fv) <k for all v € R™. (10)

Finally, we assume that the following symmetry conditions are satisfied:
F(—v) = F(v), v(z,—v) = v(z,v) for all (zv) € R*™. (11)

This implies in particular that the flux [p, vF(v)dv = 0 (when it is defined, that is when o > 1),
which we know is a necessary condition for the derivation of diffusion type equation.

We can now state our main result:

Theorem 1.1. Assume that (7), (8), (9), (10), (11) hold and let f¢ be the solution of (1) with initial
condition fi,(x,v) = pin(x)F(v) such that py, € HYR™), then

15 = poF |l 0,00:L2 _, (rxieny) — 0, as e — 0, (12)

where pg satisfies

{ 3t,00 + L(pO) =0 in [07 OO) X Rn’ (13)
po(0,2) = pin(x)  inR"
and L is an elliptic operator defined by the singular integral:
p(x) — p(y)
L(p :P.V./ Y(x,y) —————— dy. 14
() n ( >’y_x’n+a ( )

with

’Y(xu y) _ V0($) VO(y)/ SO 7 fol vo((1—s)xz+sy)ds dz
0



Note that v(x,y) = v(y, z) and that condition (7) yields

0 <y <v(z,y) <72

In particular the operator L is a self-adjoint elliptic operator of order a (comparable to (—A)%/2).

Before giving the proof of this theorem in the general case (Section 3), we will present two simpler
cases that can be handled with a more direct Hilbert method based on the Fourier Transform and
for which the result is obtained in a L' framework as well as in a L? framework with less regularity
assumptions on the initial data.

2 Space homogeneous cross sections

2.1 Constant cross section

In this section, we prove Theorem 1.1 in the simpler framework where the cross section o is constant
(for the sake of simplicity we take o = 1). We then have

Q(f) = A f@') dv' F(v) = f(v). (15)
In that case, the use of the Fourier transform (as in [14]) allows for explicit computations and a much
simpler proof.
We have the following proposition:
Proposition 2.1.
Let f¢ be the solution of (1) with Q given by (15) where F satisfies (9-11) and with initial condition
fin(2,v) = pin(x)F(v) such that py, € WL (R™). Then
15 = poF'|| Lo (0,00;L1 (R xRP)) — 0, ase—0 (16)
where pg satisfies
Opo+ K(—A)z2po =0 in[0,00) x R"
po(0, ) = pin(x in R"
with

K= /R (w-e)? ! dw (18)

w1+ (w-e)? |wrte

If instead we have py, € H*(R™), then
e = poFHL‘”(O,oo;LiﬂfﬂR”xR”)) — 0, as € — 0. (19)
The proof relies on the following Hilbert expansion for f¢:

=[5 +91+95+7°,

with
Qf5) = 0 (20)
(14+ev-Vy)g = —ev-Vif§ (21)
Q(g5) = e“dufs — Q™ (97) (22)



and r° solution of
Ore + 7% - Vur® = e 2Q(r°) — 0ig5 — Orgs — €' % - Vgs. (23)

In order to investigate these equations, we recall the following result, which holds for general
operators of the form (2), whenever (7) holds (see [7]):

Proposition 2.2.
i) The operators QT and Q are bounded operator on L%_I(R”).
i1) The kernel of Q has dimension 1 and is spanned by F'.

iii) There exists a constant ¢ > 0 such that
QU f s v > / 1 o d
- —dv>c - — dv.

w) For all h € L%_,(R"), the equation Q(g) = h has a solution if and only if [ h(v)dv =0, and there
is a unique such solution (denoted Q~*(h)) satisfying [, g(v)dv = 0.

v) The operator Q" is bounded in L%, (R™):

Q" ()2

1

< Clh| 2 for all h such that [g, h(v)dv = 0. (24)
1

vi) /Q(f)sgn(f) dv <0 for all f.
Equation (20) then yields (using (ii)):
fS(:U, U, t) = pa(xv t)F(U>'

and so equation (21) becomes
195 = —cv -V p°F

where we introduced the operator
T.=1+¢ev-V,.

Assuming (for the time being) that this operator can be inverted, we can then write
gi = ~T. (v Vop)F. (25)
Finally, the solvability condition for (22) (using (iv)) is
/ (0" F — Q7 (g5)] dv=0
which reads
e¥0p° — /gf dv = 0.
Using (25), we see that this is a condition on p®, which we can write as

0 + /T;l(sv - Vgp)F dv = 0. (26)

Because of the simple form of the operator (), this condition also implies that the right hand side of
(22) is actually 0 (rather than only having zero integral), and thus

g2 =0.



Remarks 2.3. The usual Hilbert expansion consists in writing f¢ = pF + f{ + f5 + r°® where
v(z,v)fi = Q" (ff) —ev - VaupF,

Q(f;) tev: melg - €a8th.

We can see that the scheme that we use here consists in reshuffling the terms QT (ff) and ev - V. f§
in the first order and second order equation.

Note also that while in the usual Hilbert expansion, the first term is solution of the asymptotic
equation, here we have p® which is solution of an approrimation of the limiting model (26).

In order to prove Proposition 2.1, we thus have to show that p°, solution of (26), exists and that
g7 and 7¢ go to zero in some appropriate norm.

This is best done using Fourier transform (with respect to z): We denote by E(ﬁ) the Fourier
transform, with respect to z, of a function h. Taking the Fourier transform in (21), we get:

(1+dev - g)gAf = —jev - 5]?0

and so .
/\E - _ ’L6U * F /\8 2
We can thus rewrite (26) as
Opp° +a”(§) p* = 0. (28)

with

ciey o iev - &
a‘(§) =« /Rnl—i—iava(v)dv'

We now need the following lemma (see also [14]):

Lemma 2.4. For all &, a*(§) > 0 and
|a%(€) — wl¢]*| < Ce*E)P — 0, (29)
with k given by (18). Furthermore, there exist positive constants ¢ and cy such that,
crmin(e™?, [¢]) < a%(€) < eo(J¢]" + PVl (30)

Proof of Lemma 2.4. A simple computation (using the properties of F') yields

iev - € B (ev-€)?
/Rn 1+iev-¢ Flo)dv = /Rn 1+ (ev-§)? F(v)dv

_ (cv-€)?
N /|”|§1 1+ (ev-€)? Floyde

(ev-€)? 1
+ /|v|>l 1+ (ev-€)2 Ju|nte dv.

The first integral is clearly bounded by Ce2|¢|2, and using the change of variable w = ev|¢| we can
write the second integral as

/ (‘sv‘é)Z 1 dv = Ea‘ﬂa/ (w '6)2 1 dw
| |w

o>1 L+ (ev - €)? Jofrte >ele] L+ (w-e)? Jw[nte




We deduce

dw

Ry
et (€) —ewlel’] < Clel + evlel [ (e 1

wl<ele] 1+ (w - €)? Jw|r+e

< Oe?ig)?

This implies (29) and the second inequality in (30). The first inequality in (30) is obtained by
distinguishing two cases:

If €|¢| < 1, then the computation above yields f\u\>1 15:275);)2 Ivlﬁ dv > ce®|€|* and the result

follows.
If €|¢] > 1, then we have

/ (cv-&)° ! dv > 5“\{]0‘/ lde
wz1 1+ (ev-&)? Junte - w|>ele] 2 [w] T
> 1
and so
at>e ¢
O
We deduce

Corollary 2.5. For any pi, and € > 0, there exists a unique p° solution of (28), given by
PF(t6) = e Opin(6)
Furthermore, p® satisfies
1161507 ()] ooy < IEI"Pinl| oo )

and

[11€1°800% ()| oo rmy < 11 1€1°2 Pin | Lo rm)
for all k > 0. Finally we have

[p* = poll Lo 0,101 &)y < CT||pin|lw21 (mn)

and
1" = pollzoc 0.1 ®r)) < CT||pinl| 52 (®n)
where po is the unique solution of (17).

Proof. We only prove the last assertion: We note that

Be(pF — po) + a“(€) (P — o) = (KIE|* — a®(€)) o
and so Lemma 2.4 yields
915~ pol < 2ol
We deduce J
a”ﬁa — pollpr ey < C*|pollw21(rny

which gives the L'(R™) convergence of p°. A similar computation (multiplying by 0 — po) gives the
L?(R™) convergence.
O]



Proof of Proposition 2.1. We now notice that (27) yields

S I

SN U R
]S e
and thus
HQATHLW(Rn-Ll(RN))) < sup &F(v) dvp? (€)
e ¢ V1+ (sv-£)?
< Sgp{C(sali\aH\E\)ﬁa}
< C(e*+ o) |I(1+ 1) poo(rm),

and similarly

IN

HatgA‘iHLgO(Rn;Lg(RN))) Slgp {C(*€]™ + el¢]) oo}

sup {C(=“l¢l" + <le)a(€)77)

IN

so, using Lemma 2.4, we deduce

||3t9Af||Lg°(Rn;L5(RN))) < (e"+9)l(1+ |f|3)PAE||L<>°(Rn)-

It follows that g and ;g5 converge to 0 strongly in L>(0, 0o; L' (R™ x R™)). Finally, multiplying

the equation for the remainder r¢, (23), by sign(r®) (and using Proposition 2.2 (vi)), we get

OellrelLrrry < 1|Owgill L1 (mry-

Using the fact that 7¢(t = 0) = —gj(t = 0), we deduce

7€l oo 0,7,01 (R2PY) — O
and so
1% = P°Fllrec (0,701 (R xR ) — 0.

Similarly, we have (using the computations of Lemma 2.4):

~o 1 lev - £]2 ~2
£|2 dv < — = F(v) dvp®
/R” |gl| F(U) Vo= /lv{n 1 + (EU 5)2 (U) vp
APl ~2
< C(e™[E|* +2[¢P)pe

and so R
|’gi|’L%71(R”XR") < CgaHPEHHl(Rn)

and in a same way
HatngLipl(R"xR") < Ce™[p*[| s (mny -

A similar argument (multiplying (23) by r¢/F') gives the strong convergence in L*°(0, oo; L%Ll (R™

R™)).

X
O



2.2 Case of space homogeneous cross section

We now show, in a still relatively simple case, why the general case is more complicated. In this
section, we assume that @) is given by:

Qf) = / o (v, o) [f (V") F(v) — f(v)F(v))] dv’ (31)
with o depending only on v and v’ (and not on z), and satisfying
0<op<o(wd)=c0,v)<ay.
We might try to proceed as in the previous section, writing
ff=f+oit+e+r,
with
fo(@,v,t) = p(z, 1) F(v),
gi = —T (ev - Vupf), F
Q(g3) = 0pF — Q™ (g5).
where the operator 7¢ is now defined by 7:(f) = vf +ev -V, f.
The solvability condition for ¢g5 (obtained by integrating this last equation with respect to v) reads

ap° = [ QT (g)dv
Rn

= s_o‘/ vgi dv

= —50‘/ v(0)T7 N ew - Vip®) F do.

We thus obtain that p® must solve
o + L(5°) = 0
with
L(p) = E_a/ v(v)T v - Vip®) F do.

Once again, we can identify the nature of this operator using Fourier transform: We get

() = g—a/Rny(UiE”f () F(0) dvF?

) +icv - 51/
= @ (&)
However, unlike the previous section, we do not have Q(g5) = 0. Instead, we have
Qg3) = —e"L°(p°)F — Q" (gi)
which, in Fourier, reads:
~ o e’ - € , , N A
AH) = = [ ) — o0 ) 4 )

10



and so

e a |€U, } £| / "N
1Q(g5)] < 201¢ - \/WF(U ) dv'|p?|F(v)
< O (€] +elé]) P F (v)-

This clearly implies that g5 goes to zero as € goes to 0, but it also means that it will be difficult
to control the term £!=%v - Vg5 because of the lack of integrability of vF (at least when o < 1).
For this reason, we need to add a term in the expansion, as explained in the next section.

3 Proof of Theorem 1.1

3.1 A reshuffled Hilbert expansion

In order to prove Theorem 1.1, we use a Hilbert type expansion and some techniques similar to those
first introduced in [13].
We recall that f€ is a solution of

eYOLfT +ev-Vauft =Q(f°) (32)
where

QU) = Q*(f) — vf with QF(f)= / o, 0,0V F(0) f (o),

and we write the following expansion
fe =0t 2)F(v) + gi(t,2,0) + g5(t, @, 0) + g5t @, v) +1°(L, 2, v) (33)

where the terms g7, g5, g5 satisfy

(v(z,v)+ev-Vy)g = —ev- Vi (p°F) (34)
Q(g3) = —QF(gf) — 0 F (35)
(v(z,v)+ev-Vy)gs = —ev-Vugs5. (36)
The remainder solves
o€ +elm% - Vrf = Qif) — Oy — Org5 — Org5 + QL&Q%)' (37)
We recall that we defined the operator
T-(9) = vg +ev - Vyg. (38)

A simple computation (see [13]) shows that this operator is invertible with

oo — ZI/ - 5 d
= e [y vto=ee " flo - eve,v)d (39)
0

for any function f(z,v). In particular, equations (34) and (36) are solvable without additional condi-
tions, but (35) requires the following solvability condition (obtained by integrating (35) with respect
to v):

Ou + L(5F) =0 (40)

11



with
K = e [ Qe
= 6_0‘/ v(z,v)gidv
Rn

= 50‘/ v(z,v) T (v - Vop®) F do. (41)

In view of (37), it is clear that in order to prove Theorem 1.1, we need to show that g, ¢5 and ¢§

can be defined and that the terms 0;g7, 0;95 Org5 and % in the right hand side of (37) go to 0 in
L'(0,00; L2, (R™ x R™)).

The first step, detailed in the next section, will be to study the properties of this operator L® and
show that the equation (40) has a smooth solution p°. In section 3.3, we will derive some important
estimate on Q~1(h) that will be needed to get some estimates on g5. In Section 3.4, we derive estimates
on gi, g5 and g5 and their derivatives and show that f¢ — p°F converges to zero strongly. The final
step (Section 3.5) is to show that p°, solution of (40), converges strongly to pg solution of (13).

3.2 Properties of the operator L and the equation (40)
First, of all, we note that for any function p(x), (39) and (41) imply

Lf(p) = 50‘/ v(z,v) T (ev - Vop®) F dv

RTL
+o0 P
= g / e~ Jovla—evsv)ds oy g p(x — vz) F(v) dz dv.
nJo

Alternatively, we can also write
T (cv- Vap)

+o0 P
= / ¢ Jo vie—evsv)ds o, Vap(r —evz)dz
0

400
_ _/ e Jo v(z—evs,v) ds
0

—+o00
_ _/ e J§ v(z—evs,v) ds
0

+oo .
= —/ e~ Jovla—evso)ds (g cyy 0) [p(z — evz) — p(x)] dz
0

% [p(x — evz)] dz

diz [p(z — evz) — p(x)] dz

which leads to
400 .
L (p) = —Ea/ / ¢~ Jo viz—evs) &y (x — evz,v) [p(z — evz) — p(z)] F(v) dzdv (42)
nJo

which is the formula found in [13].
We can now prove the following lemma:

Lemma 3.1. For all k integer, k > 2, the operator L® is a bounded operator from Hk(R”) to
HF2(R"):
HLE(p)HH’f—Q(R") < CHPHH’“(R”) for all p € H*(R™). (43)

12



Proof. We first prove that
1L (o)l 2@ny < Cllpllg2@ny  for all p e H*(R™).

A similar computation is performed in [13], and recalled here for the reader’s convenience.

We write
Lé(p) = 5“/ v(x,v) T (v - Vop) F dv
= I{+15+1I35
where
I; = 60‘/ v(z,v) T, (ev - Vyp) F dv,
lvl<1
5 = 6_0‘/ v(x,v) T (v - Vop) F do,
1<v|<1/e
IS =¢¢ v(z,v) T (ev - Vup) F do.
|v|>1/e
We have
+o0 »
T ev-Vup) = / e~ Joviemevsv)ds o L7 po(x — v2) dz
0

+0o0 z
_ / [6_ Jo v(z—evs,v)ds _ e—l/(z,v)z} cv - pr(m — 61}2) dz
0
+oo
[ e et
0
+oo
+/ e—y(a;,’u)z EV - Vzp(x) dz
0

and so an integration by parts yields

&€

+oo .
T ev-Vup) = / [e_ Jo v(z—evsw)ds _ e_”(””’”)z} ev - Vyp(x —evz)dz
0
+0c0 1
+/ eV __—__22. D2p(x — evz) - vdz
0 v(z,v)
“+oo
+/ e V@2 oy Vop() de.
0
Using the symmetry assumption on F' and v, we deduce:
+o0 p
I = ¢ / v(z,v) / {e_ Jo v(z—evsv)ds _ e_”(m’”)z} ev - Vyp(x — evz) F(v)dz dv
jo[<1 0

+oo
+e @ e V@22, D2 p(z — evz) - vdzF(v) dv
<1 Jo ¢
v~

and since F' is bounded, and

z
’67 Jo v(@—sevw)ds _ efzu(x,v) < CZ2670'1Z€’,U|

13



we deduce
17| L2y < C€27&HPHH2(Rn)

Next, Assumption (9) and the change of variable w = ev yields:
+o0 » 1
I5 = 50‘/ / e~ Jovlr—evso)ds (0 4) e Vop(a — evz) —— e dzdv
<|v|<L1/e | |

400 5 1
= / / e Jo vlamwsw/e)ds (0 o) w - Vap(x — wz) e dz dw
<lw|<1 w|rte
and proceeding as with I7, we deduce
. T e /e)ds (ww/e) !
5 = / Va:,ws/ [ o vi@—wsw/e)ds _ o—v(zw Z}w-Vx r—wz) ———— dzdw
2 <lw|<1 (. w/e) 0 Al ) |w[rte

+00 1
+/ / e V@2 D2p(z — wz) - wdz o dw
e<|w|<1 Jo |w]

and so
151 L2@ny < Cllpl| 2@y

Finally, to estimate I§, we use the formula
T (ev - Vap) = — /0+OO e~ Jo vlw—evs) Gy (x — evz,v) [p(x — evz) — p(a)] dz.
Assumption (9) and the change of variable w = v then yields:
/ | " e s sy ) o — w,0) [l — w2) — ple)] e dz
lw|>1 jwrte

and so
151 L2 ny < CllpllL2@mny-

We now show how to obtain higher order estimates: We have
Ox, L7 (p° / Op,v(x,0)T Hew - Vop)F(v)dv
e [ v )T O T o Vap) F(0) do

—l—e_a/ v(x, )T Hev - VO, p)F(v)dv.

The last term is just L(0,p) which can thus be bounded by the previous step. The first term is

treated in a same way as L°(p) except that we need to use the fact that @ is even and bounded.
Therefore, we will only detail the computations concerning the second term. We split it into three
integrals corresponding respectively to [v] < 1, 1 < |v| < % and |v] > 1.
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First of all, we handle the |v| > = part For that purpose, we use (9) and the usual change of
variable. It leads to

I o= - / (2, 0) T (00, v T (60 - Vap)) F(v) du
[v]>1

)ds

m\g

+oo—/ x—ws—ds +°°/ vz —w(s+ z),
= —/ x—/ O, x—wz—/
w|>1

Jp(x —w(z+2Z)) — p(z — svz)]%dvdzd?.

v(z —w(z+ %), ]

o |

Thus,
||IIEHL2(R”) < CHpHLZ(R")-

Next, for |v] < 1, we write

I5 = —sf"‘/ v(x, )T (0, vT H(ev - Vap))F(v) do
lv]<1

+oo —/ (x — evs,v)ds +o0 —/ (x —ev(s+z),v)ds
:—*"‘/ xv/ O, x—svzv/
lvl<1

ev - Vgp(z —ev(z + 2))F(v)dvdzdz

which can be written
+o0 —/ v(z —evs,v)ds
5 = —70‘/ xv/ Op,v(x — evz,v)
|v\<1
+o0 —/ v(z —ev(s+z),v)ds _
/ [e Jo _ () lev - Vaep(z —ev(z + %)) F(v)dvdzdz

+o00 —/ (x — evs,v)ds +o0
f*a/ xv/ Oy, (xfsvzv)/ e~ 2V (2, 0)
|\<1

ev - Vgp(z —ev(z + 2))F(v)dvdzdz.

Since _
— | v(z—ev(s+2),v)ds _ ~
g /o — e ] < efu)(z 4 7)%e 0,
we get
512 @y < 151l 2@y + €271 Vpll L2@ny
where

+00 —/ v(z —evs,v)ds +00
I5 = —g_a/ v(z,v / 0 Op,v(x—cv2 v)/ e 2V (@) oy, Vep(z—ev(z+2))F(v)dvdzdz.
lv|<1 0

15



On the other hand

2 —
‘[21 - /
\U|<1

o[ h
/ /+oo—/ Jé—evs v)ds ) — 0. 0@ 0)] /+oo—zu(x V) ey o 3
— ‘U|<1 v(x —evz,v v (T, v ; e v Vep(x —ev(z 4+ 2))F(v)dvdzdz
o[

/U|<1

and then, since

(x — E’US v)ds +oo
O, v(x — €vz, v)/ e (2,0) ¢y Vep(z —ev(z + Z))F(v)dvdzdz
0

(x — evs,v)ds p+oo  _
BLV x,v) / eV (@0) oy Vap(x —ev(z+ 2))F (v)dvdzdz
0

[0, v(x — €vz,v) — O, v(2,v)] < elvl||v]|w2e,
we have
151|122 @y < o2l L2@n) + €27 VollL2@n)

where
+<><>—/ x—evsvds oo _
I5, = 5_"‘/ / Og,v(x v)/ e~ 2@, 0) oy Vap(x —ev(z + %)) F(v)dvdzdz.
u|<1 0

In a same way
1152 L2 (mmy < (1135122 + €272 Vpl| L2 (an)

+oo —+oo _
I5q = — @ / v(z,v) / e~ 2v(@,v) O, v(z,v) / e~V (2,0) oy . Vaep(x —ev(z + Z))F(v)dvdzdz
lv]<1 0 0

An integration by part in z gives

“+oo
—ZV

+o0 _
15, = —¢ / / e—2v(T,0) Oz, v(x,0) / e 2V(E,0) 22, D?*p(x — ev(z + 2))vF (v)dvdzdz
lv|<1 0

+oo _
— / D, v(a,0) / e P B) ey Y, pla — £0(2)) F(v) dvdzdz.
lv]<1 0

Another integration by parts gives
+oo —_
e« / O, v(z,v) / e V(@) oy Vep(x — ev(z))F(v)dvdzdz
|lv]<1 0

+o0 _
= —5_0‘/ Ou,v(,0) / em2v(w,v) 2, D?p(z — ev(2))vF (v)dvdzdz
Jv|<1 v(z,v) Jo

— @ / Mav - Vgp(z)F(v)dv
|lv]<1

v(z,v)

in which the last term vanishes (by symmetries).
Finally, we get
3|2y < Cllpll 2@y

v
and the same computations for € < |w| < 1 where w is the change of variable w = — reads
€

113l 2@®ny < Cllpll 2 @n)
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where
IS = —¢ / v(x,0) T (00, v T (ev - Vip))F(v) do.
<|v|<z

We obtain finally,

[0z, L= (p)||L2(®n) < C(IILE(p)||22(mn) + C( Z 102 pl| L2y + Z 10" pl| L2 (rn))-
k=2 k=3

Proceeding similarly, we can show (43) for all k > 2. O
Proposition 3.2. For all p;, € H*(R™) (for some k > 0), the equation

Oip + LF =0 mR.xR"
{ p+L5(p) =0 in Ry )

p(0,2) = pin in R”
has a unique solution solution pf € L°°(0,00; H*(R™)) for all € > 0. Furthermore, if k > 2, then
10%[| oo (j0,00), HE(RPY) < € and
[ILE (0| Lo ([0,00), E15—2 (7)) = 1060 || Loo ([0,00), HE-2(RnY) < C

with C' independent of €.

Proof. First, we have to prove that p® exists for € > 0. For a fixed £ > 0, the operator L® (defined by
(42)) is clearly a bounded operator on L?(R"). Furthermore, we have:

/ L (p)pdz = 5“/ / pvT v Vip)F dvdx

—

+€O‘/ / p T (ev - Vup)F dvdx
R'"/ Rn

= 6_0‘/ / ev-Vep T Hev  Vip)F dvdr

/ pev -V 7;_1(5@~pr))dedx
n JRn

=

1
— go‘/ ’Z;(gl)glfdvdx
n Rn

where g1 = —7. (v - Vp)F. Hence

1
/ Lf(p) pdx = 5_0‘/ / |gl|2ydvda:+s_°‘/ / (ev-Vg1) g1—= dvdx
n n n F R n F
v
= ga/n/nyglyZdedx (46)
0

>

In particular, the operator L¢ is monotone and Lax Milgram’s theorem implies that for any f € L?(R"),
the equation

p+L(p) = f (47)

has a solution in L?(R"™). We deduce that L? is maximal monotone, and thus Hille-Yosida’s theorem
implies that there exists a unique p¢ in CO(RT, L?(R")) N CY(R**, L?(R™)) solution of (45).

17



We now prove the uniform estimates on |[p%||ec([0,00), i (rn))- Note that since Oip® = —L°(p°)
satisfy the same equation as p® with initial condition 0;p°(0,-) = —L%(pg) € H¥2(R"), the other
estimates will then follow.

Multiplying equation Equation (41) by p® and using (46), we now get:

1d
p ny = Orp°p°dx
thH HLQ(R ) Rn t

- —/ L5(¢°) p* da
= /n/n|g1|2 dv dz.

Since p§ is bounded in L?(R"), this implies in particular

16%[1 Lo (0,00;L2(RPY) < C

and
|95 |L2(O,oo;L%71 ®rxrr)) < Ce2. (48)

Next, we show how one gets a similar estimate on V p®: We write

1d

2 dt”vxp HLQ(R” = WV zp® - Vypda = _/ Vap® - Vo L (p°)dx
Rn R

= —6_0‘/ Vap® -V (1/’]'8_1(51) . pre)) Fdvdx
n Rn
= —Eo‘/ Vaup® - Vo (TT7 (ev - Vipf)) Fdvda
n Rn
—1—6_0‘/ Vap® -V (ev - Vo (T Hev - Vipf))) F dvda
n ]Rn

= —8_0‘/ Va(ev - Vup®) - Vo (T (ev - Vipf)) F dv da.
n RTL

Which gives (since g5 = 7. (ev - Vp°)F):

1d

W 1
2dt\|pr HLQ gy = € /n - VI((V—Fav‘Vm)gi)-ngiF dv dx

1
= —5_a/ Vi(vg]) - Vaegi—= dvdz
n JRn F

1
= —5_0‘/ / (V\Vmgﬂz—i—VmI/-Vmgigf)dedac

1
—02050‘/" /n|ngﬂ2ded:c—|—Caa/n /ngl dedas

where we used (7) and (8). Using (48), we deduce:

IN

| |vxp6 | |%°°(0,00;L2(R")) =C,
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and
‘|Va;gﬂ|L2(0700;L%71(R”XR")) < Cez.

Proceeding similarly, we can show that for any multi-indice k = (k1, k2, ..., k), we have:

—a i —i 1
nOR 1<[i|< k|
< e //| G fdvde O Y //ya’“ L s
! 1< il<Ik|

By induction on |k|, we deduce that

105077 o0 0,00:22(m)) < C
and
‘|8I;gﬂ|L2(0,OO;L%71(R"XR7L)) < Cez.

O]

Remarks 3.3. Note that as usual with the heat equation, it does not seem possible to derive estimates
in LY(R™) (and such estimate do not follow from L? estimates in unbounded domain). This is the
reason why in our main result, Theorem 1.1, we obtain convergence in L%,_l rather than L'.

3.3 Some estimates for the collision operator

In this section, we establish a couple of auxiliary results concerning the operator @) that will be needed
in the next section. First, we prove the following consequence of Proposition 2.2:

Corollary 3.4. Let h(v) be such that [z, h(v)dv =0 and h/F € L™(R"), and let g = Q' (h). Then
g/F € L>®(R™) and there exists a constant K such that

19/ Fll Lo mry < KA/ F|| Lo (mn)-

Proof. We have
1Allz2 _, reny < 1R/ F | oo (mny,

and so Proposition 2.2 implies that g = Q~1(h) exists and satisfies
l9llzz _, ny < CllAllz2 _ @ny < ClA/F Lo ).

Next, we can write

g= % {/ o(z,v,v")g(v") dv' F(v) + h(v)
We then deduce that
lg() < Clgllpr @y F(v) + [h(v)])
< Ollgllzz _, @£ @) +[h(v)])
< Clh/F|pee@n)F(v),
which completes the proof. O
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Next, we prove:

Proposition 3.5. There exists C' such that for all function h(z,v) we have

H Q+(72‘1(€; - Vih)F)

L2(R™;Lge (R™))
< Ce|[M]| 2 ®n;nee mr)) + C(€* + EIVah|| 2 (e L0 (RP))
for alle > 0.

Proof. We start by noticing that

Q+(’T—1(5v -Vah)F)(x,v)

£

JFOO z VAN
= / o(z,v,v") / e~ Jo vie—es N dsgy 7 Rz — ez’ 0 ) F(v)dzdo' F(v)
n 0

is very similar to e*L?(h) (which is of order £%), though the lack of symmetry with respect to v
prevents us from using the result directly (and explain why this term is of smaller order).
In particular, it is still natural to split this integral into three parts:

QT (ev- Vah)F)(@,v) = (I} + I5 + I5)F(v)

where
I = / o(2,0,0) T (o0 - Voh) F() d,
[v'|<1
B[ ol )T V) P
1< <1 /e

I5 = / o(z,v,0) T Hev' - Vh) F(v')dv'.
[v'|>1/e
We then note that
+OO z / !
If = / o(z,v,v) / e Jo vla—ev's ) ds oy Veh(x —ev'z,0) F(v') dz dv'
jo'|<1 0

and so oo
i (v)] < 06/ / e 7% ||Vah(z — ev'z, )| Lo dz dv'.
i< Jo

We deduce
11T ]| 22 (n; Lo mry)) < Cel|Vahl| L2 ®n; Lo @n))-

Next, Assumption (9) and the change of variable w’ = ev’ yields:

+OO z / / 1
I5 = / / o(z,v,0")e Jo Ve ds o/ L7 p(z — 20/ 2,0 ) ——— dz dv’
1<v’|<1/e JO v

’ l‘n—l—a
/ +o0 / / 1
= ¢ o(x,v, ﬂ) e~ Jo vie—w's, Fyds Veh(z —w'z, E)i dz dw',
e<|w'|<1 e Jo e’ w'nte
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and so

+oo B ‘w/‘
E@) = O /<| /<1/0 NIl — ', e o
w

Using the fact that f8<‘w,‘<1 m‘f{’% dw' < O(1+ &'7%), we deduce

i

1/2
o |w
15l L2 @nspgemmyy < Ce (/ ,|n+avah”%a(w;Lso(R"))dw'

e<|w’|<1 lw

| 1/2
X / e duw’
e<|w'|<1 |w'|

< Cle +e)|IVah|r2®nLee ®n))-

Finally, to estimate I§, we use the formula

+oo 5
T Y ev - Vih) = —/ e~ Jo v(a—evsw) By(x — evz,v) [h(z — evz,v) — h(z)] dz.
0

Assumption (9) and the change of variable w = v then yields:

/ /

—+00 ;W / 1
=—¢ / /|>1/ e~ Jo via—w ) dsy (g, w?) v(iz—w'z,v) [h(z—w'z, w?)—h(x, ?)]Wdz dw’

and so
1151 L2 (rrs oo mry) < Ce||R]| L2 (Rn; 150 (RR)-

3.4 Convergence of f¢ — p°F

We are now ready to prove that f¢ — p°F converges to zero. More precisely, we are going to show the
following proposition:

Proposition 3.6. Let f¢ be a solution of (32) with f¢(0,2,v) = pin(x)F(v) and p® be the solution of
(45). Then

15 = " E ()l oo (0,0022 _, (Rrxm)) < C (% 4+ 7)|pl| Lo (0,001 (7)) -
Proof. The expansion (33) gives
1 = T F @)ootz oy < Moillerz, + lg5lliers , +l5lorz, + 1 llpera_ (49)

Furthermore, the remainder r¢ can be estimated by multiplying the equation (37) by r¢/F and inte-
grating with respect to x and v. Proposition 2.2 (iii) then yields

175l Loz < 09ill 00022, @ony) + 1105l |L1(0,00:22 _, (2m))
H10eg5l 10,0052, (m2my) + e 1QT (45) L1 (0,022 _, (R2n)) (50)
‘1"\95(07')”%71(1&2")+ng( )HL2 C(r2n) T 1195(0, )HL2 | (R2n)-
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We now see that Proposition 3.6 will be proved if we can show that all the norms arising in the right
hand side of (49) and (50) go to zero.

All the necessary estimates are collected in a sequence of Lemmas below, which altogether complete
the proof of Proposition 3.6. O

Lemma 3.7. There exists a constant C' such that
1911l Lo 000122 (m2n)) < C€2 |07 Lo (0,001 (7))

and
1069l Low (0,00522 _, (r2m)) < C2 [[7[[ L0 (0,00313 ) -

Lemma 3.8. There exists a constant C' such that

IN

192/ F'[] Loo (0,00;12 (R7 Lo (R)))

< CE* + )P Lo (0,002 (R7Y)

95| |L°°(O,oo;Li,71 (R21))

A

and
"8tg§"Lw(0,w;L%71(R2")) < C(e” +e)llp°|] Loo (0,00; 4 (R7Y) -

Lemma 3.9. There exists a constant C' such that
1951100 (0,052 _, (r2m)) < C(e™ +)[[07]| Lo (0,001 2 ()

106951 Lov (0,00522 _, (2my) = C(e™ + )17 Lo 0,003 1))
and
"Q—i_(gg)"LOO(O,oo;LiPl(RZ")) < Ce[e2 + 2|6 | oo (0,002 (R7))-
The proof of this last lemma will require the following estimate:

Lemma 3.10. There exists a constant C such that

H V295

F < O™+ €)HPEHL°°(O,00;H2(]R")) + Cga/2‘|IOEHL°°(0,oo;H1(R"))-

L>0(0,00;L7 (R™; e (R™))

The rest of this section is devoted to the proof of these lemmas.
Proof of Lemma 3.7. We recall that (48) yields
191llL2(0,00:22 _, (r2m))) < CE2.

However, we have to work a bit more to get an estimate uniformly in time.
We recall that
Gilta,0) = T \(ev-Vopf)F

€

—+00 .
= —5/ ¢ Jo Wla—esvv)ds, Vap®(x —ezv)F(v)dz. (51)
0
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Therefore

€ 2
+oo . » )
< CEa/ / (/ e fo (V(ac—sw,;)dsw . pre(l, . Zw)dz) P (E) df_ilj
" J|w|>e 0 e/ ¢

+oo . 2
+ &2 / / </ ¢ Jo Wla—esvv)ds, Vaip(z — ezv)dz) F(v)dvdx.
mJv|<1 0

Splitting the first integral and integrating by parts, we get:

e(t 2
/n /n 791( ,Fx,v) dvdz
2

o e _ Wy — [2w(z—sw,2)ds] (.. _ € 1
<e v(z — zw, —)e Jo =/ Ypf(x — zw) — p°(x)]dz dw dx
n Jw|>1 \Jo €

|w|n+a

oo z w 2 1
+ & / / </ e~ Jo W(a—sw,2)ds,, . Vap®(x — zw)dz> e dwd
n J1>|w|>e 0 |’LU|

+o00 2
+ 620/ / </ e 7| Vp® (z — Ezv)|dz> dvdx
» Jwj<1 \Jo

and so

HQTHL;_I(R%) < 0(5%|\P5|\L2(Rn) + (2 + EIVapllL2@ny)

which gives the first inequality in Lemma 3.7.

Differentiating (51) with respect to ¢ (note that only p° depends on t) and proceeding similarly,
we deduce:

1091l 2p—1m2ny < C(e2|00p% || L2(ny + (€2 + €)1|0¢Vap®| |2 (mn))
Ce2||p%||p2qrny + (22 + )|Vl 2(rny)-

IA

Proof of Lemma 3.8. We recall that (35) gives
9% = Q7 (—QT(9]) —"0p°F)
Q7 (= QYT (ev - Vaup®) F) + L7 (p°)F)
and so Corollary 3.4 yields
195/ Fllpge@ny < Cll = Q7T Hew - Vap*)F)/F + €L (p%) || 1o n)

and so

195/ Fll 2 (mnsnge () CllQT(T (ev - Vup®) F)/F | 2 rn e (rny) + €*I1L°(p°) | 12 em)
7.

<
< CllQT (T ev - Vap®)F)/F||r2re.poe &) + € 110° 2 mny
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Furthermore, Proposition 3.5 implies
|\Q+( (5U Vup®)F )/F|’L§(Rn;Lgo(Rn)) <C(e+ EQ)HPEHHI(RH)
which yields the first estimate.
Next, we write
dgs = Q' (—QT(THev - Vudip®)F) + e*L¥(0up°)F)
and so the same argument as above yields
|’atQSHLoo(o,oo;L?F_l(R?n)) < C(e” +8)[|0tp° || Loo (0,00; 2 (®7Y) -
Since Oyp® = —L%(p®), we have
[19:0% | o= (0,003 r2(m)) = 112 oo 0,005 ()
and the second estimate follows. O

Proof of Lemma 3.9. We note that
17"l eany < ClIPlI g2, rany
for any h in L%_l(Rzn). Thus, noticing that g5, satisfies
(v4ev-Vy)gs=cv-Vgegs or (v+ev-Vg)(g5—95) =rg;

we get:
||93HL2 L(R2n) = CH92HL2 (®2n) < O + )%l m2@ny

and a similar argument gives the bound on 0;g5.

It remains to estimate Q*(g5). Proposition 3.5 implies

+ g g g
L3 (B Lie (B7) Fll 2z mse ) L2 (R™ L (R™)
and Lemma 3.8 yields
92/ F || L2 ;150 mr)) < C(€% + €)|[0°]| mr2(mr)-
Furthermore, Lemma 3.10 completes the proof of Lemma 3.9, since it implies
+( A€
HQ(‘%) < Cle¥(e¥ 4 €) + (e* +)* + ea/2(€a + ol 2y
LZ(R™; L (R™))
O

Proof of Lemma 3.10. First, taking the derivative in the equation satisfied by g5, we obtain:

Q(Vag3) = Qu(93) — Q (97) — QT (Vagi) — eV (L (7)) F. (53)

where . denotes the operator defined as Q with V, o instead of 0. We need to derive some bound
on all the terms in the right hand side of (53).
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First, it is easy to check that

Q. (55
= < 65/ Fll 2 arszoe ey
L2(R™; L (R™))

and
Q7 (g5)
F

< Cllgillez_ | men)-
L2(R™;Lge (R™)) r

Furthermore, V,gf satisfies

(v(z,v) +ev-V)Vegi = —Vavg] —ev - Vi (Vyp F)

and so .
Q+(v$gi) = QJF(,]; (_57) -V VepF))

~QN (T (Vargi)).
Proposition 3.5 implies
QT (—ev - VuVap®F))/Fll 2 @ningeny) < O +)llp%|| 2 n)

while we clearly have

1QT (T (Vavg)/ Fll2@nipge@ny) < Cllﬁ_l(VngT)HL;A(R%)
< OVgillie_ o
()
< C||91||L;_1(R2n)
< CEQ/QHPEHHl(R”)'

We deduce

Q-i— nga . X
H(Fl) < C(e* + &)l 2y + Ce2110° |11 am)-
LZ(R™; Lo (R™))
Finally,
eV (L (p°)) = — i V. (QF(g5)) dv
= — | Q" (VagDdv— | QF(g5)dv
Rn Rn
and so
@ Q+ V.65 Q;r €
L e et
L3 (R™; L (R™)) L2 (R™; L3 (R))

IN

O + )15 ey + C=/2 167l s oy
Putting the pieces together, (53) implies (together with Corollary 3.4) that

v 1)
H 295 < O™+ )lp° a2 + Ce|10% || gam)-
Follezre
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3.5 Passage to the limit in the fractional diffusion equation

Proposition 3.6 implies
I1fe - paF(v)"LOO(O,oo;LiPl(R”X]R”)) — 0.

To conclude the proof of Theorem 1.1, it thus only remains to show the following proposition:

Proposition 3.11. The solution p° of (45) converges strongly in L>(0,T; L2(R™)) to po(t,x) solution
of (13). More precisely:

10° = poll Lo (0,102 (Rn)) < CT‘glia/QHpo‘|L°°(0,oo;H2(]R"))‘
First, we recall the following simpler result (which is proved in [13]):

Proposition 3.12. The solution p° of (45) converges weak® in L>(0,00; HF(R™)) to po solution
of (13).

Proof. Let ¢(t,x) be a test function in D([0, c0), R™), the weak formulation of the equation (45) gives
oo
| [ 7 @ vyt = [ 60.0)pm(0.5)d.
0 n Rn
Furthermore, it is proved in [13] that for any smooth function ¢, L%(¢) converges to L(¢) uniformly
in x and t. Together with the bounds on p® given by Proposition 3.2, this implies Proposition 3.12.

Note also that by lower semicontinuity of the norm with respect to the weak convergence, we get:

[poll oo (0,00: 1% (BrY) < 1P° 1| Lo (0,005 % (R7Y) -

O
Proof of Proposition 3.11. In order to show the strong convergence, we note that
0:(p° = po) + L(p° — po) = L*(po) — L%(po)
and so
d , . , 1/2 , 1/2
p / 0" = pol”d < (/ [L*(po) = L"(po)| dx) (/ 0" = pol dw) :
We deduce
1/2 T 1/2
([ir@-mopar) < [ [1) - poPar)  a
0
< TI[L(po) — LO(P0)||L°<>(0,oo;L2(Rn))
A computation similar to that of the proof of Lemma 3.1 now gives
150 = LpPde < [ 1550) + I5(0) = Lpw) o+ C= ol e g ooy
where
+oo . 1
I5(po) = v(z,w/e) / |:€_ Jo vie—wsw/e)ds _ o—v(zw/e)z) 4, 7 po(z — wz) e dzdw
e<lw|<1 0 |w|nte

’ (zw/e) 2 1
—v(zw/e)z,, . _ .
+ /8<|w|<1/0 e w - DZpo(z —wz) wdz‘w’wra dw
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and

I3(p

But

+0o0 -
0) = —/ / ¢ Jo viz—wsw/e) Gy (z,w/e) vz — wz,v) [po(z — wz) — po()] L dz dw.
lw|>1Jo lw|te

[ 18500 + 5(o0) — L) P

= le” Jo vie—wsw/e)ds _ ef’/(w,w/s)z] 2
< / / /l |U(£U,’IU/€) ‘w’n+a wvxpO(x_U)Z)dZdw dx
n 0 Jjwl<e

2
ee 1
+ / / / e V@2 . D2pg(x — wz) - w dzi—-rdw | dz.
n 0 |lw|<e |w‘

and so

/Rn 15 (po) + 15(po) — L(po)[’dz < C |w[>~ " dw]| pol |7 (0 00112 (m))

|lw|<e

IN

Ce* 1901170 0,012 2

which allows to conclude.
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