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Abstract. We establish the global existence of weak solutions to a class of

kinetic flocking equations. The models under conideration include the kinetic

Cucker-Smale equation [6, 7] with possibly non-symmetric flocking potential,
the Cucker-Smale equation with additional strong local alignment, and a newly

proposed model by Motsch and Tadmor [14]. The main tools employed in the

analysis are the velocity averaging lemma and the Schauder fixed point theorem
along with various integral bounds.
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1. Introduction and main results

Models describing collective self-organization of biological agents are currently
receiving considerable attention. In this paper, we will study a class of such models.
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More precisely, we focus on kinetic type models for the flocking behavior exhibited
by certain species of birds, fish, and insects: Such models are typically of the form

ft + v · ∇xf + divv (fL[f ]) + β divv(f(u− v)) = 0, in Rd × Rd × (0, T ) (1.1)

where f := f(t, x, v) is the scalar unknown, d ≥ 1 is the spatial dimension, and β ≥
0 is a constant. The first two terms describe the free transport of the individuals,
and the last two terms take into account the interactions between individuals, who
try to align with their neighbors. The alignment operator L has the form

L[f ] =
∫

Rd

∫
Rd
Kf (x, y)f(y, w)(w − v) dw dy, (1.2)

where the kernel Kf may depend on f and may not be symmetric in x and y (see
(1.8) below). The last term in (1.1) describes strong local alignment interactions
(see below), where u denotes the average local velocity, defined by

u(t, x) =

∫
Rd fv dv∫
Rd f dv

.

Equation (1.1) includes the classical kinetic Cucker-Smale model, which corre-
sponds to β = 0 and an alignment operator L[f ] given by (1.2) with a smooth
kernel independent of f :

Kf (x, y) = K0(x, y)

withK0 symmetric (K0(x, y) = K0(y, x)). There is a considerable body of literature
concerning the kinetic Cucker-Smale equation and its variations (see [2, 3, 4, 5, 6,
7, 8, 11, 12, 14]), but a general existence theory has thus far remained absent.
Notable exceptions are the studies [1, 5] in which well-posedness for Cucker-Smale-
type models is established in the sense of measures and then extended to weak
solutions ([1] adds noise to the model). The existence of classical solutions to the
kinetic Cucker-Smale equation is established in [12], but the result does not extend
to (1.1). Compared to these results, the main contribution of this paper is the
addition of the local alignment term (β > 0) and the fact that the function Kf is
allowed to be non-symmetric (such models may not preserve the total momentum).
More precisely, our analysis will include a model recently proposed by Motsch &
Tadmor [14], for which Kf depends on f as follows:

Kf (x, y) =
φ(x− y)
φ ?
∫
f dv

(1.3)

with ? denoting the convolution product in space.
In the remaining parts of this introduction, we first introduce the models we

consider in more details and discuss various variations proposed in the literature.
Following this we introduce the notion of weak solutions. We end the introduction
by stating our main existence result and providing a brief sketch of the main ideas
used to prove it.

1.1. The kinetic Flocking models. Our starting point is the pioneering model
introduced by Cucker and Smale [6]: Consider N individuals (birds, fish) each
totally described by a position xi(t) and a velocity vi(t). The Cucker-Smale model
[6, 7] is given by the evolution

ẋi = vi, v̇i = − 1
N

∑
j 6=i

K0(xi, xj)(vj − vi). (1.4)

Roughly speaking, each particle attempts to align it’s velocity with a local average
velocity given by the form and support of K0. In this paper, we focus not on the
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particle model but on the corresponding kinetic description. This description can
be directly derived for the empirical distribution function

f(t, x, v) =
1
N

∑
i

δ(x− xi(t))δ(v − vi(t)).

Specifically, by direct calculation one sees that f evolves according to

ft + v · ∇xf + divv (fL[f ]) = 0, (1.5)

where L is given by

L[f ] =
∫

Rd

∫
Rd
K0(x, y)f(y, w)(w − v) dw dy, (1.6)

The question we will address in this paper is whether or not f is a function when
the initial data f0 is a function. For this purpose, it is desirable that we do not have
loss of mass at infinity. Note that there is no effect countering such loss in (1.5).
Indeed, (1.5) consists of only transport and alignment of the velocity to an average
velocity. Hence, if the average velocity is non-zero, the equation will eventually
transport all mass to infinity. To counter this, we add a confinement potential Φ to
the equation. The only property we require of this potential is that Φ → ∞ when
|x| → ∞.

1.1.1. The Cucker-Smale: The simplest model that we consider in this paper, is
thus the Cucker-Smale model [6, 7] with confinement potential:

Cucker-Smale:

ft + v · ∇xf − divv(f∇xΦ) + divv (fL[f ]) = 0. (1.7)

where L is given by (1.6) with K0 a smooth symmetric function.

1.1.2. The Motsch-Tadmor correction. In the recent paper by Motsch and Tadmor
[14] it is argued that the normalization factor 1

N in (1.4) leads to some undesirable
features. In particular, if a small group of individuals are located far away from a
much larger group of individuals, the internal dynamics in the small group is almost
halted since the number of individuals is large. This is easily understood if we also
assume that K0 has compact support and that the distance between the two groups
are larger than the support of K0. In that case, the dynamics of the two groups
should be independent of each other, but the size of the alignment term in Cucker-
Smale model still depends on the total number of individuals. To remedy this,
Motsch and Tadmor [14] propose a new model, with normalized, non-symmetric
alignment, given by

L̃[f ] =

∫
Rd
∫
Rd
φ(x− y)f(y, w)(w − v) dw dy∫

Rd
∫
Rd
φ(x− y)f(y, w) dw dy

(1.8)

(which is the general operator (1.2), with Kf given by (1.3)).
The resulting model is the following:
Motsch-Tadmor:

ft + v · ∇xf − divv(f∇xΦ) + divv
(
fL̃[f ]

)
= 0, (1.9)

with L̃ given by (1.8).

Note that unlike the Cucker-Smale model [6, 7], the Motsch-Tadmor model [14]
does not preserve the total momentum

∫ ∫
vf dv dx.
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1.1.3. Local alignment. It is also possible to combine the Cucker-Smale model with
the Motsch-Tadmor model letting the Cucker-Smale flocking term dominate the
long-range interaction and the Motsch-Tadmor term dominate short-range interac-
tions. This will correct the aforementioned deficiency of the kinetic Cucker-Smale
model. However, the large-range interactions is still close to that of the Cucker-
Smale model. In particular, we consider the singular limit where the Motsch-
Tadmor flocking kernel φ converges to a Dirac distribution. The Motsch-Tadmor
correction then converges to a local alignment term given by:

L̃[f ] =
j − ρv
ρ

= u− v.

where

ρ(x, t) =
∫

Rd
f(x, v, t) dv, j(x, t) =

∫
Rd
vf(x, v, t) dv

and u(x, t) is defined by the relation

u =

∫
Rd vf dv∫
Rd f dv

. (1.10)

This leads to the following equation:
Cucker-Smale with strong local alignment:

ft + v · ∇xf − divv(f∇xΦ) + divv (fL[f ]) + β divv(f(u− v)) = 0 (1.11)

with L given by (1.6) with K a given symmetric function.
Note that though (1.11) is obtained as singular limit of the non-symmetric

Motsch-Tadmor model, it has more symmetry, and in particular preserves the total
momentum (we will see later that it also has good entropy inequality).

1.1.4. Noise, self-propulsion, and friction. Finally, for the purpose of applications,
there are many other aspects that are not included in the models we have considered
so far. For instance, there might be unknown forces acting on the individuals
such as wind or water currents. Often these type of effects are simply modeled as
noise. If this noise is brownian it will lead to the addition of a Laplace term in the
equations. We note that this term has a regularizing effect on the solutions, but
that this regularizing effect is not required to prove the existence of solutions. In
addition, we could add self-propulsion and friction in the models. This amounts to
adding a term −div((a − b|v|2)vf) in the equation. The most general model for
which we will able to prove global existence of solutions is the following:

Cucker-Smale with strong local alignment, noise, self-propulsion, and
friction:

ft + v · ∇xf − divv(f∇xΦ) + divv (fL[f ]) + β divv(f(u− v))

= σ∆vf − div((a− b|v|2)vf)
(1.12)

with σ ≥ 0, a ≥ 0 and b ≥ 0.

1.2. Main results. We now list our main results. The existence of solutions for
(1.7) when the alignment operator is given by (1.6) with smooth bounded sym-
metric kernel K0 presents no particular difficulties. Our focus, instead, is on the
local alignment models (1.11) and (1.12) (with or without noise, friction and self-
propulsion).

Throughout this paper, the potential Φ(x) is a smooth confinement potential,
satisfying

lim
|x|→∞

Φ(x) = +∞.
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1.2.1. Existence with local alignment and K symmetric. Our first result is:

Theorem 1.1. Assume that f0 ≥ 0 satisfies

f0 ∈ L∞(R2d) ∩ L1(R2d), and (|v|2 + Φ(x))f0 ∈ L1(R2d).

Assume that L is the alignment operator given by (1.6) with K0 symmetric (K0(x, y) =
K0(y, x)) and bounded. Then, for any σ ≥ 0, a ≥ 0 and b ≥ 0 there exists f such
that

f ∈ C(0, T ;L1(R2d)) ∩ L∞((0, T )× R2d), (|v|2 + Φ(x))f ∈ L∞(0,∞;L1(R2d)),

and f is a solution of (1.12) in the following weak sense:∫
R2d+1

−fψt − vf∇xψ + f∇xΦ∇xψ − fL[f ]∇vψ dvdxdt

+
∫

R2d+1
σ∇vf∇vψ − βf(u− v)∇vψ dvdxdt

+
∫

R2d+1
(a− b|v|2)vf∇vψ dvdxdt =

∫
R2d

f0ψ(0, ·) dvdx,

(1.13)

for any ψ ∈ C∞c ([0, T )× R2d), where u is such that j = ρu.

Remark 1.2.
Note that the definition of u is ambiguous if ρ vanishes (vacuum). We thus define
u pointwise by

u(x, t) =


j(x, t)
ρ(x, t)

if ρ(x, t) 6= 0

0 if ρ(x, t) = 0
(1.14)

Since

j ≤
(∫
|v|2f(x, v, t) dv

)1/2

ρ1/2

we have j = 0 whenever ρ = 0 and so (1.14) implies j = ρu.
We note also that u does not belong to any Lp space. However, we have∫

R2d
|uf |2 dx dv ≤ ‖f‖L∞(R2d)

∫
R2d
|v|2f(x, v, t) dv dx

so that the term uf in the weak formulation (1.13) makes sense as a function in
L2.

The proof of Theorem 1.1 is developed in Sections 3 and 4. The main difficulty
is of course the nonlinear term fu (the other nonlinear term fL[f ] is much more
regular, since L[f ] ∈ L∞). Because u does not belong to any Lp space, we cannot do
a fixed point argument directly to prove the existence. Instead, we will introduce
an approximated equation (see (3.1)), in which u is replaced by a more regular
quantity. Existence for this approximated equation will be proved via a classical
Schauder fixed point argument (compactness will follow from velocity averaging
lemma and energy estimates). The main difficulty is then to pass to the limit in
the regularization, which amounts to proving some stability property for (1.12). As
pointed out above, since u cannot be expected to converge in any Lp space, we will
pass to the limit in the whole term fu and then show that the limit has the desired
form. We note that the friction and self-propulsion term introduces no additional
difficulty. We will thus take a = b = 0 throughout the proof. The noise term has a
regularizing effect, which will not be used in the proof. We thus assume that σ ≥ 0.
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1.2.2. Existence with local alignment and the Motsch-Tadmor term. Our second
result concerns the Motsch-Tadmor model (1.9) with L̃ given by (1.8). We can
rewrite (1.9) as

ft + v · ∇xf − divv(f∇xΦ) + divv(f(ũ− v)) = 0 (1.15)

where

ũ(x, t) =

∫
Rd
∫
Rd
φ(x− y)f(y, w, t)w dw dy∫

Rd
∫
Rd
φ(x− y)f(y, w, t) dw dy

=

∫
Rd
φ(x− y)j(y, t) dy∫

Rd
φ(x− y)ρ(y, t) dy

.

Compared with (1.11), the term f(ũ− v) is thus less singular than f(u− v) (which
we recover when φ(x − y) = δ(x − y)), and so the existence of solution for (1.9)
can be proved following similar (or simpler) arguments, provided the necessary
energy estimate hold. And this turns out to be quite delicate. Indeed, the lack of
symmetry of the alignment operator L̃ implies that it does not preserve momentum,
and proving that the energy

∫
(|v|2 + Φ(x))f(x, v, t) dv dx remains bounded for all

time proves delicate for general φ. We will prove an existence result when φ is
compactly supported. More precisely, we have:

Theorem 1.3. Assume that f0 ≥ 0 satisfies

f0 ∈ L∞(R2d) ∩ L1(R2d), and (|v|2 + Φ(x))f0 ∈ L1(R2d).

Assume that L̃ is the alignment operator (1.8) where φ is a smooth nonnegative
function such that there exists r > 0 and R > 0 such that

φ(x) > 0 for |x| ≤ r , φ(x) = 0 for |x| ≥ R. (1.16)

Then there exists a weak solution of (1.15) in the same sense as in Theorem 1.1.

1.2.3. Entropy of flocking with symmetric kernel. To complete our study, restricting
our attention to symmetric flocking, we will show that the model (1.11) is endowed
with a natural dissipative structure. More precisely, we consider the usual entropy

F(f) =
∫

R2d

σ

β
f log f + f

v2

2
+ fΦ dv dx (1.17)

and the associated dissipations

D1(f) =
1
2

∫ T

0

∫
R2d

β

f

∣∣∣∣σβ∇vf − f(u− v)
∣∣∣∣2 dv dx (1.18)

and

D2(f) =
1
2

∫
Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(x, v)f(y, w) |v − w|2 dwdydvdx. (1.19)

(Note that D1(f) is a local dissipation due to the noise and local alignment term
while D2(f) is the dissipation due to the non-local alignment term)

We then have:

Proposition 1.4. Assume that L is the alignment operator given by (1.6) with K0

symmetric (K0(x, y) = K0(y, x)) and bounded, and let β > 0 and σ ≥ 0. If f is a
solution of (1.11) with sufficient integrability, then the following inequality holds:

∂tF(f) +D1(f) +D2(f)

≤ σ

β
d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(x, v)f(y, w) dwdydvdx. (1.20)

Furthermore, if the confinement potential Φ satisfies∫
Rd
e−Φ(x) dx < +∞ (1.21)
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then there exists C depending only on ‖K0‖∞, Φ and
∫
f0(x, v) dx dv such that

∂tF(f) +
1
2
D1(f)

+
1
2

∫
Rd

∫
Rd
K0(x, y)%(x)%(y) |u(x)− u(y)|2 dydx ≤ C

β
F(f(t)).

(1.22)

The first inequality (1.20) shows that the nonlocal alignment term is responsible
for some creation of entropy. The second inequality (1.22) shows that this term can
be controlled by D1(f) and the entropy itself. This last inequality is particularly
useful in the study of singular limits of (1.11) with dominant local alignment (β →
∞). Such limits will be investigated in [13].

Finally, we can now prove the existence of weak solutions satisfying the entropy
inequality:

Theorem 1.5. Assume that L is the alignment operator given by (1.6) with K
symmetric (K0(x, y) = K(y, x)) and bounded, and let β > 0 and σ ≥ 0. Assume
furthermore that f0 satisfies

f0 ∈ L∞(R2d) ∩ L1(R2d), and (|v|2 + Φ(x))f0 ∈ L1(R2d).

then there exist a weak solution of (1.11) (in the sense of Theorem 1.1) satisfying

F(f(t)) +
∫ t

0

D1(f) +D2(f) ds ≤ e
σd
β ‖K‖∞M

2tF(f0) (1.23)

and, if Φ satisfies (1.21),

F(f(t)) +
1
2

∫ t

0

D1(f) ds

+
1
2

∫ t

0

∫
Rd

∫
Rd
K0(x, y)%(x)%(y) |u(x)− u(y)|2 dydxds ≤ e

C
β tF(f0)

for all t > 0.

2. A priori estimates and velocity averages

In this section, we collect some results that we will need for the proof of Theo-
rem 1.1. Since the only interesting case is when β > 0, we will take

β = 1

throughout the proof. First, we derive some priori estimates satisfied by solutions
of (1.11) (when introducing the regularized equation in Section 3, we will make
sure that these estimates still hold). Then, we recall the classical averaging lemma
which will play a crucial role in the proof.

2.1. A priori estimates. Any smooth solution of (1.11) satisfies the following
conservation of mass:∫

R2d
f(x, v, t) dx dv =

∫
R2d

f0(x, v, t) dx dv =: M.

Since f0 ≥ 0, we have f ≥ 0, and so the conservation of mass implies a a priori
bound in L∞(0, T ;L1(R2d)). It is well known that solutions of (1.11) also satisfy a
a priori estimates in L∞(0, T ;Lp(R2d)) (cf. [12]) for all p ∈ [1,∞]. More precisely:

Lemma 2.1. Let f be a smooth solution of (1.11), then

‖f‖L∞(0,T ;Lp(R2d)) + σ‖∇vf
p
2 ‖

2
p

L2((0,T )×Rd×Rd)
≤ eCT/p

′
‖f0‖Lp(R2d) (2.1)

with C = d[1 + ‖K0‖L∞M ] and p′ = p
p−1 , for all p ∈ [1,∞].
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Proof. For p <∞, a simple computation yields

d

dt

∫
fp dx dv = −4(p− 1)

p
σ

∫
|∇(fp/2)|2 dx dv

−(p− 1)
∫
fp divv L[f ] dx dv + (p− 1)d

∫
fp dx dv

Since

divv L[f ] = −d
∫
K0(x, y)f(y, w) dy dw

we also have
|divv L[f ]| ≤ d‖K0‖L∞M.

We deduce:
d

dt

∫
fp dx dv = −4(p− 1)

p
σ

∫
|∇(fp/2)|2 dx dv

+(p− 1)d[1 + ‖K0‖L∞M ]
∫
fp dx dv

which implies (2.1) by a Gronwall argument. �

Next, we will need better integrability of f for large v and x. Let us denote

E(f) =
∫
v2

2
f + Φ(x)f dx dv.

We then have the following important a priori estimate:

Lemma 2.2. Let f be a smooth solution of (1.11), then

d

dt
E(f) +

∫
R2d
|u− v|2f dx dv

+
1
2

∫
R2d

∫
R2d

K0(x, y)f(x, v)f(y, w) |v − w|2 dwdydvdx

= σd

∫
f dx dv = σdM. (2.2)

In particular,
E(f(t)) ≤ σdMt+ E(f0). (2.3)

Remark 2.3. Inequality (2.2) will play a fundamental role in this paper. It implies
that the individuals remain somewhat localized in space and velocity for all time.
We note that it is not quite the standard entropy inequality when σ > 0 (the natural
entropy inequality for (1.11) when σ > 0, which involves a term of the form f log f ,
will be detailed in Section 7. It is not needed for the proof of Theorem 1.1).

Our existence result can be generalized to other models, provided we can still
establish (2.3). For instance, self-propulsion and friction can be taken into account,
via a term of the form −div((a − b|v|2)vf) in the right hand side of (1.11). It is
easy to check that (2.3) then becomes

E(f) ≤
[
E(f0) +

σdM

2a

]
e2at.

Another important generalization is to consider non-symmetric flocking interac-
tions (i.e. when K0(x, y) 6= K0(y, x)). The derivation of a bound on E(f) requires
stronger assumptions on the convolution kernel, and these assumptions are difficult
to check in the case of Motsch-Tadmor model (because of the normalization of the
convolution kernel). This will be discussed in Section 5.
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Proof of Lemma 2.2. Using Equation (1.11), we compute

d

dt
E(f) =

∫
R2d

(
Φ(x) +

|v|2

2

)
∂tf dvdx

=
∫

R2d
fL[f ]v + f(u− v) · v dvdx+ σd

∫
f dx dv

= −1
2

∫
R4d

K0(x, y)f(x, v)f(y, w)|v − w|2 dwdydvdx

−
∫

R2d
f |u− v|2 dvdx+ σd

∫
f dx dv

(2.4)

where we used the symmetry K0(x, y) = K0(y, x) and the fact that
∫
f(u−v) dv =

0. The lemma follows. �

Finally, we recall the following lemma which will be proven to be very useful in
the upcoming analysis:

Lemma 2.4. Assume that f satisfies

‖f‖L∞([0,T ]×R2d) ≤M,

∫
R2d
|v|2f dvdx ≤M.

Then there exists a constant C = C(M) such that

‖ρ‖L∞(0,T ;Lp(Rd)) ≤ C, for every p ∈ [1, d+2
d ),

‖j‖L∞(0,T ;Lp(Rd)) ≤ C, for every p ∈ [1, d+2
d+1 ),

(2.5)

where ρ =
∫
f dv and j =

∫
vf dv.

Proof. Let p ∈ (1,∞) and let q be such that 1/p+ 1/q = 1. Then we have:

ρ(x, t) =
∫

(1 + |v|)2/pf1/p(v)
f1/q

(1 + |v|)2/p
dv

≤
(∫

(1 + |v|)2f(v) dv
)1/p(∫

f(v)
(1 + |v|)2q/p

dv

)1/q

.

In particular, if 2q/p > d, we deduce

ρ(x, t) ≤ C‖f(t)‖1/qL∞

(∫
(1 + |v|)2f(v) dv

)1/p

and so
‖ρ(t)‖pLp =

∫
ρ(x, t)p dx ≤ C

∫ ∫
(1 + |v|)2f(v) dv dx.

Noting that the condition 2q/p > d is equivalent to p < d+2
d , this implies the first

inequality in (2.5).
A similar argument holds for j:

j(x, t) ≤
∫

(1 + |v|)2/pf1/p(v)
f1/q

(1 + |v|)2/p−1
dv

≤
(∫

(1 + |v|)2f(v) dv
)1/p(∫

f(v)
(1 + |v|)2q/p−q dv

)1/q

.

In particular, if 2q/p− q > d, we deduce

j(x, t) ≤ C‖f(t)‖1/qL∞

(∫
(1 + |v|)2f(v) dv

)1/p

(2.6)

and so
‖j(t)‖pLp =

∫
n(x, t)p dx ≤ C

∫ ∫
(1 + |v|)2f(v) dv dx,
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where the condition 2q/p− q > d is equivalent to

p <
d+ 2
d+ 1

.

�

2.2. Velocity averaging and compactness. In the proof of Theorem 1.1, we
will need some compactness results for the density % =

∫
f dv and the first moment

j =
∫
fv dv of sequences of approximated solutions. Such compactness will be

obtained by using the celebrated velocity averaging lemma for quantities of the
form

%ψ =
∫

R2d
fψ(v) dv,

where ψ is a locally supported function together with the bound (2.3).
We first recall the following result (see Perthame and Souganidis [15]):

Proposition 2.5. Let {fn}n be bounded in Lploc(R2d+1) with 1 < p < ∞, and
{Gn}n be bounded in Lploc(R2d+1). If fn and Gn satisfy

fnt + v · ∇xfn = ∇kvGn, fn|t=0 = f0 ∈ Lp(R2d),

for some multi-index k and ψ ∈ C
|k|
c (R2d), then {%nψ} is relatively compact in

Lploc(Rd+1).

The velocity averaging lemma cannot be directly applied to conclude compact-
ness of % and j since the function ψ is required to be compactly supported. Also,
we would like to get compactness in Lp(Rd+1) instead of Lploc(Rd+1). We will thus
need the following lemma, consequence of the decay of f for large x, v (provided by
Lemma 2.2):

Lemma 2.6. Let {fn}n and {Gn}n be as in Proposition 2.5 and assume that

fn is bounded in L∞(R2d+1),

(|v|2 + Φ)fn is bounded in L∞(0, T ;L1(R2d+1)).
Then, for any ψ(v) such that |ψ(v)| ≤ c|v| and q < d+2

d+1 , the sequence{∫
Rd
fnψ(v) dv

}
n

, (2.7)

is relatively compact in Lq((0, T )× Rd).

Proof. 1. We first prove compactness of the sequence
{∫

Rd f
nψ(v) dv

}
n

in Lqloc.
Since ψ is not compactly supported, we consider ϕk(v), a sequence of smooth
functions satisfying

ϕk(v) = 1 for |v| ≤ k and ϕk(v) = 0 for |v| ≥ k + 1.

Proposition 2.5 then implies that for all k ∈ N, the sequence mk,n
ψ =

∫
ϕkf

nψ(v) dv
converges strongly in Lqloc((0, T ) × Rd) (up to a subsequence) to some mk

ψ. Now,
for k1 > k2 and any 0 < α < 1, we have that

|mk1,n
ψ −mk2,n

ψ | ≤ C
∫
|v|≥k2+1

fn|ψ(v)| dv ≤ C

(k2)α

∫
Rd
fn|v|1+α dv

≤ C

kα2
(%n)

(1−α)
2

(∫
Rd
fn|v|2 dv

) (1+α)
2

.

By integrating this inequality over space and applying of the Hölder inequality,

‖mk1,n
ψ −mk2,n

ψ ‖q
Lq(R2d)

≤ C

(k2)qα

(∫
Rd

(%n)
q(1−α)

2−q(1+α) dx

) 2−q(1+α)
2

(∫
R2d

fn|v|2 dvdx
) q(1+α)

2

.



EXISTENCE OF SOLUTIONS TO KINETIC FLOCKING MODELS 11

Lemma 2.4 implies that %n is bounded in L∞(0, T ;Lp(Rd)) for p ∈ [1, d+2
d ), and so

the right hand side above is bounded if q is such that

q(1− α)
2− q(1 + α)

<
d+ 2
d

⇔ q <
d+ 2

d+ 1 + α
.

For any q ∈ (1, d+2
d+1 ), we can thus choose α small enough so that

‖mk1,n
ψ −mk2,n

ψ ‖q
Lq(R2d)

≤ C 1
kqα2

.

Passing to the limit n → ∞, we conclude that the sequence {mk
ψ} is Cauchy in

Lqloc((0, T )× Rd) and thus converges to mψ. By a diagonal extraction process, we
deduce the existence of a subsequence along which

mn,n
ψ =

∫
Rd
fnψ(v)ϕn(v) dv −→ mψ

in Lqloc((0, T )× Rd) (for any q < (d+ 2)/(d+ 1)).
Finally, we have

|
∫
fnψ(v) dv −mψ| ≤

∣∣∣∣∫ (1− ϕn)ψ(v)fn dv
∣∣∣∣+ |mn,n

ψ −mψ|

≤

∣∣∣∣∣
∫
|v|≥n+1

|ψ(v)|fn dv

∣∣∣∣∣+ |mn,n
ψ −mψ| (2.8)

≤ 1
nα

∣∣∣∣∫ |v|1+αfn dv

∣∣∣∣+ |mn,n
ψ −mψ|,

which converges to zero in Lqloc((0, T )× Rd) for q < (d+ 2)/(d+ 1) (in particular,
the first term in the right hand side is bounded in Lq for the same reason as above).

2. We have thus established the compactness in Lqloc((0, T ) × Rd). To prove
compactness in Lq((0, T )×Rd), we argue as above, but instead of using the fact that∫

R2d |v|2fn dx dv is bounded, we need to show that
∫
ψ(v)fn dv decay for |x| → ∞.

To prove this, we proceed as in the proof of Lemma 2.4 (see in particular (2.6)), to
show that for l < 2 and p < d+l

d+1 ,∣∣∣∣∫
Rd
ψ(v)fn dv

∣∣∣∣p ≤ ‖fn‖ pqL∞ (∫
Rd

(1 + |v|l)fn dv
)

≤ C

(
%n + (%n)

2−l
2

(∫
Rd
|v|2fn dv

) l
2
)
.

By integrating for |x| ≥ k, we then see that∫
|x|≥k

∣∣∣∣∫
Rd
ψ(v)fn dv

∣∣∣∣p dx

≤ C

Φ(k)

∫
|x|≥k

%nΦ dx+
C

Φ(k)
2−l
2

(∫
|x|≥k

%nΦ dx

) 2−l
2
(∫
|x|≥k

∫
Rd
fn|v|2 dvdx

) l
2

≤ C

(
1

Φ(k)
+

1

Φ(k)
2−l
2

)
.
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In particular, for any q < d+2
d+1 , we can choose l < 2 such that the inequality above

holds with p = q, and so∫
|x|≥k

∣∣∣∣∫
Rd
ψ(v)fn dv

∣∣∣∣q dx −→ 0 as k →∞ uniformly w.r.t. n.

We can now proceed as in the first part of the proof to show that the sequence∫
Rd ψ(v)fn dv converges in Lq((0, T )× Rd).

�

3. Approximate solutions

In this section, we prove the existence of solutions for an approximated equation
(by a fixed point argument). In the next section, we pass to the limit in the
approximation to obtain a solution of (1.11) and prove Theorem 1.1.

As pointed out in the introduction, the main difficulty in (1.11) is the lack of
estimates on the velocity u =

R
vf fvR
f dv

. We thus consider the following equation, in
which the velocity term u has been regularized:{

∂tf + v · ∇xf − divv(f∇xΦ) + divv (fL[f ]) = σ∆vf − divv(f(χλ(uδ)− v))

f(x, v, 0) = f0(x, v),
(3.1)

where
• the function χλ is the truncation function

χλ(u) = u 1|u|≤λ.

• uδ is defined by:

uδ =

∫
Rd vf dv

δ +
∫

Rd f dv
=

ρ

δ + ρ
u. (3.2)

Formally, we see that we recover (1.11) in the limit δ → 0 and λ→∞. The rigorous
arguments for taking these limits are given in the ensuing section. In this section,
we prove the following existence result for fixed δ and λ. More precisely, we prove:

Proposition 3.1. Let f0 ≥ 0 satisfy the condition of Theorem 1.1. Then, for any
δ > 0, λ > 0 there exists a solution f ∈ C(0, T ;L1(R2d)) of (3.1) satisfying

‖f‖L∞(0,T ;Lp(R2d)) + σ‖∇vf
p
2 ‖

2
p

L2((0,T )×Rd×Rd)
≤ eCT/p

′
‖f0‖Lp(R2d) (3.3)

for all p ∈ [1,∞], and

sup
t∈[0,T )

E(f) ≤ E(f0) + σdMT. (3.4)

The proof of Proposition 3.1 relies on a fixed point argument: Fix

p0 ∈
(

1,
d+ 2
d+ 1

)
and for a given ū ∈ Lp0(0, T ;Lp0(Rd)) let f be the solution of{

∂tf + v · ∇xf − divv(f∇xΦ) + divv (fL[f ]) = σ∆vf − divv(f(χλ(ū)− v))

f(x, v, 0) = f0(x, v).
(3.5)

We then consider the mapping

ū 7→ T (ū) := uδ =

∫
Rd vf dv

δ +
∫

Rd f dv
=

ρu

δ + ρ
. (3.6)
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In the remaining parts of this section, we prove the existence of a fixed point
for the mapping T : Lp0(0, T ;Lp0(Rd)) −→ Lp0(0, T ;Lp0(Rd)) and thereby prove
Proposition 3.1.

3.1. The operator T is well-defined. First, we need to check that the operator
T is well-defined, and to derive some bounds on f . We start with the following
result:

Lemma 3.2. For all ū ∈ Lp(0, T ;Lp(Rd)), there exists a unique f ∈ C(0, T ;L1(Rd))
solution of (3.5). Furthermore, f is non-negative and satisfies

‖f‖L∞(0,T ;Lp(R2d)) + σ‖∇vf
p
2 ‖

2
p

L2((0,T )×Rd×Rd)
≤ eCT/p

′
‖f0‖Lp(R2d), (3.7)

with C = d[1 + ‖K0‖L∞M ] and p′ = p
p−1 , for all p ∈ [1,∞] and

sup
t∈[0,T ]

E(f(t)) +
1
2

∫ T

0

∫
R2d
fv2 dx dv dt ≤ 1

2

∫ T

0

∫
R2d

f |χλ(ū)|2 dvdxdt+ σdMT

≤ λ2MT

2
+ σdMT.

(3.8)

Proof. Since χλ(ū) ∈ L∞((0, T )×Rd), the existence of a solution to (3.5) is classical
(we prove it in Section 6 for the sake of completeness, see Theorem 6.3). Moreover,
since χλ(ū) is independent of v, we have that∫

Rd
fχλ(ū)∇vfp−1 dv = −1

p

∫
Rd
fp divv χλ(ū) dv = 0.

Hence, we can perform the same computations as in Lemma 2.1 to obtain (3.7).
Next, using the equation (3.5), we write

d

dt
E(f) =

d

dt

∫
R2d

(
Φ +

|v|2

2

)
f dvdx

=
∫

R2d
fL[f ]v + fχλ(ū)− f |v|2 dvdx+ σd

∫
f dv dx

= −1
2

∫
R4d

K0(x, y)f(x, v)f(y, w)|v − w|2 dwdydvdx−
∫

R2d
f |v|2 dvdx

+
∫

R2d
fχλ(ū)v dvdx+ σdM.

Finally, writing∣∣∣∣∫
R2d

fχλ(ū)v dvdx
∣∣∣∣ ≤ 1

2

∫
R2d

f |χλ(ū)|2 dvdx+
1
2

∫
R2d

f |v|2 dvdx,

we deduce (3.8). �

The following lemma establishes the continuity of the operator T.

Lemma 3.3. The operator T is continuous and there exists C(δ, λ) such that for
all ū ∈ Lp0(0, T ;Lp0(Rd)),

‖T (ū)‖Lp0 (0,T ;Lp0 (Rd)) ≤ C(δ, λ)

Proof. We have |T (ū)| ≤ 1
δ |j|, and we recall that p0 <

d+2
d+1 . So lemma 2.4 together

with (3.8) implies that there exists a constant C such that

‖j‖L∞(0,T ;Lp0 (Rd)) ≤ C,

where C only depends on ‖f0‖L∞ and
∫
|v|2f0 dx dv. �
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3.2. The operator T is compact. Compactness of the operator T follows from
the following lemma:

Lemma 3.4. Let {ūn}n∈N be a bounded sequence in Lp0(0, T ;Lp0(Rd)). Then up
to a subsequence, T (ūn) converges strongly in Lp0(0, T ;Lp0(Rd)).

Proof. By definition of T , we have that

T (ūn) =
jn

δ + %n
.

So in order to prove that the sequence T (ūn) is relatively compact in Lp0(0, T ;Lp0(Rd)),
we have to show that %n converges a.e and that jn is relatively compact in Lp0(0, T ;Lp0(Rd)).
This follows from Lemma 2.6. Indeed, let Gn = fn∇xΦ + σ∇vfn − fn(χλ(ūn) −
v)− fnL[fn] then (3.1) can be rewritten as

fnt + v · ∇vfn = divv Gn.

Furthermore, we have the following lemma (whose proof is postponed to the end of
this section):

Lemma 3.5. For any q ≤ 2, there exists a constant C independent of n such that

‖Gn‖L∞(0,T ;Lq(Rd×Rd)) ≤ C for all n ≥ 0. (3.9)

In particular, Sobolev embeddings imply thatGn is relatively compact inW−1,r
loc ((0, T )×

R2d), for r < 2(2d+1)
2d−1 , and hence also in W−1,p0

loc ((0, T )×R2d). In view of (3.3) and
(3.8), we can apply Lemma 2.6 (with ψ(v) = 1 and ψ(v) = v) to conclude the
existence of functions % and j such that (up to a subsequence)

%n =
∫

Rd
fn dv

n→∞−→ % in Lp0((0, T )× Rd) and a.e.,

jn =
∫

Rd
vfn dv

n→∞−→ j in Lp0((0, T )× Rd) .

�

Proof of Lemma 3.5. By repeated applications of the Hölder inequality (we drop
the n dependence for the sake of clarity),

‖G(t)‖Lq(R2d) ≤ ‖∇Φ‖L∞(R2d)‖f‖Lq(R2d) + ‖∇vf‖Lq(R2d) + Cλ‖f‖Lq(R2d)

+ ‖K0‖L∞(R2d)

(
‖f‖L1(R2d)‖vf‖Lq(R2d) + ‖f‖Lq(R2d)‖vf‖L1(R2d)

)
,

where we have that

‖vf‖Lq ≤
(∫
|v|2f dv dx

)q/2
‖f‖q/2

L
q

2−q
for q ∈ [1, 2),

and

‖vf‖L2 ≤ ‖f‖L∞
∫
|v|2f dv dx,

which are both bounded by Lemma 3.2.
It remains to bound the term involving ∇vf . For this purpose, we first observe

that (2.1) with p = 1 provides the bound∫ T

0

∫
Q

1
f
|∇vf |2 dvdxdt ≤ CM. (3.10)
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Using this together with the Hölder inequality and q = 2p
p+1 , we get that∫ T

0

∫
Q

|∇vf |q dvdxdt =
∫ T

0

∫
Q

f
q
2 f−

q
2 |∇vf |q dvdxdt

≤
∫ T

0

‖f‖
q
2

L
q

2−q

(∫
Q

1
f
|∇vf |2 dvdx

) q
2

dt

=
∫ T

0

‖f‖
p
p+1
Lp

(∫
Q

1
f
|∇vf |2 dvdx

) p
p+1

dt ≤ C,

(3.11)

So using (3.7) and (3.8), we conclude the proof. �

3.3. Proof of Proposition 3.1. Lemma 3.3 and 3.4, together with Schauder fixed
point theorem imply the existence of a fixed point u ∈ Lp0((0, T )× Rd) of T . The
corresponding solution of (3.5) solves (3.1). Furthermore, it is readily seen that
(3.7) implies (3.3). Finally, since

|uδ| =
∣∣∫

Rd vf dv
∣∣

δ +
∫

Rd f dv
≤ |u| =

∣∣∫
Rd vf dv

∣∣∫
Rd f dv

, (3.12)

we have ∫
f |χλ(uδ)|2dx dv ≤

∫
ρ|u|2dx ≤

∫
f |v|2 dxdv

and so (3.8) yields (3.4).

4. Existence of solutions (Proof of Theorem 1.1)

For δ, λ > 0, we denote by fδ,λ the solution of (3.1) given by Proposition 3.1.
We also denote

ρδ,λ =
∫

Rd
fδ,λ dv and jδ,λ =

∫
Rd
vfδ,λ dv

and
uδδ,λ =

jδ,λ
δ + ρδ,λ

.

In this section we show how to pass to the limit λ→∞ and δ → 0, thereby proving
Theorem 1.1.

First, We recall that Proposition 3.1 implies the following bounds (which are
uniform with respect to δ and λ):

Corollary 4.1. There exists C independent of δ and λ such that

||fδ,λ||Lp(0,T ;Lp(R2d)) ≤ eCT/p
′
||f0||Lp(R2d), (4.1)

and ∫
Rd

∫
Rd
fδ,λ

(
|v|2

2
+ Φ

)
dvdx ≤ C. (4.2)

In particular, Lemma 2.4 implies

||ρδ,λ||L∞(0,T ;Lp(Rd)) ≤ C for all p < d+2
d .

||jδ,λ||L∞(0,T ;Lp(Rd)) ≤ C for all p < d+2
d+1 .

Finally, in order to use the averaging Lemma 2.6, we rewrite (3.1) as

∂tfδ,λ + v · ∇xfδ,λ = divv Gδ,λ (4.3)

with
Gδ,λ = fδ,λ∇Φ + σ∇vfδ,λ − fδ,λ(χλ(uδδ,λ)− v)− fδ,λL[fδ,λ],

and we will need the following result:
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Lemma 4.2. For any q ≤ 2, there exists a constant C independent of δ and λ such
that

||Gδ,λ||L∞(0,T ;Lq(Rd×Rd)) ≤ C. (4.4)

Proof. This lemma is similar to Lemma 3.5. The only additional difficulty is
to bound the term fδ,λχλ(uδδ,λ) uniformly with respect to λ. But we note that
fδ,λχλ(uδδ,λ) ≤ fδ,λuδ,λ and

||fδ,λuδ,λ||L∞(0,T ;L2(R2d)) ≤ ||fδ,λ||L∞((0,T )×R2d)

∫
fδ,λ|v|2 dx dv

and so (4.1) and (4.2) imply the existence of a constant C > 0, independent of λ
and δ, such that

||fδ,λuδ,λ||L∞(0,T ;L2(R2d)) ≤ C
which concludes the proof. �

4.1. Limit as λ → ∞. We now fix δ > 0 and consider a sequence λn → ∞. We
denote by fn = fδ,λn the corresponding solution of (3.1) and

unδ =
∫
vfn dv

δ +
∫
fn dv

=
jn

δ + ρn
.

We then have:

Lemma 4.3. Up to a subsequence, fn converges weakly in ?−L∞(0, T ;L1(R2d)∩
L∞(R2d)), to some function f , and unδ converges strongly to uδ =

R
fv dv

δ+
R
f dv

in

Lp((0, T )× R2d), p < d+2
d+1 .

Furthermore, f is a weak solution of (3.1) with λ = ∞, and it satisfies the a
priori estimates of Corollary 4.1 and Lemma 4.2.

Proof. By virtue of (4.1), there exists a function f ∈ L∞(0, T ;L1(R2d)∩L∞(R2d))
such that, up to a subsequence, fn ?

⇀ f in L∞(0, T ;L1(R2d) ∩ L∞(R2d)).
Furthermore, using (4.3) and Lemma 4.2, we can reproduce the arguments of

Lemma 3.4 to show that %n and jn converge strongly and almost everywhere to %
and j in Lp((0, T )× R2d) for p < d+2

d+1 . We deduce:

unδ → uδ :=
j

δ + %
in Lp((0, T )× R2d), p <

d+ 2
d+ 1

.

We can now pass to the limit in the equation
fnt + v · ∇xfn − div(fn∇xΦ) + divv (fnL[fn])

= σ∆vf
n − divv(fn(χλ(unδ )− v)).

The only delicate term is the nonlinear term fnχλ(unδ ) (the other terms are either
linear or involve quantities that are more regular than fnχλn(un)). We write

fnχλ(unδ ) = fnunδ + fn(χλ(unδ )− unδ ).

The strong convergence of unδ implies that the first term converges to fuδ in D′.
And using the fact that unδ ≤ 1

δ j
n, Lemma 4.1 implies that un is bounded in

L∞(0, T ;Lp(Rd)) for p < d+2
d+1 , and so∫

|unδ − χλn(unδ )|fn dx dv ≤ C||fn||L∞
∫
unδ>λn

|unδ | dx dv

converges to zero uniformly w.r.t t as λn goes to infinity. We deduce that

fnχλ(unδ )→ fuδ in D′.
which concludes the proof. �
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4.2. Limit as δ → 0 (and end of the proof of Theorem 1.1). For all δ > 0,
we have shown that there exists a weak solution f to the equation

ft + v · ∇xf − div(f∇xΦ) + divv (fL[f ])

= σ∆vf − divv(f(uδ − v)).
(4.5)

where uδ = j
δ+% . We now consider a sequence δn → 0 and denote by fn = fδn

the corresponding weak solution of (4.5). Proceeding as before, (using the bounds
(4.1), Lemma 4.2 and the velocity averaging Lemma 2.6) we can show that there
exists a function f such that up to a subsequence, the following convergences hold:

fn
?
⇀ f in L∞((0, T )× L1(R2d) ∩ L∞(R2d)),

%n → % in Lp((0, T )× R2d)-strong and a.e.,

jn → j in Lp((0, T )× R2d)-storng and a.e.,

(4.6)

for any p < d+2
d+1 .

It remains to show that f is a weak solution of (1.11). More precisely, we have
to pass to the limit in the following weak formulation of (4.5):∫

R2d+1
−fnψt − vfn∇xψ + fn∇xΦ∇xψ − fnL[fn]∇vψ dvdxdt

+
∫

R2d+1
−σ∇vfn∇vψ − fn(unδ − v)∇vψ dvdxdt =

∫
R2d

f0ψ(0, ·) dvdx.
(4.7)

where ψ ∈ C∞c ([0,∞)×R2d). Since fn converges in the weak-star topology of L∞,
the most delicate term is the term involving unδ (unδ is not bounded in any space).
The key lemma is thus the following:

Lemma 4.4. Let ϕ ∈ C∞c (Rd) and denote %ϕ(x, t) =
∫

Rd f(x, v, t)ϕ(v) dv. Then,
(up to another subsequence),

%nϕ → %ϕ in Lp((0, T )× R2d) as n→∞.

Furthermore,
ρnϕu

n
δ → ρϕu in D′((0, T )× Rd) as n→∞,

where u is such that j(x, t) = ρ(x, t)u(x, t) a.e.

Lemma 4.4 implies that for all ϕ ∈ C∞c (Rd) and φ ∈ C∞c ([0, T )×Rd) there exists
a subsequence such that

lim
n→∞

∫ T

0

∫
R2d

fn(x, v, t)unδ (x, t)ϕ(v)φ(x, t) dv dxdt

= lim
n→∞

∫ T

0

∫
Rd
ρnϕ(x, t)unδ (x, t)φ(x, t) dxdt

=
∫ T

0

∫
Rd
ρϕ(x, t)u(x, t)φ(x, t) dxdt =

∫ T

0

∫
R2d

f(t, x)u(t, x)ϕ(v)φ(x, t) dxdt.

We can thus pass to the limit in (4.7) and show that the function f (which does
not depend on the subsequence) satisfies (1.13) for all test function ψ(x, v, t) =
ϕ(v)φ(x, t) in C∞c ([0, T ) × Rd × Rd). We conclude the proof using the density of
the sums and products of functions of the form ϕ(v)φ(x, t) in C∞c ([0, T )×Rd×Rd)
(recall that fu is in L2).

Proof of Lemma 4.4. For a given ϕ ∈ C∞c (Rd), the same reasoning used to show
the convergence of ρn implies that, up to a subsequence,

%nϕ → %ϕ in Lp((0, T )× R2d) as n→∞. (4.8)
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We now introduce the function

mn = ρnϕu
n
δ .

We have the following pointwise bound:

|mn| ≤ ||ϕ||∞
∫
|v|fn dv,

and proceeding as in Lemma 2.4, we deduce:

||mn||L∞(0,T ;Lp(Rd)) ≤ C for all p < (d+ 2)/(d+ 1).

Hence, up to a subsequence,

mn ?
⇀m in L∞(0, T ;Lp(Rd)),

and it only remains to show that

m = %ψu, where u is such that j = %u.

First, we check that such a function u exists: Consider the set

AR = {(x, t) ∈ BR × (0, T ) ; ρ = 0}.
By direct calculation, we see that∫

AR

|jn| dx dt ≤
(∫

AR

ρn|un|2 dx dt
)1/2(∫

AR

ρn dx dt

)1/2

≤ C

(∫
AR

ρn dx dt

)1/2

→ 0,

and hence j = 0 a.e. in AR. Consequently, we can define the function

u(x, t) =


j(x, t)
ρ(x, t)

if ρ(x, t) 6= 0

0 if ρ(x, t) = 0

and we then have j = ρu. It only remains to prove that m = ρϕu.
First, we observe that a similar argument implies that m = 0 whenever ρϕ = 0,

so we only have to check that

m(x, t) = ρϕ(x, t)u(x, t) whenever ρϕ(x, t) 6= 0.

For this purpose, let us consider the set

BεR = {(x, t) ∈ BR × (0, T ) ; ρ > ε}.
Egorov’s theorem together with (4.6) asserts the existence of a set Cη ⊂ BεR with
|BεR \CεR| ≤ η on which ρnϕ and ρn converge uniformly on Cη to ρϕ and ρ. We then
have (for n large enough)

ρn ≥ ε/2 in Cη,

and since
mn =

jn

δn + ρn
ρnϕ,

we can pass to the limit in Cη (pointwise) to deduce

m =
j

ρ
ρϕ = uρϕ in Cη.

Since this holds for all η > 0, we have

m = uρϕ in BεR,

for every R and ε. We conclude that,

m = uρϕ in {ρ > 0}.
�
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5. Non-symmetric flocking and the Motsch-Tadmor model

So far we have limited our attention to the case of symmetric flocking kernel.
In this section, we will extend our existence result to include some non-symmetric
kernel K(x, y) 6= K(y, x). The critical step is to derive the appropriate energy
bound on the solution. As we will see in Proposition 5.1 below, this is rather
straight forward provided the flocking kernel satisfies a condition of the form∫

Rd
K(x, y)%(x) dx ≤ C, ∀% ∈ L1

+(Rd).

In particular, if K is bounded the result follows readily. For this reason we will
focus on the Motsch-Tadmor model for which K depends on f and is singular (see
(1.3)). To the authors knowledge this is the most difficult case currently found in
the mathematical literature.

Let us recall the Motsch-Tadmor model for flocking:

ft + v · ∇xf − divv(f∇xΦ) + divv
(
fL̃[f ]

)
= 0, (5.1)

with normalized, non-symmetric alignment, given by

L̃[f ] =

∫
Rd
∫
Rd
φ(x− y)f(y, w)(w − v) dw dy∫

Rd
∫
Rd
φ(x− y)f(y, w) dw dy

= ũ− v (5.2)

where ũ is defined by the equalities

ρ̃ =
∫

R2d
φ(x− y)f(y, w) dw dy, ρ̃ũ =

∫
R2d

φ(x− y)wf(y, w) dw dy.

This model only differs from (1.11) by the fact that u is replaced by ũ. Because
the function ũ involves the convolution with a smooth kernel φ, we expect this
function to be smoother than u, and the proof of the existence of a solution for (5.1)
is actually simpler, provided that we can derive the necessary a priori estimates.
This is our goal in the remaining parts of this section.

More precisely, we are going to prove:

Proposition 5.1. Assume that φ is a smooth nonnegative function and that there
exists r > 0 and R > 0 such that

φ(x) > 0 for |x| ≤ r , φ(x) = 0 for |x| ≥ R. (5.3)

Let f be a smooth solution of (5.1)-(5.2) and define

E(t) =
∫

R2d

(
|v|2

2
+ Φ(x)

)
f(x, v, t) dx dv.

Then, there exists a constant C ∼ supBR(0) φ

infBr(0) φ

(
R
r

)d
depending only on φ such that

E(t) ≤ E(0)eCt. (5.4)

We note that the constant C in (5.4) is invariant if we replace φ(x) by φ(λx)
(in which case both R and r are scaled by a factor λ) or by λφ(x) (in which case
the sup and inf are both scaled by a factor λ). In particular, if we take a sequence
φε = ε−dφ(x/ε), which converges to δ0 as ε → 0 (so that L̃ converges with the
local alignment term considered in the previous section), the estimate (5.4) holds
uniformly with respect to ε.

Proof of Proposition 5.1. Multiplying (5.1) by |v|
2

2 + Φ(x) and integrating with re-
spect to x and v, we get:

d

dt
E(t) =

∫
R2d

fL̃[f ] · v dx dv
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=
∫

R2d
f(ũ− v) · v dx dv

= −
∫

R2d
f(ũ− v)2 dx dv +

∫
R2d

f(ũ− v) · ũ dx dv

≤ −1
2

∫
R2d

f(ũ− v)2 dx dv +
∫

Rd
ρũ2 dx. (5.5)

It remains to see that
∫

Rd ρũ
2 dx can be controlled by E(t). First, we notice that

ρ̃ũ2 ≤
∫

Rd

∫
Rd
φ(x− y)w2f(y, w, t) dw dy

and so ∫
Rd
ρũ2 dx ≤

∫
Rd

∫
Rd

∫
Rd

ρ(x, t)
ρ̃(x, t)

φ(x− y)w2f(y, w, t) dw dy dx. (5.6)

In order to conclude, we thus need the following lemma.

Lemma 5.2. Under the assumptions of Proposition 5.1, there exists a constant
C ∼ supφ

infBr(0) φ

(
R
r

)d
such that∫

Rd
φ(x− y)

ρ(x)
ρ̃(x)

dx ≤ C ∀y ∈ Rd

for all nonnegative functions ρ ∈ L1(Rd).

Equation (5.6) together Lemma 5.2 now imply∫
Rd
ρũ2 dx ≤ C

∫
R2d

w2f(y, w, t) dw dy ≤ CE(t)

and so (5.5) yields
E ′(t) ≤ CE(t)

which gives the lemma. �

Proof of Lemma 5.2. First, we note that∫
Rd
φ(x− y)

ρ(x)
ρ̃(x)

dx ≤ supφ
∫
BR(y)

ρ(x)
ρ̃(x)

dx.

Next, we cover BR(y) with balls of radius r/2 (with r as in (5.3)): We have

BR(y) ⊂
N⋃
i=1

Br/2(xi)

with N ∼ (R/r)d. We can thus write∫
Rd
φ(x− y)

ρ(x)
ρ̃(x)

dx ≤ supφ
N∑
i=1

∫
Br/2(xi)

ρ(x)
ρ̃(x)

dx

where

ρ̃(x) =
∫

Rd
φ(x− z)ρ(z) dz ≥

∫
Br/2(xi)

φ(x− z)ρ(z) dz.

We deduce∫
Rd
φ(x− y)

ρ(x)
ρ̃(x)

dx ≤ supφ
N∑
i=1

∫
Br/2(xi)

ρ(x)∫
Br/2(xi)

φ(x− z)ρ(z) dz
dx.
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and using the fact that when x, z ∈ Br/2(xi) we have |x− z| ≤ r, we deduce∫
Rd
φ(x− y)

ρ(x)
ρ̃(x)

dx ≤ supφ
infBr(0) φ

N∑
i=1

∫
Br/2(xi)

ρ(x)∫
Br/2(xi)

ρ(z) dz
dx

≤ supφ
infBr(0) φ

N

≤ C
supφ

infBr(0) φ

(
R

r

)d
and the proof is complete. �

6. Other existence result

In Section 3, we constructed a sequence of approximate solutions of our kinetic
flocking equation (1.11). In our discussion therein the existence of these approxi-
mate solutions relied on the existence of solutions to equations of the form

ft + v · ∇xf − divv(f∇xΦ) + divv (L[f ]f) = σ∆vf + divv (Fvf − Ef) ,

where E and F are given functions. The purpose of this section is to prove this
result. The precise statement is given in Theorem 6.3 below.

We commence by recalling the following result due to Degond [10, 9]:

Proposition 6.1. Let a(v) be a bounded function, σ > 0, then for any E ∈
[L∞(0, T ;L∞(Rd))]d and F ∈ L∞(0, T ;L∞(Rd)), there exists a unique weak so-
lution f ∈ C0(0, T ;L1(Rd × Rd)) of

ft + v · ∇xf − divv(f∇xΦ) = σ∆vf + divv (Fa(v)f − Ef) . (6.1)

Furthermore, f satisfies

‖f‖L∞(0,T ;Lp(R2d)) + σ‖∇vf
p
2 ‖

2
p

L2((0,T )×Rd×Rd)
≤ e

d‖F‖L∞T

q ‖f0‖Lp(R2d) (6.2)

with q = p
p−1 , for any p ∈ [1,∞], and∫

R2d
|v|2f(x, v, t) dx dv ≤ C

∫
R2d
|v|2f0(x, v) dx dv (6.3)∫

R2d
(1 + Φ(x))f(x, v, t) dx dv ≤ C

∫
R2d

(1 + Φ(x))f0(x, v) dx dv, (6.4)

with C = C(‖∇xΦ‖L∞ , ‖E‖L∞ , ‖F‖L∞ , T ).

By passing to the limit (weakly) in (6.1), we deduce the following corollary.

Corollary 6.2. For any E ∈ [L∞(0, T ;L∞(Rd))]d and F ∈ L∞(0, T ;L∞(Rd)) and
for any σ ≥ 0, there exists a unique weak solution f ∈ C0(0, T ;L1(Rd × Rd)) of

ft + v · ∇xf − divv(f∇xΦ) = σ∆vf + divv (Fvf − Ef) (6.5)

Furthermore, f satisfies (6.2), (6.3) and (6.4).

The main result of this section is the following:

Theorem 6.3. For any E ∈ [L∞(0, T ;L∞(Rd))]d and F ∈ L∞(0, T ;L∞(Rd)) and
for any σ ≥ 0, there exists a unique weak solution f ∈ C0(0, T ;L1(Rd × Rd)) of

ft + v · ∇xf − divv(f∇xΦ) + divv (L[f ]f) = σ∆vf + divv (Fvf − Ef) . (6.6)

Furthermore, f satisfies (6.2), (6.3) and (6.4).
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Proof. Let us denote by Ẽ and F̃ the functions E and F in (6.6) (which are given).
We will argue the existence of a fixed point in the following sense: For E and F
given, let f solve (6.5) and define the operators

T1(E,F ) = Ẽ +
∫

Rd
K0(x, y)f(y, w)w dwdy,

T2(E,F ) = F̃ +
∫

Rd
K0(x, y)f(y, w) dwdy,

T (E,F ) = [T1(E,F ), T2(E,F )].

(6.7)

Then, any fixed point T (E,F ) = [E,F ] is a solution to (6.6). We will prove the
existence of such a fixed point by verifying the postulates of Schaefer theorem.
However, to facilitate this we will work with the space of continuous functions
C0((0, T )×Rd) instead of L∞((0, T )×Rd). We temporarily assume that Ẽ, F̃ are
in C0((0, T )× Rd). The result follows by passing to the limit.

Let us first verify that the operator T is compact. For this purpose, let {[En, Fn]}n
be a uniformly bounded sequence in [C0([0, T )×Rd)]2 and {fn}n be the correspond-
ing sequence solutions to (6.5). By virtue of (6.3) - (6.4), it is clear that T (En, Fn)
is uniformly (in n) bounded in [L∞((0, T )× Rd)]2. Since K0 is Lipschitz, we have
that∣∣∣∣∫

Rd
K0(x+ ε, y)fn(y, w)w dwdy −

∫
Rd
K0(x, y)fn(y, w)w dwdy

∣∣∣∣ ≤ εC‖K0‖W 1,∞ ,

where C is independent of n. In particular,{∫
Rd
K0(x, y)fn(y, w)w dwdy

}
n

,

is both uniformly bounded and equicontinuous. Clearly, it follows that T1 is com-
pact in C0((0, T )× Rd). A similar argument holds for T2 and hence T is compact
in C0((0, T )× Rd).

Next, let us verify that the operator T is continuous. Observe that this ac-
tually follows from compactness provided that T (En, Fn) → T (E,F ), whenever
[En, Fn]→ [E,F ] in C0((0, T )× Rd). In turn, this is immediate if fn ⇀ f , where
f is a weak solution of (6.5) with E and F being the above described limits. Con-
sequently, we can conclude continuity of T if we can pass to the limit in

fnt + v · ∇xfn − divv(fn∇xΦ) = σ∆vf
n + divv (Fnvfn − Enfn) (6.8)

Note that the bounds (6.2) - (6.4), together with the assumption that Fn and En

are uniformly bounded, provides the existence of a constant C, independent of n,

sup
t∈(0,T )

∫
R2d

(1 + Φ(x) + |v|2)fn(x, v, t) dx dv + ‖fn‖L∞(0,T ;L∞(Rd)) ≤ C,

for any given finite total time T . Since Fn and En converge strongly there is
no problems with passing to the limit in (6.8) to conclude that the limit f solves
(6.5). Hence, T (En, Fn) → T (E,F ) in C0((0, T ) × Rd) and consequently is also
continuous.

To conclude the existence of a fixed point, it remains to verify that

{[E,F ] = λT (E,F ) for some λ ∈ [0, 1]} ,

is bounded. For this purpose we take [E,F ] in this set and f a weak solution of

ft + v · ∇xf − divv(f∇xΦ) + divv (L[f ]f) = σ∆vf + divv
(
λF̃vf − λẼf

)
. (6.9)
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The corresponding energy estimate becomes

E(t) :=
∫

R2d
(
1
2
|v|2 + Φ)f dvdx

+
λ

2

∫ t

0

∫
R4d

K0(x, y)f(x, v)f(y, w)|w − v|2 dwdydvdx

≤ λ‖F̃‖L∞
∫ t

0

E(s) ds+ λ‖Ẽ‖L∞ + E(0).

Since λ ≤ 1, an application of the Gronwall inequality yields

sup
t∈(0,T )

E(t) ≤ C
(
‖F̃‖L∞ , ‖Ẽ‖L∞ , T

)
(E(0) + 1) .

Equipped with this bound, we deduce from (6.7) that

‖E‖L∞ = λ‖T1(E,F )‖L∞

≤ ‖Ẽ‖L∞ + C
(
‖F̃‖L∞ , ‖Ẽ‖L∞

)
‖K0‖L∞M

1
2

(∫
R2d
|v|2f0 dvdx

)
‖F‖L∞ = λ‖T2(E,F )‖L∞ ≤ ‖F̃‖L∞ + ‖K0‖L∞M.

To summarize, the operator T do satisfy the postulates of the Schaefer fixed
point theorem and hence we conclude the existence of a fixed point. This fixed
point is a solution of (6.6) and hence our proof is complete.

�

7. The entropy of flocking

Equations of the form (1.11) are expected to possess a natural dissipative struc-
ture often expressed through the notion of entropy. In our existence analysis, we
have not relied on such inequalities because the energy inequality (2.2) was enough.
This inequality is however of limited use for the analysis of asymptotic behavior
involving singular noise. In this section, we prove that our weak solutions satisfy
bounds akin to classical entropy inequalities when β > 0 and σ > 0 (in the case
σ = 0, the computation below reduces to (2.2)). We will restrict to considering
symmetric flocking as the non-symmetric case does not seem to posses any ”nice”
dissipative structure (in fact, the non-symmetric case does not even conserve mo-
mentum).

We recall that the entropy is given by

F(f) =
∫

R2d

σ

β
f log f + f

v2

2
+ fΦ dv dx

and the associated dissipations by

D1(f) =
1
2

∫ T

0

∫
R2d

β

f

∣∣∣∣σβ∇vf − f(u− v)
∣∣∣∣2 dv dx

and

D2(f) =
1
2

∫
Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(x, v)f(y, w) |v − w|2 dwdydvdx

The first part of Proposition 1.4 follows from the following lemma:

Lemma 7.1. Let f be a sufficiently integrable solution of (1.11), then

∂tF(f) +D1(f) +D2(f)

=
σ

β
d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(x, v)f(y, w) dwdydvdx. (7.1)
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Proof. Using the equation (1.11), we calculate

∂tF(f) =
∫

Rd

∫
Rd
ft

(
σ

β
log f + v + Φ

)
dvdx

=
∫

Rd

∫
Rd

σ

β
L[f ]∇vf −

1
f

(σ∇f − βf(u− v))
σ

β
∇vf dvdx

+
∫

Rd

∫
Rd
fL[f ]v − (σ∇f − βf(u− v)v) dvdx

+
∫

Rd

∫
Rd
−vf∇xΦ + vf∇xΦ dvdx

=
∫

Rd

∫
Rd
−σ
β
f divv L[f ] + vfL[f ] dvdx

−
∫

Rd

∫
Rd

β

f

(
σ

β
∇f − f(u− v)

)
(
σ

β
∇vf + vf) dvdx := I + II.

(7.2)

By definition of L[f ], we deduce

I :=
∫

Rd

∫
Rd
−σ
β
f divv L[f ] + vfL[f ] dvdx

=
∫

Rd

∫
Rd

∫
Rd

∫
Rd

σ

β
K0(x, y)f(x, v)f(y, w) divv v dwdydvdx

+
∫

Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(x, v)f(y, w)(w − v)v dwdydvdx

=
∫

Rd

∫
Rd

∫
Rd

∫
Rd

σd

β
K0(x, y)f(x, v)f(y, w) dwdydvdx

−D2(f),

(7.3)

where we have used the symmetry of K0(x, y)f(x)f(y) to conclude the last equality.
By adding and subtracting u, we rewrite II as follows:

II : = −
∫

Rd

∫
Rd

β

f

(
σ

β
∇vf − f(u− v)

)
(
σ

β
∇vf + vf) dvdx.

= −D1(f) +
∫

Rd

∫
Rd
−uσ∇vf + fu(u− v) dvdx (7.4)

= −D1(f) +
∫

Rd
%u2 − %u2 dx = −D1(f).

We conclude by setting (7.3) and (7.4) in (7.2). �

To prove the second inequality (1.22) in Proposition 1.4, we must prove that the
right-hand side in (7.1) can be controlled by the dissipation and the entropy. We
will need the following classical lemma:

Lemma 7.2. Let % ∈ L1
+(Rd) be a given density and let Φ be a confinement poten-

tial satisfying (1.21). Then, the negative part of % log− % is bounded as follows∫
Rd
% log− % dx ≤

1
2

∫
Rd
%Φ dx+

1
e

∫
Rd
e−

Φ
2 dx. (7.5)

In particular, we have∫
Rd

∫
Rd
f log+ f +

fv2

2
+ fΦ dvdx ≤ CF(f) (7.6)

Inequality (1.22) now follows from the following lemma:
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Lemma 7.3. Let g ∈ Lp(Rd × Rd) be given and let Φ be a confinement potential
satisfying (1.21). There is a constant C > 0, depending only on ‖K0‖∞, Φ and the
total mass M , such that

1
2

∫
Rd

∫
Rd
K0(x, y)%(x)%(y) |u(x)− u(y)|2 dydx− 1

2
D(f)− CF(f(t))

≤ D2(f)− dσ

β

∫
Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(x, v)f(y, w) dwdydvdx.

Proof of Lemma 7.3. By symmetry of K0(x, y), we have

1
2

∫
Rd

∫
Rd
K0(x, y)%(x)%(y) |u(x)− u(y)|2 dydx

=
∫

Rd

∫
Rd
K0(x, y)%(x)%(y) (u(x)− u(y))u(x) dydx

=
∫

Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(x, v)f(y, w) (v − w)u(x) dwdydvdx

=
∫

Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(y, w) (v − w)

×
(
f(x, v)(u(x)− v)− σ

β
∇vf(x, v)

)
dwdydvdx

+
∫

Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(y, w)f(x, v) (v − w) v dwdydvdx

+
σ

β

∫
Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(y, w) (v − w)∇vf(x, v) dwdydvdx

= I + II + III.

(7.7)

Let us first consider the last term. Integration by parts provides the identity

III =
σ

β

∫
Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(y, w) (v − w)∇vf(x, v) dwdydvdx

= −σd
β

∫
Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(y, w)f(x, v) dwdydvdx.

(7.8)

By symmetry of the kernel K0(x, y), we have that

II =
∫

Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(y, w)f(x, v) (v − w) v dwdydvdx

=
∫

Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(y, w)f(x, v)

|v − w|2

2
dwdydvdx.

(7.9)

It remains to bound I. For simplicity, let us introduce the notation

V (x, v) =
1√

f(x, v)

(
f(x, v)(u(x)− v)− σ

β
∇vf(x, v)

)
.
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Using this notation, some straight forward manipulations, and the Hölder inequal-
ity, we obtain using Lemma 7.2,

I =
∫

Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)

√
f(x, v)f(y, w) (v − w)V (x, v) dwdydvdx

=
∫

Rd

∫
Rd

∫
Rd
K0(x, y)

√
f(x, v)%(y)(v − u(y))V (x, v) dydvdx

=
∫

Rd

(∫
Rd
K0(x, y)%(y) dy

)∫
Rd
v
√
f(x, v)V (x, v) dvdx

−
∫

Rd

(∫
Rd
K0(x, y)%(y)u(y) dy

)∫
Rd

√
f(x, v)V (x, v) dvdx

≤ ‖K‖L∞M
(∫

Rd

∫
Rd
|v|2f(x, v) dvdx

) 1
2
(∫

Rd

∫
Rd
|V (x, v)|2 dvdx

) 1
2

+ ‖K‖L∞M
1
2

(∫
Rd
fv dx

)(∫
Rd

∫
Rd
|V (x, v)|2 dvdx

) 1
2

≤ C(K,M)
β

F(f) +
1
2
D1(f).

(7.10)

We conclude the result by setting (7.8) - (7.10) in (7.7). �

Proof. Let f be the solution of (3.1) given by Proposition 3.1. A computation
similar to the proof of Lemma 7.1 yields

∂tF(f) +D1(f) +D2(f)

=
σ

β
d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(x, v)f(y, w) dwdydvdx+

∫
fv [χλ(uδ)− u] dvdx.

where ∫
fv [χλ(uδ)− u] dvdx =

∫
ρu [χλ(uδ)− u] dx

≤ 1
2

∫
ρu2 dx+

1
2

∫
ρχλ(uδ)2 dx−

∫
ρu2dx

≤ 0

since |χλ(u)| ≤ |u|. We deduce that the solution of the approximated equation
(3.1) satisfy the entropy inequality

∂tF(f) +D1(f) +D2(f)

≤ σ

β
d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
K0(x, y)f(x, v)f(y, w) dwdydvdx.

Integrating in time and passing to the limit (using the convexity of the entropy),
we deduce (1.23).

�
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