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Abstract. Let g be a complex, simple Lie algebra with Cartan subal-
gebra h and Weyl group W . We construct a one–parameter family of
flat connections ∇κ on h with values in any finite–dimensional g–module
V and simple poles on the root hyperplanes. The corresponding mon-
odromy representation of the braid group Bg of type g is a deformation
of the action of (a finite extension of) W on V . The residues of ∇κ are
the Casimirs κα of the subalgebras slα2 ⊂ g corresponding to the roots
of g. The irreducibility of a subspace U ⊆ V under the κα implies that,
for generic values of the parameter, the braid group Bg acts irreducibly
on U . Answering a question of Knutson and Procesi, we show that these
Casimirs act irreducibly on the weight spaces of all simple g–modules if
g = sl3 but that this is not the case if g ≇ sl2, sl3. We use this to disprove
a conjecture of Kwon and Lusztig stating the irreducibility of quantum
Weyl group actions of Artin’s braid group Bn on the zero weight spaces
of all simple U~sln–modules for n ≥ 4. Finally, we study the irreducibil-
ity of the action of the Casimirs on the zero weight spaces of self–dual
g–modules and obtain complete classification results for g = sln and g2

and conjecturally complete results for g orthogonal or symplectic.
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1. Introduction

It has been known since the seminal work of Knizhnik and Zamolodchikov
how to construct representations of Artin’s braid groups Bn by using the
representation theory of a given complex, semi–simple Lie algebra g [KZ].
Realising Bn as the fundamental group of the quotient of the configuration
space

Xn = {(z1, . . . , zn) ∈ Cn| zi 6= zj, 1 ≤ i < j ≤ n} (1.1)

by the natural action of the symmetric group Sn, one obtains these repre-
sentations as the monodromy of the Knizhnik–Zamolodchikov connection

∇KZ = d− h
∑

1≤i<j≤n

d(zi − zj)
zi − zj

· Ωij (1.2)

with values in the n–fold tensor product V ⊗n of a finite–dimensional g–
module V . Here, the one–form ∇KZ is regarded as an Sn–equivariant flat
connection on the topologically trivial vector bundle over Xn with fibre V ⊗n

and then pushed down to Xn/Sn. Its coefficients Ωij ∈ End(V ⊗n) are given
by

Ωij =

dimg∑

a=1

πi(Xa)πj(X
a) (1.3)

where {Xa}, {Xa} are dual basis of g with respect to the Killing form and
πk(·) denotes the action on the kth tensor factor of V ⊗n. Finally, the com-
plex number h may be regarded as a deformation parameter which, upon
being set to 0, gives a monodromy representation of Bn factoring through
the natural action of the symmetric group on V ⊗n.

Aside from their intrinsic interest, these representations appear naturally
in a number of different contexts. They define for example the commuta-
tivity and associativity constraints in the tensor category of highest weight
representations of the affine Kac–Moody algebra ĝ [KL, Wa, TL1] and, by
the Kohno–Drinfeld theorem, on the finite–dimensional representations of
the quantum group U~g [Dr3, Dr4, Ko1]. As such, they define invariants of
knots and links and, for suitable rational values of h, of three–manifolds [Tu].

The purpose of the present paper is to use the representation theory of
g in a similar vein to construct monodromy representations of a different
braid group, namely the generalised braid group Bg of type g. The latter
may be defined as the fundamental group of the quotient hreg/W of the set
hreg of regular elements in a Cartan subalgebra h of g by the action of the
corresponding Weyl group W . Like Artin’s braid groups, Bg is presented
on generators T1, . . . , Tn labelled by a choice α1, . . . , αn of simple roots of g

with relations

TiTj · · · = TjTi · · · (1.4)
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for any i 6= j, where the number of factors on each side is equal to the order
of the product sisj of the orthogonal reflections corresponding to αi and αj
in W [Br].

To state our first main result, let R = {α} ⊂ h∗ be the set of roots of g

relative to h so that hreg = h \ ⋃α∈R Ker(α). For each α ∈ R, let slα2 =
〈eα, fα, hα〉 ⊆ g be the corresponding sl2(C)–subalgebra of g and

κα =
〈α,α〉

2
(eαfα + fαeα) (1.5)

the truncated Casimir operator of slα2 where 〈·, ·〉 is a fixed multiple of the
Killing form of g. Let V be a g–module, then we prove in section 2 the
following1

Theorem 1.1. The one–form

∇κ = d− h
∑

α∈R

dα

α
· κα (1.6)

defines, for any h ∈ C, a flat connection on the topologically trivial bundle
over hreg with fibre V which is reducible with respect to the weight space
decomposition of V .

As a consequence, each weight space of V carries a canonical one–parameter
family of monodromy representations of the pure braid group Pg = π1(hreg).
This action extends to one of the full braid group Bg on the direct sum of
weight spaces corresponding to a given Weyl group orbit, and in particular
on the zero weight space of V , by pushing ∇κ down to the quotient space
hreg/W . Since the Weyl group itself does not act on V , this requires choos-
ing an action of Bg on V which permutes the weight spaces compatibly with
the projection Bg → W . This may for example be achieved by taking the
simply–connected complex Lie group G corresponding to g and mapping Bg

to one of the Tits extension W̃ of W , a class of subgroups of the normaliser
in G of the torus T corresponding to h which are extensions of W by the sign
group Zn2 , where n = dim(h) [Ti]. The choice of a specific Tits extension is
somewhat immaterial since any two are conjugate by an element of T and
the corresponding representations of Bg are therefore equivalent.

The rest of the paper is devoted to the study of the irreducibility of our
monodromy representations. Define a subspace U ⊆ V invariant under the
monodromy action of Bg to be generically irreducible if is irreducible for
all values of h lying outside the zero set of some holomorphic function. In
section 3, we prove the following

1Theorem 1.1 was independently discovered by De Concini around 1995 (unpublished).
A variant of the connection ∇κ also appears in the recent paper [FMTV]. Unlike ∇κ

however, the connection introduced in [FMTV] is not W–equivariant and therefore only
defines representations of the pure braid group Pg instead of the full braid group Bg
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Theorem 1.2. A subspace U ⊆ V is generically irreducible under the braid
group Bg (resp. the pure braid group Pg) if, and only if it is irreducibly acted

upon by the Casimirs κα and W̃ (resp. the κα and W̃ ∩ T ).

This naturally prompts the question, originally asked us by C. Procesi and
A. Knutson, of whether the Casimir algebra i.e., the algebra

Cg = 〈κα〉α∈R ∨ h ⊂ Ug (1.7)

generated by the Casimirs κα and h inside the enveloping algebra of g acts
irreducibly on the weight spaces of any simple g–module or, stronger still,
whether it is equal to the algebra Ugh of h–invariants in Ug.

The answer to both questions is clearly positive for g = sl2 and we show in
section 4 that it this almost so for g = sl3. More precisely,

Theorem 1.3. If g = sl3, Cg is a proper subalgebra of Ugh, but the lat-
ter is generated by Cg and the centre Z(Ug) of Ug. In particular, Cg acts
irreducibly on the weight spaces of any simple g–module.

As a consequence, all monodromy representations of P3 on weight spaces of
simple sl3–modules, and of B3 on their zero weight spaces are generically
irreducible, a fact which refines a result proved by Kwon [Kw] in the context
of quantum Weyl groups, and to which we shall return below. For g ≇

sl2, sl3, the situation is radically different and we prove

Theorem 1.4. If g ≇ sl2, sl3, there exists a simple g–module V the zero
weight space of which is reducible under the joint action of Cg and of W . In

particular, Cg and Z(Ug) do not generate Ugh.

For g ≇ sln, our V is in fact the kernel of the commutator map [·, ·] : g∧g→
g. For g ∼= sln, Ker([·, ·]) is reducible and the construction of a suitable V
relies on the following general reducibility criterion, valid for any g. Let
V be a simple g–module with zero weight space V [0] 6= {0}. If V is self–
dual, it is acted on by a linear involution ΘV such that, for any X ∈ g,
ΘVXΘ−1

V = Θ(X) where Θ is the Chevalley involution of g relative to a
given choice of simple root vectors. Since Θ acts as −1 on h and fixes the

Casimirs κα and W̃ , ΘV leaves V [0] invariant and commutes with Cg and

W̃ . V [0] is therefore reducible under Cg and W̃ whenever ΘV does not act
as a scalar on it.

To prove that this is the case for some V we note further that if r ⊂ g is
a reductive subalgebra normalised by Θ and V is such that its restriction
to r contains a zero–weight vector u lying in a simple r–summand U which
isn’t self–dual, then ΘV u cannot be proportional to u since U ∩ΘV U = {0}.
To summarise, our initial problem reduces to finding simple, self–dual g–
modules V whose restriction to some reductive subalgebra r ⊂ g contains
non–self dual summands intersecting V [0] non–trivially. For g = sln, we
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construct such V ’s by using the Gelfand–Zetlin branching rules for the in-
clusion gln−1 ⊂ gln [GZ1].

In section 5, we use our results to disprove a conjecture of Kwon and Lusztig
on quantum Weyl group actions of the braid group Bn [Kw]. To state
it, recall that the Drinfeld–Jimbo quantum group U~g corresponding to g

defines, on any of its integrable representations V, an action of the braid
group Bg called the quantum Weyl group action, which is a deformation of

the action of W̃ on the g–module V = V/~V [Lu, KR, So]. In [Kw], Kwon
considered the case of g = sln and gave a necessary condition for the zero
weight space of V to be irreducible under Bg = Bn. He showed in particular
that the zero weight spaces of all U~sl3–modules are irreducible under B3.
Based on these findings he and Lusztig conjectured that this should hold for
all Bn, n ≥ 4.

Theorem 1.5. The Kwon–Lusztig conjecture is false for any simple, com-
plex Lie algebra g ≇ sl2, sl3.

Our disproof is based on the simple observation that the quantum Chevalley
involution Θ~ of U~g acts on any self–dual U~g–module V and that its re-
striction to the zero weight space V[0] centralises the action of Bg. We then
remark that Θ~ acts as a scalar on V[0] iff the classical Chevalley involution
acts as a scalar on the zero weight space of the g–module V = V/~V and
rely on the results of section 4.

In section 6 we show that, despite the reducibility results of §4, the con-
nection ∇κ yields none–the–less irreducible monodromy representations of
Bg of arbitrarily large dimensions. For g classical, we show in fact that,
with V the adjoint representation if g ∼= sln and the vector one otherwise,
the weight spaces of all Cartan powers of V are irreducible under the the
Casimirs κα.

Finally, in section 7, we show that, when g ≇ sl2, sl3 is classical or g2, the
zero weight space of most self–dual, simple g–modules is reducible under the
Casimir algebra Cg of g, thus strengthening the results of section 4. More
precisely, let V be a simple, self–dual g–module with zero weight space
V [0] 6= {0} and highest weight λ 6= 0. Then, for g isomorphic to sln or g2,
we obtain the following complete classification results

Theorem 1.6. If g = sln, V [0] is irreducible under Csln if, and only if λ is
of one of the following forms

(i) λ = (p, 0, . . . , 0,−p), p ∈ N.
(ii) λ = (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
k

), 0 ≤ k ≤ n/2.

(iii) λ = (p, p,−p,−p), p ∈ N.
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Theorem 1.7. If g = g2, V [0] is irreducible under Cg2 if, and only if V is
fundamental representation or its second Cartan power.

Our calculations rely on the use of the Chevalley involution Θ outlined above
and branching to the subalgebras glk ⊂ sln and sl3 ⊂ g2 respectively. They
show in fact that V [0] is irreducible under Cg if, and only if Θ acts as a scalar
on it. It seems natural to conjecture that this should be so for any g. For
g = so2n+1, so2n, sp2n we proceed in a similar way by branching to the equal
rank subalgebra gln ⊂ g. This leads to the following partial classification
results.

Theorem 1.8. If g = som, with m = 2n, 2n + 1, V [0] is irreducible under
Cg if λ has one of the following forms,

(i) λ = (p, 0, . . . , 0), p ∈ N.
(ii) λ = (2, 2, 0, . . . , 0).
(iii) λ = (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0), 1 ≤ k ≤ n.

(iv) λ = (1, . . . , 1︸ ︷︷ ︸
n−1

,−1).

Conversely, if λ is of none of the above forms and satisfies λi = 0 for
i > n/2, then V [0] is reducible under Cg.

Theorem 1.9. If g = sp2n, V [0] is irreducible under Cg if λ is of one of the
following forms,

(i) λ = (2p, 0, . . . , 0), p ∈ N.
(ii) λ = (2, 2, 0, . . . , 0).
(iii) λ = (1, . . . , 1︸ ︷︷ ︸

2k

, 0, . . . , 0), 1 ≤ k ≤ n/4.

Conversely, if λ is of none of the above forms and satisfies λi = 0 for
i > n/2, then V [0] is reducible under Cg.

We conjecture in fact that the restriction λi = 0 can be removed in the
statements of theorems 1.8–1.9.

It is interesting to note how the reducibility results of section 7 contrast
with the following theorem of Etingof, which is reproduced with his kind
permission in section 8. Let β ∈∑n

i=1 N ·αi be a positive linear combination
of simple roots and, for µ ∈ h∗, let Mµ[µ−β] be the subspace of weight µ−β
of the Verma module of highest weight µ.

Theorem 1.10 (Etingof). There exists a Zariski open set Oβ ⊂ h∗ such
that, for any µ ∈ Oβ , Mµ[µ−β] is irreducible under the Casimir algebra Cg.

The above theorem, used in conjunction with Knop’s calculation of the
centre of the subalgebra Ugh of h–invariants [Kn], yields in fact the following
interesting result, which is also given in §8
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Theorem 1.11 (Etingof). The centraliser of the Casimir algebra Cg in Ug

is generated by h and the centre of Ug.
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Mathématiques de Jussieu in June 2000 and June 2001 and while the second
author was a post–doctoral fellow at MSRI during the academic year 2000–
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2. Flat connections on hreg

2.1. The flat connection ∇κ. Let g be a complex, semi–simple Lie algebra
with Cartan subalgebra h and root system R = {α} ⊂ h∗. Let

hreg = h \
⋃

α∈R

Ker(α) (2.1)

be the set of regular elements in h and V a finite–dimensional g–module. We
shall presently define a flat connection on the trivial vector bundle hreg × V
over hreg. We need for this purpose the following flatness criterion due to
Kohno [Ko2]. Let B be a complex, finite–dimensional vector space and
A = {Hi}i∈I a finite collection of hyperplanes in B determined by the linear
forms φi ∈ B∗, i ∈ I.
Lemma 2.1. Let V be a finite–dimensional vector space and {ri} ⊂ End(V )
a family indexed by I. Then,

∇ = d−
∑

i∈I

dφi
φi
· ri (2.2)

defines a flat connection on (B \ A)× V iff, for any subset J ⊆ I maximal
for the property that

⋂
j∈J Hj is of codimension 2, the following relations

hold for any j ∈ J
[rj,

∑

j′∈J

rj′] = 0 (2.3)

Remark. Since the relations (2.3) are homogeneous, a solution {ri}i∈I of
(2.3) defines in fact a one–parameter family of representations

ρh : π1(B \ A) −→ GL(V ) (2.4)

parametrised by h ∈ C where ρh is the monodromy of the connection (2.2)
with ri replaced by h · ri.
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For any α ∈ R, choose root vectors eα ∈ gα, fα ∈ g−α such that [eα, fα] =
hα = α∨ and let

κα =
〈α,α〉

2
(eαfα + fαeα) ∈ Ug (2.5)

be the truncated Casimir operator of the three–dimensional subalgebra slα2 ⊂
g spanned by eα, hα, fα relative to the restriction to slα2 of a fixed multiple
〈·, ·〉 of the Killing form of g. Note that κα does not depend upon the
particular choice of eα and fα and that κ−α = κα. Let R+ ⊂ R be the set
of positive roots corresponding to a choice of simple roots α1, . . . , αn of g.

Theorem 2.2. The one–form

∇κ = d− h
∑

α∈R+

dα

α
· κα = d− h

2

∑

α∈R

dα

α
· κα (2.6)

defines, for any h ∈ C, a flat connection on hreg ×V which is reducible with
respect to the weight space decomposition of V .

Proof. By lemma 2.1, we must show that for any rank 2 root subsystem
R0 ⊆ R determined by the intersection of R with a 2–dimensional subspace
in h∗, the following holds for any α ∈ R+

0 = R0 ∩R+

[κα,
∑

β∈R+
0

κβ] = 0 (2.7)

This may be proved by an explicit computation by considering in turn the
cases where R0 is of type A1 × A1, A2, B2 or G2 but is more easily settled
by the following elegant observation of A. Knutson [Kn]. Let g0 ⊆ g be the
semi–simple Lie algebra with root system R0, h0 ⊂ h its Cartan subalgebra
and C0 ∈ Z(Ug0) its Casimir operator. Then,

∑
β∈R+

0
κβ − C0 lies in Uh0

so that (2.7) holds since κα commutes with h0. The reducibility of ∇κ with
respect to the h–action on V is an immediate consequence of the fact that
the operators κα are of weight zero �

Remark. Altough V admits a hermitian inner product with respect to which
the Casimirs κα are self–adjoint, it is easy to check that the connection ∇κ
is not unitary with respect to the corresponding constant inner product on
hreg×V . However, the fact that the connection ∇κ for g = sln coincides with
the (genus 0) Knizhnik–Zamolodchikov connection on n points for g′ = slk
via Howe duality [TL2, thm. 3.5], and that the latter is conjectured to be
unitary on the subbundle of conformal blocks for suitable rational values of
h [Ga] 2, suggests that the connection ∇κ ought to be unitary for any g. It
is an interesting open problem to determine whether this is so.

Let W be the Weyl group of g and Pg = π1(hreg), Bg = π1(hreg/W ) the
corresponding generalised pure and full braid groups of type g. The fibration

2this is now a theorem, at least for g = sl2, see [Ra]
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hreg → hreg/W gives rise to the exact sequence

1 −→ Pg −→ Bg −→W −→ 1 (2.8)

By theorem 2.2, the monodromy of ∇κ yields a one–parameter family of
representations of Pg on V preserving its weight space decomposition. We
wish to extend this action to one of Bg, by pushing ∇κ down to a flat
connection on the quotient hreg/W . Since W does not act on V , this requires
choosing an action of Bg on V . Let for this purpose G be the complex,
connected and simply–connected Lie group with Lie algebra g, T its torus
with Lie algebra h and N(T ) ⊂ G the normaliser of T so that W ∼= N(T )/T .
We regard Bg as acting on V by choosing a homomorphism σ : Bg→ N(T )
compatible with

Bg

σ
- N(T )

Z
Z

Z
Z

Z
Z~
W
?

(2.9)

Such σ’s abund and we describe in §2.5 a class of them which we call Tits

extensions [Ti]. Let h̃reg
p−→ hreg be the universal cover of hreg and hreg/W .

Proposition 2.3. The one–form p∗∇κ defines a Bg–equivariant flat con-

nection on h̃reg×V = p∗(hreg×V ). It therefore descends to a flat connection
on the vector bundle

V - h̃reg ×Bg V

hreg/W
?

(2.10)

which is reducible with respect to the weight space decomposition of V .

Proof. The action of Bg on Ω•(h̃reg, V ) = Ω•(h̃reg) ⊗ V is given by γ →
(γ−1)∗ ⊗ σ(γ). Thus, if γ ∈ Bg projects onto w ∈W , we get using p · γ−1 =
w−1 · p,

γ p∗∇κ γ−1 = d− h

2

∑

α∈R

dp∗wα/p∗wα⊗ σ(γ)κασ(γ)−1 (2.11)

Since κα is independent of the choice of the root vectors eα, fα in (2.5),
Ad(σ(γ))κα = κwα and (2.11) is equal to p∗∇κ as claimed. p∗∇κ is flat and
commutes with the fibrewise action of h by theorem 2.2 �

Thus, for any homomorphism σ : Bg→ N(T ) compatible with (2.9), propo-
sition 2.3 yields a one–parameter family of monodromy representations

ρσh : Bg −→ GL(V ) (2.12)

which permutes the weight spaces of V compatibly with the action of W
on h∗. By standard ODE theory, ρσh depends analytically on the complex
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parameter h and, when h = 0, is equal to the action of Bg on V given by σ.
We record for later use the following elementary

Proposition 2.4. Let γ ∈ Bg = π1(hreg/W ) and γ̃ : [0, 1] → hreg be a lift
of γ. Then,

ρσh(γ) = σ(γ)P(γ̃) (2.13)

where P(γ̃) ∈ GL(V ) is the parallel transport along γ̃ for the connection ∇κ
on hreg × V .

Proof. Let ˜̃γ : [0, 1] → h̃reg be a lift of γ and γ̃ so that ˜̃γ(1) = γ−1˜̃γ(0).
Then, since the connection on p∗(hreg × V ) is the pull–back of ∇κ, and that
on (p∗(hreg × V )) /Bg the quotient of p∗∇κ, we find

ρσh(γ) = P(γ) = σ(γ)P(˜̃γ) = σ(γ)P(γ̃) (2.14)

�

Remark. By (2.13), the representation ρσh depends on the choice of the
homomorphism σ : Bg → N(T ) satisfying (2.9). We simply note here that
since any two Tits extensions σ, σ′ are conjugate by an element of T (see
§2.5), the corresponding monodromy representations are equivalent. We
note also that the restriction of ρσh to the zero weight space V [0] of V does
not depend on the choice of σ since W ∼= N(T )/T acts canonically on V [0].

Remark. Note that, by (2.13), the restriction of ρσh to the pure braid group
Pg does not coincide with the monodromy of the connection ∇κ. Rather,
it differs from it by the T–valued character given by the restriction of σ to Pg.

Remark. By Brieskorn’s theorem, Bg is presented on generators S1, . . . , Sn
labelled by the simple simple reflections s1, . . . , sn ∈W with relations

SiSj · · ·︸ ︷︷ ︸
mij

= SjSi · · ·︸ ︷︷ ︸
mij

(2.15)

for any 1 ≤ i < j ≤ n where the number mij of factors on each side is equal
to the order of sisj in W [Br]. Each Si may be obtained as a small loop in
hreg/W around the reflecting hyperplane Ker(αi) of si.

2.2. Variants of ∇κ. If pα ∈ Uh, α ∈ R, is a collection of polynomials in
h, the connection

d− h

2

∑

α∈R

dα

α
· (κα + pα) (2.16)

is flat by theorem 2.2 since [κα, pβ ] = [pα, pβ] = 0 for any α, β ∈ R. It is
moreover W–equivariant if, in addition, wpα = pwα for any w ∈ W . The
corresponding monodromy representation of Pg is equal to that of the con-
nection ∇κ tensored with the character χ : Pg→ T given by the monodromy
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of the abelian connection

d− h

2

∑

α∈R

dα

α
· pα (2.17)

and therefore does not significantly differ from the monodromy of ∇κ. A
possible choice is to set pα = 〈α,α〉/2 · h2

α which yields the connection

∇C = d− h
∑

α∈R+

dα

α
· Cα (2.18)

where Cα ∈ Uslα2 is the full Casimir operator of slα2 .

2.3. The holonomy Lie algebra a(A). Kohno’s lemma 2.1 gives a descrip-
tion of the holonomy Lie algebra a(A) of a general hyperplane arrangement
A = {Hi}i∈I as the quotient of the free Lie algebra on generators {ri}i∈I by
the relations (2.3). WhenA = Ag = {Ker(α)}α∈R is the arrangement of root
hyperplanes of g, theorem 2.2 is equivalent to the fact that the assignement
rα → κα extends to an algebra homomorphism

φ : Ua(Ag) −→ Ug (2.19)

of the universal enveloping algebra of a(Ag) to that of g satisfying

φ(Ua(Ag)m) ⊂ Ug2m (2.20)

for any m ∈ N, where the superscript denotes the degree corresponding to
the natural filtrations on both algebras. We simply note here the following

Proposition 2.5. If one of the simple factors of g is not isomorphic to sl2,
the map φ : Ua(Ag) −→ Ug is not injective.

Proof. The following argument was pointed out to us by R. Buchweitz. It
suffices to show that, if g ≇ sl2, a(Ag) contains a free Lie algebra on at least
two generators, for then Ua(Ag) has exponential growth with respect to its
filtration, whereas Ug, being isomorphic to Sg, only grows polynomially.
Let A1 × A1 ≇ R0 ⊆ R be a rank two root subsystem with positive roots
β1, . . . , βp, p ≥ 3. Let Fp−1 be the free Lie algebra on generators x1, . . . , xp−1

and consider the maps

Fp−1
i−→ a(Ag)

π−→ Fp−1 (2.21)

given by i(xj) = rβj
, j = 1 . . . p− 1 and

π(rα) =





0 if α /∈ R0

xj if α = βj , with 1 ≤ j ≤ p− 1

−∑p−1
j=1 xj if α = βp

(2.22)

It is easy to see that π is well–defined, so that π ◦ i = id and i gives an
embedding of Fp−1 into a(Ag) �

Remark. It seems an interesting problem to find a generating set of relations
for the kernel of the map φ above. One such relation may be obtained for
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any rank two root subsystem R2 ⊂ R such that the intersection of its Z–
span with R is equal to R2 but the intersection of its R–span with R strictly
contains R2. This is the case for the root system of type A2 given by the long
roots in the root system of type g2 or for the root system of type A1 × A1

generated by any pair of long roots in the root system of type Cn. One then
has [κα,

∑
β∈R2

κβ ] = 0 in Ug, but [rα,
∑

β∈R2
rβ] 6= 0 in a(Ag).

2.4. Triviality of h̃reg ×Pg V . The aim of this subsection is to show that

the pull–back to hreg of the bundle h̃reg×Bg V constructed in proposition 2.3,

namely V = h̃reg ×Pg V , is topologically trivial3. Since V is W–equivariant,
this seemingly contrasts with the fact that W doesn’t act on V . The solution
of this apparent paradox lies in the fact that the action of W on V is given
by a cocycle, i.e., in a trivialisation V ∼= hreg×V , by w(t, v) = (wt,A(w, t)v)
where A(w, t) ∈ GL(V ) satisfies

A(w1w2, t) = A(w1, w2t)A(w2, t) (2.23)

We compute this cocycle explicitly below. These results will not be used
elsewhere in the paper.

Let σ : Bg → N(T ) be a homomorphism making (2.9) commute. The
restriction of σ to the pure braid group Pg maps into T and therefore factors
through the abelianisation of Pg. The following gives an explicit description
of the latter as a W = Bg/Pg–module.

Proposition 2.6. Let Z be the free abelian group with one generator γα for
each positive root α of g and define an action of W on Z by

w γα = γ|wα| (2.24)

where |wα| is equal to ±wα according to whether wα is positive or negative.
Then,

(i) the assignement γαi → S2
i extends uniquely to a W–equivariant

isomorphism Z ∼= Pg/[Pg, Pg].
(ii) Under the Hurewicz isomorphism Pg/[Pg, Pg] ∼= H1(hreg,Z), γα is

mapped onto a positively oriented simple loop around the hyperplane
Ker(α).

Proof. (i) is proved in [Ti, Thm. 2.5]. (ii) it is readily checked that, un-
der the Hurewicz isomorphism, the action of W on Pg/[Pg, Pg] coincides
with its natural geometric action on H1(hreg,Z). It follows from the isomor-
phism Bg

∼= π1(hreg/W ) that γαi = S2
i is mapped onto a positively oriented

3the second author is grateful to R. Rouquier for a long walk in the Berkeley hills, during
which we took turns in convincing each other that the bundle was trivial, then non–trivial,
then trivial again, until sheer exhaustion and the late hour of the night suspended, but
alas did not resolve, the argument.
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simple loop around the hyperplane Ker(αi) [Br] so that (ii) follows by W–
equivariance �

For any positive root α, pick an element λα ∈ h such that exp(2πiλα) =
σ(γα) and consider the flat connection on hreg × V given by

∇σ = d−
∑

α∈R+

dα

α
· λα (2.25)

Fix a basepoint t0 ∈ hreg and identify h̃reg with the space of paths in hreg

pinned at t0, modulo homotopy equivalence. Denote by Pσ(p) ∈ T parallel
transport with respect to ∇σ along one such path p. Then,

Proposition 2.7.

(i) The map h̃reg × V → hreg × V given by

(p, v)→ (p(1),Pσ(p)v) (2.26)

descends to an isomorphism ι : h̃reg ×Pg V
∼= hreg × V .

(ii) The right action of Bg on h̃reg × V descends, via ι, to one of W on
hreg × V given by

w (t, v) = (w−1t,Pσ(w−1pt)Pσ(γ̃)σ(γ)−1Pσ(pt)−1v) (2.27)

where pt is any pinned path in hreg with pt(1) = t, γ ∈ Bg is any
element with image w and γ̃ is its lift to a path in hreg with γ̃(0) = t0.

Proof. One readily checks, by using proposition 2.6, that the monodromy
Pg→ T of ∇σ coincides with the restriction of σ to Pg from which (i) follows
at once. (ii) is a simple computation �

2.5. Tits extensions. Let σ : Bg→ N(T ) be a homomorphism making the
diagram (2.9) commute. Tits has given a simple construction of a canonical,
but not exhaustive, class of such σ which differ from each other via conju-
gation by an element of T . We summarise below the properties of this class
obtained in [Ti]. For any simple root αi, i = 1 . . . n, let SL2(C) ∼= Gi ⊆ G be
the subgroup with Lie algebra spanned by eαi , fαi , hαi , Ti = exp(C·hαi) ⊂ Gi
its torus and Ni the normaliser of Ti in Gi. Denote by si ∈W the orthogonal
reflection corresponding to αi.

Proposition 2.8.

(i) For any choice of σi ∈ Ni \ Ti, i = 1 . . . n, the assignment Si → σi
extends uniquely to a homomorphism σ : Bg→ N(T ) making (2.9)
commute.

(ii) If σ, σ′ : Bg → N(T ) are the homomorphisms corresponding to the
choices {σi}ni=1 and {σ′i}ni=1 respectively, there exists t ∈ T such
that, for any S ∈ Bg

σ(S) = tσ′(S)t−1 (2.28)
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(ii) For any such σ : Bg → N(T ), the subgroup σ(Bg) ⊂ N(T ) is an
extension of W by Zn2 canonically isomorphic to the group generated
by the symbols ai, i = 1 . . . n subject to the relations

aiaj · · ·︸ ︷︷ ︸
mij

= ajai · · ·︸ ︷︷ ︸
mij

(2.29)

a2
i a

2
j = a2

ja
2
i (2.30)

a4
i = 1 (2.31)

aia
2
ja

−1
i = a2

ja
−2〈α∨

i ,αj〉
i (2.32)

for any 1 ≤ i 6= j ≤ n, where the number mij of factors on each
side of (2.29) is equal to the order of sisj in W . The isomorphism
is given by sending ai to σi.

Proof. (i) We must show that the σi satisfy the braid relations (2.15). For
any 1 ≤ i 6= j ≤ n, set sij = sisj · · · ∈ W and σij = σiσj · · · ∈ N(T ) where
each product has mij − 1 factors. The braid relations in W may be written
as sijsj′ = sjsij where j′ = j or i according to whether mij is even or odd.

Thus, s−1
ij sjsij = sj′ and therefore,

δij = σ−1
j′ σ

−1
ij σjσij ∈ T ∩

(
σ−1
j′ σ

−1
ij Njσij

)
= T ∩ σ−1

j′ Nj′ = Tj′ (2.33)

Repeating the argument with i and j permuted, we find that δji ∈ Ti′
with i′ = i or j according to whether mij is even or odd. Thus, δij =

δ−1
ji ∈ Ti′ ∩ Tj′ = {1} where the latter assertion follows from the simple

connectedness of G, and the σi satisfy (2.15).
(ii) Let ti ∈ Ti be such that σi = σ′iti and choose ci ∈ C such that ti =
exp(cihαi). Since

(si − 1)

n∑

j=1

cjλ
∨
j = −cihαi (2.34)

where the λ∨i ∈ h are the fundamental coweights defined by αi(λ
∨
j ) = δij ,

we find

exp(−
∑

j

cjλ
∨
j )σ′i exp(

∑

j

cjλ
∨
j ) = σ′i exp(cihαi) = σi (2.35)

so that σ and σ′ are conjugate.
(ii) The σi satisfy (2.30)–(2.32) since x2

j = exp(iπα∨
j ) for any xj ∈ Nj \ Tj.

Let Kσ
∼= Zn2 be the group generated by the σ2

i and Kσ ⊂ Kσ ⊂ σ(Bg) the
kernel of the projection σ(Bg)→W . By (2.29)–(2.32), Kσ is a normal sub-
group of σ(Bg) and σ(Bg)/Kσ is generated by the images σi of σi which, in
addition to the braid relations satisfy σ2

i = 1. Thus, σ(Bg)/Kσ is a quotient

of W , Kσ = Kσ and σ(Bg)/Kσ
∼= W . The same argument shows that if Γ

is the abstract group generated by a1, . . . , an subject to (2.29)–(2.32), and
A ⊂ Γ is the subgroup generated by the a2

i , then Γ/A ∼= W ∼= σ(Bg)/Kσ .
But A is a quotient of Z2

n so that the canonical surjection of Γ onto σ(Bg)
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is an isomorphism of A onto Kσ and therefore an isomorphism of Γ onto
σ(Bg) �

We shall henceforth only use homomorphisms σ : Bg → N(T ) of the form

given by proposition 2.8 and refer to them, or their image W̃ = σ(Bg) ⊂
N(T ) as Tits extensions of W . Note that, given a choice of simple root
vectors eαi , fαi , i = 1 . . . n, any element of Ni \ Ti is necessarily of the form

σi(ti) = exp(tieαi) exp(−t−1
i fαi) exp(tieαi)

= exp(−t−1
i fαi) exp(tieαi) exp(−t−1

i fαi)
(2.36)

for a unique ti ∈ C∗ so that a Tits extension may be given by choosing
elements t1, . . . , tn ∈ C∗.

3. Generic irreducibility of monodromy representations

3.1. In this section, we study in detail the reducibility of the monodromy
of a flat connection of the form (2.2), namely

∇ = d− h
∑

i∈I

dφi
φi
· ri (3.1)

where the residue matrices ri act on the finite–dimensional vector space V
and are assumed to satisfy the relations (2.3). Let

ρh : π1(B \ A) −→ GL(V ) (3.2)

be the corresponding one–parameter family of monodromy representations.
If V is reducible under the ri, ρh is clearly reducible for all values of h. The
aim of this section is to prove a converse statement. To formulate it, we
need the following

Definition. An analytic curve ρh of representations of a finitely–generated
group Γ is generically irreducible if, for all h in the parameter space lying in
the complement of an analytic set, the representation ρh is irreducible.

We now state the main result of this section.

Theorem 3.1. If V is irreducible under the ri, the monodromy representa-
tion ρh is generically irreducible.

Our proof also yields an analogue of this theorem in the formal case. Let

ρ̃ : π1(B \ A) −→ GL(V ((h))) (3.3)

be the representation obtained by regarding ρh as formal in h, letting π1(B \
A) act on V [[h]] = V ⊗ C[[h]] and extending coefficients to V ((h)) = V ⊗
C((h)).

Theorem 3.2. If V is irreducible under the ri, ρ̃ is irreducible.
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The proof of theorems 3.1 and 3.2 occupies the rest of this section. In §3.5,
we apply these results to the monodromy of the connection ∇κ.

Our proof proceeds by noting that, because reducibility is a closed condi-
tion, an analytic curve ρh of representations is either generically irreducible
or reducible for all h. In the latter case, we prove the existence of a multi-
valued (i.e., Puiseux) analytic curve germ U(h1/m) of proper subspaces of
V invariant under the germ of ρh at h = 0. A simple enough calculation
then shows that the subspace U(h1/m)

∣∣
h1/m=0

( V is invariant under the ri.
Note that a single–valued analytic germ of invariant subspaces may in gen-
eral not exist. Indeed, the curve c(h) of reducible representations of Γ = Z

given by

c(h) =

(
1 1
h 1

)
, h ∈ C \ {1} (3.4)

only admits the multivalued family of eigenlines (1,±
√
h). However, with

the base change c̃(k) = c(k2), the eigenlines become analytic in k. We will
see that such branching is the worst behaviour that can occur.

3.2. Reducible analytic curve germs and formal curves. Let Γ be a
finitely–generated group. The set of representations Hom(Γ, GL(V )) can be
given the structure of an affine variety. Indeed, if {γ1, . . . , γr} is a system of
generators of Γ, then

Hom(Γ, GL(V )) ⊆ GL(V )r (3.5)

is the subset of r–tuples of elements satisfying the relations which define Γ.

Theorem 3.3. The set Homred(Γ, GL(V )) of reducible representations is a
Zariski closed subset of Hom(Γ, GL(V )).

The following is an immediate

Corollary 3.4. An analytic curve ρh : Γ −→ GL(V ) of representations is
either generically irreducible or reducible for all values of h.

Proof of theorem 3.3. For any 0 ≤ p ≤ dimV , let Grp(V ) be the
Grassmannian of p–planes in V . Set

Rp(Γ) = {(ρ, U) ∈ Hom(Γ, GL(V ))×Grp(V )|ρ(Γ)U = U} (3.6)

We claim that Rp(Γ) is a Zariski closed subset of Hom(Γ, GL(V ))×Grp(V ).
Indeed, regarding U ∈ Grp(V ) as all multiples of a decomposable p–tensor
Λ = u1 ∧ · · · ∧ up ∈

∧p V via the Plücker embedding, we see that the
invariance of U under ρ ∈ Hom(Γ, GL(V )) is equivalent to the relations
(quadratic in the Plücker coordinates on Grp(V ))

Λ ∧ ρ(γi)Λ = 0 (3.7)

for all i = 1 . . . r, where ∧ is the exterior multiplication in
∧∗(

∧p V ). Since
the projection p1 : Hom(Γ, GL(V )) × Grp(V ) → Hom(Γ, GL(V )) is closed
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[Mu, thm. 2.23], the set

Homred,p(Γ, GL(V )) = {ρ ∈ Hom(Γ, GL(V ))| ∃ U ∈ Grp(V ), ρ U = U}
= p1(Rp(Γ))

(3.8)

is a closed subset of Hom(Γ, GL(V )) and therefore so is

Homred(Γ, GL(V )) =
dimV−1⋃

p=1

Homred,p(Γ, GL(V )) (3.9)

�

Definition.

(i) An analytic curve ρh of representations is reducible if it is contained
in the subvariety Homred(Γ, GL(V )) of reducible representations.

(ii) An analytic curve germ (ρh, ρ) is reducible if it has a representa-
tive contained in Homred(Γ, GL(V )). Hence all representatives are
contained in this variety.

(iii) A formal curve beginning at ρ i.e., an algebra homomorphism

φ : ÔHom(Γ,GL(V )),ρ → C[[h]] (3.10)

is reducible if φ factors through ÔHomred(Γ,GL(V )),ρ.

Note that the infinite jet ρ̂h at ρ of a reducible analytic curve ρh is a reducible
formal curve. The converse is also clear since an analytic function that is
formally zero is zero.

3.3. The existence of a multivalued section. Retain the notation of
§3.2. The projection on the first factor induces a regular map

πp : Rp(Γ)→ Homred,p(Γ, GL(V )) (3.11)

We will be concerned in this subsection with constructing a multivalued
section to πp over a curve germ contained in Homred,p(Γ, GL(V )). Let Γr be
the free group on r generators. The commutative diagram

Rp(Γ) −−−−→ Rp(Γr)
πp

y πp

y

Homred,p(Γ) −−−−→ Homred,p(Γr)

(3.12)

shows that it suffices to find a section for the case of a free group. Indeed,
such a section induces by restriction a section for all quotients of that free
group. For the remainder of this subsection we therefore assume that Γ = Γr.

We shall prove in fact the existence of a formal multivalued section (see
below for a precise definition). The same argument yields an analytic multi-
valued one. Equivalently, one may deduce the existence of such a section by
using Artin’s theorem as follows. First a reducible analytic curve gives rise
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to a reducible formal curve which has a formal section. Then, by [Ar, Thm
1.5 (ii)], one may find an analytic section approximating the formal one as
closely as one wishes.

We need some notation. Let

B = C[Hom(Γ, GL(V ))]

= C[g1
ij , . . . , g

r
ij ]1≤i,j≤dimV [det(g1

ij)
−1, . . . ,det(grij)

−1]
(3.13)

be the coordinate ring of Hom(Γ, GL(V )) ∼= GL(V )r. Let G̃rp(V ) be the
cone in

∧p(V ) defined by the Plücker equations and let Cp be its coordinate
ring. Thus,

Cp = C[G̃rp(V )] = C[xI ]/(f
p
α(xI)) (3.14)

where the xI are the the Plücker coordinates on Grp(V ) and {fpα(xI)}α∈I
are the (quadratic) Plücker relations defining the Grassmannian. Let

Ap = C[Hom(Γ, GL(V ))× G̃rp(V )]

= B ⊗ Cp = B[xI ]/(f
p
α(xI))

(3.15)

be the coordinate ring of Hom(Γ, GL(V )) × G̃rp(V ). Denote the equations

(3.7) by {qpβ(gkij , xI)}β∈J , let ap = (qpβ)β∈J ⊂ Ap be the corresponding ideal

and set

Rp = C[R̃p(Γ)] = Ap/ap

= C[gkij , xI ][det(gkij)
−1]/(fpα(xI), q

p
β(g

k
ij , xI))

(3.16)

where R̃p(Γ) is the closure in Hom(Γ, GL(V ))× G̃rp(V ) of the preimage of
the variety Rp(Γ) defined by (3.6) under the projection

Hom(Γ, GL(V ))× G̃rp(V ) \ {0} → Hom(Γ, GL(V ))×Grp(V ) (3.17)

For later use, we note that the polynomials qpβ are homogeneous (of degree

2) in the Plücker coordinates xI . Finally, let b, bp ⊂ B be the ideals of

Homred(Γ, GL(V )), Homred,p(Γ, GL(V )) ⊂ Hom(Γ, GL(V )) (3.18)

respectively, and set

S = C[Homred(Γ, GL(V ))] = B/b (3.19)

Sp = C[Homred,p(Γ, GL(V ))] = B/bp (3.20)

Note that the projection (3.11) induces a ring homomorphism ψp : Sp → Rp.

Let now B̂, Ŝ be the completions of B,S at a fixed reducible representation

ρ. Let Âp, R̂p be the completions of Ap, Rp along the fiber of πp over ρ,
see [Ha, pg. 194]. A formal curve of representations starting at ρ is a
homomorphism

φ : B̂ → C[[h]] (3.21)
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φ is given in coordinates by n2r formal power series gkij(h) = φ(gkij). φ is a

curve of reducible representations if it descends to the quotient Ŝ of B̂. Let
p be the kernel of φ. p is a prime ideal since C[[h]] is an integral domain and

p ⊃ b =

n−1∏

p=1

bp (3.22)

so that p ⊃ bp for some p. Since the completion Ŝp of Sp at ρ is the quotient

B̂/bp, we obtain a homomorphism φ : Ŝp → C[[h]].

Definition. A multivalued formal section is a homomorphism χ fitting into
the following commutative diagram

C[[k]]
χ←−−−− R̂p

fm

x ψp

x

C[[h]]
φ←−−−− Ŝp

(3.23)

where fm(h) = km.

Let F = C((h)) be the field of fractions of C[[h]], F its algebraic closure and
ι : F → F the corresponding inclusion. The key step in finding a formal
multivalued section is the following

Proposition 3.5. There exists a homomorphism of C–algebras τ : R̂p → F
such that the following diagram is commutative

F τ←−−−− R̂p

ι

x ψp

x

C[[h]]
φ←−−−− Ŝp

(3.24)

and τ(xI) 6= 0 for some I.

Proof. Write the sentence in the symbols ∃,∩,∪ and complement ′ and
field operations that states that the projection

R̃p(Γ)(E) ⊂ Hom(Γ, GL(V ⊗ E))× G̃rp(V ⊗ E)
p1

y

Homred,p(Γ, GL(V ⊗ E))

(3.25)

is onto for an extension field E of C. This sentence contains the equations for

the affine cone G̃rp(V ) defined by the Plücker relations fpα(xI) = 0, α ∈ I,
and must include the condition (xI 6= 0 for some I). The resulting statement
is true for the field C hence, by model completeness of the theory of alge-
braically closed fields[MMP, pg. 5], for any algebraically closed extension
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field of C. In particular, it is true for F �

Remark. From the above commutative diagram we obtain

τ(gkij) = ιφ(gkij) ∈ C[[h]] (3.26)

Lemma 3.6. Let C((h
1
∞ )) denote the field obtained by adjoining all the

roots of h to C. Then C((h
1
∞ )) is algebraically closed. Consequently, F ∼=

C((h
1
∞ )).

Proof. This is proved in [Wal], Theorem 3.1 �

We now construct the desired multivalued formal section.

Theorem 3.7. There exists an m ≥ 1 and a homomorphism of C–algebras

χ : R̂p → C[[k]] such that the following diagram is commutative

C[[k]]
χ←−−−− R̂p

fm

x ψp

x

C[[h]]
φ←−−−− Ŝp

(3.27)

and χ(xI) 6= 0 for some I.

Proof. By the two previous results we obtain a homomorphism τ taking
values in the quotient field C((k)) of C[[k]] for some root k of h. Such a
homomorphism amounts to assigning an element of C((k)) to each of the
variables gkij , xI in such a way that these elements satisfy the defining equa-

tions pα and qpβ of R̃p(Γ). As noted in (3.26), the τ(gkij) already lie in C[[k]].

Since the equations are homogeneous in the xI , we can multiple the τ(xI)
by an appropriate power of k so that the resulting elements of C((k)) are in
C[[k]] �

The following result explains the meaning of the C[[k]]–point χ constructed
above.

Proposition 3.8. The homomorphism χ gives canonically rise to a rank p
summand U of the module V [[k]] = V ⊗ C[[k]] together with an r–tuple of
invertible (over C[[k]]) matrices g1(km), . . . , gr(km) leaving U invariant.

Proof. The homomorphism χ fits into the diagram

C[[k]]
χ←−−−− R̂p

π←−−−− Âp

fm

x ψp

x
x

C[[h]]
φ←−−−− Ŝp ←−−−− B̂

(3.28)

The composition χ ◦ π is a tensor product η⊗ ζ where η is a C[[k]]–point of

Hom(Γ, GL(V )) and ζ is a C[[k]]–point of G̃rp(V ). Regarding ζ as a C((k))–

point of G̃rp(V ), its Plücker coordinates yield a p–dimensional subspace Ũ
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of the C((k))–vector space V ((k)). Let U be the intersection of Ũ with V [[k]].

U is cotorsion–free in V [[k]] since, if v ∈ V [[k]] and r ∈ C[[k]] are such that

rv = u ∈ U , then v = 1
r · u ∈ Ũ , whence v ∈ U = Ũ ∩ V [[k]] = U . Since

C[[k]] is a principal ideal domain, the quotient V [[k]]/U is free (since it is
torsion–free) and the sequence U → V [[k]] → V [[k]]/U splits. Hence U is a
direct summand and consequently is free (since it is projective and C[[k]] is

a local ring). Since dim(Ũ) = p it follows that U is free of rank p.

The homomorphism φ corresponds to an r–tuple of matrices g1(h), . . . , gr(h)
with entries in C[[h]] and determinant a unit in C[[h]]. The fact that η ⊗
ζ descends to χ and the fact that χ is a C[[k]]–point of R̂p implies that
g1(km), . . . , gr(km) leave U invariant �

3.4. Proof of theorem 3.1. Let Γ be the fundamental group π1(B \ A).
It is well–known that Γ is finitely–generated, see e.g., [BMR, prop. A2.,
pg. 181]. If the curve ρh of monodromy representations is not generically
irreducible, it lies, by corollary 3.4, in the variety of reducible representations
and therefore in some Homred,p(Γ, GL(V )), 1 ≤ p ≤ dimV − 1. Let χ be a
multivalued analytic section and let U be the corresponding rank p summand
of the free C{k}–module V = V ⊗ C{k} obtained by applying the analytic
version of proposition 3.8 which we may state as

Proposition 3.9. There is a canonical one-to–one correspondence between
analytic curve germs (Uk, U) in Grp(V ) and (free) summands U of rank p
of the C{k}–module V.

Remark. To pass from the C{k}–submodule U to the curve germ (Uk, U)
proceed as follows. Choose a basis e1, . . . , en for V over C and regard it
as basis for V over C{k}. Choose a basis u1, . . . , up for U over C{k}.
Write u1, . . . , up in terms of e1, . . . , en to obtain a curve b(k) of bases for
p–dimensional subspaces of V . The span of b(k) is Uk.

Set ρ̃k = ρkm and let ρ̃ be the element of Hom(Γ, GL(V)) corresponding to
ρ̃k. Since ρ̃k is an analytic function of h = km, the elements

A(γ) =
I − ρ̃(γ)
km

(3.29)

leave V invariant. It follows that A(γ)U ⊂ U since ρ̃(Γ)U = U . The following
standard result shows that the subspace U(0) ( V is invariant under the
residues ri, thus concluding the proof of theorem 3.1.

Lemma 3.10. For each hyperplane Hj of the arrangement A, there exists
an element γj ∈ π1(B \ A) such that

ρh(γj) = 1 + 2πih · rj mod h2 (3.30)
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Proof. Let x0 ∈ B \ A be a base point and γj ∈ π1(B \ A;x0) a generator
of monodromy around Hj (see, e.g., [BMR, pg. 180–1]). Recall that such
an element is obtained as follows. Choose a path p : [0, 1]→ B such that

p(0) = x0, p([0, 1[) ⊂ B \ A and p(1) ∈ Hj \
⋃

j′ 6=j

Hj′ (3.31)

Let D be a small ball centred at p(1) and contained in B \ ⋃j′ 6=j Hj′, let

u ∈ [0, 1[ be such that p(s) ∈ D for any s ≥ u and let ℓ be a positively
oriented generator of π1(D \Hj; p(u)) ∼= Z. Then,

γi = p−1
u · ℓ · pu (3.32)

where pu(t) = p(ut) and the concatenation of paths is read from right to
left. Picard iteration readily yields that, mod h2,

ρh(γj) = 1 + h
∑

i∈I

∫

γj

dφi
φi
· ri = 1 + h

∑

i∈I

∫

ℓ

dφi
φi
· ri = 1 + 2πih · rj (3.33)

where the last equality follows from the residue theorem since the forms
dφj′/φj′ , j

′ 6= j do not have any poles in D �

The proof of theorem 3.2 is the same as that of theorem 3.1 except for the
use of a formal multivalued section provided by proposition 3.8 instead of
an analytic one.

3.5. Generic irreducibility of the monodromy of ∇κ. Assume now

that V is a g–module and let W̃ = σ(Bg) be a Tits extension with sign
group Σ = σ(Pg) ∼= Zn2 . Let

ρσh : Bg −→ GL(V ) (3.34)

be the corresponding one–parameter family of monodromy representations
defined by proposition 2.3 and ρσ : Bg −→ GL(V ((h))) the representation
obtained by regarding ρσh as formal in h and extending coefficients to C((h)).

Theorem 3.11. Let U ⊆ V be a subspace invariant, and irreducible under

the Casimirs κα and W̃ . Then,

(i) ρσh : Bg −→ GL(U) is generically irreducible.
(ii) ρσ : Bg −→ GL(U((h))) is irreducible.

Proof. (i) Assume ρσh to be reducible for all h. Proceeding as in the proof
of theorem 3.1, we find a 1 ≤ p ≤ dimU − 1 and a rank p–summand X of
U = U ⊗C{k} invariant under the germ of ρσh at h = 0. In particular, X (0)

is invariant under ρσ0 (Bg) = W̃ . For any positive root α, let γα ∈ Pg be
the generator of monodromy around the hyperplane Ker(α) given by lemma
3.10. Note that σ(γα) lies in the sign group Σ and therefore has order 1 or
2. By lemma 3.10 and proposition 2.4 we find that, mod h2,

ρσh(γ
2
α) = σ(γα)2(1 + 2πih · κα)2 = 1 + 4πih · κα (3.35)
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so that X (0) is also invariant under the Casimirs κα. The proof of (ii) is
identical �

Similarly, we obtain

Theorem 3.12. Let U ⊆ V be a subspace invariant, and irreducible under
the Casimirs κα and Σ. Then,

(i) ρσh : Pg −→ GL(U) is generically irreducible.
(ii) ρσ : Pg −→ GL(U((h))) is irreducible.

We specialise our results further to the case where U is the zero weight space
V [0] of V . Recall that the latter is canonically acted upon by W ∼= N(T )/T
so that the restriction of ρσh to V [0] does not depend upon the choice of σ.
We owe the following somewhat surprising observation to B. Kostant

Proposition 3.13. V [0] is irreducible under the Casimirs κα iff it is irre-
ducible under the κα and W .

Proof. The simple reflection si ∈W acts on the zero weight space V i
n[0] of

the irreducible slαi
2 –module of dimension 2n+ 1 as multiplication by (−1)n.

Thus, if piε, ε = 0, 1 are the spectral projections for the restriction of Cαi to
V [0] corresponding to the Casimir eigenvalues of V i

n, with n = ǫ mod 2, si
acts on V [0] as pi0 − pi1 and is therefore a polynomial in Cαi . It follows that
a subspace U ⊆ V [0] invariant under the κα is also invariant under W �

Corollary 3.14. The following statements are equivalent

(i) V [0] is irreducible under the Casimirs κα.
(ii) V [0] is generically irreducible under Pg.
(iii) V [0]((h)) is irreducible under Pg.
(iv) V [0] is generically irreducible under Bg.
(v) V [0]((h)) is irreducible under Bg.

4. The Casimir algebra Cg of g

4.1. Since the connection ∇κ is reducible with respect to the weight space
decomposition of a simple g–module V , theorems 3.11 and 3.12 naturally
prompt the question, originally asked us by A. Knutson and C. Procesi, of
whether the Casimir operators κα act irreducibly on the weight spaces of V
or, stronger still, whether the κα, together with h, generate the h–invariant
subalgebra Ugh of Ug.

Let Cg be the Casimir algebra of g, i.e., the algebra

Cg = 〈κα〉α∈R+ ∨ h ⊆ Ugh (4.1)

generated by the κα, or equivalently the Casimirs Cα, and h, inside Ugh.
We show in §4.2 that if g = sl3, Cg is a proper subalgebra of Ugh but that
the latter is generated by Cg and the centre Z(Ug) of Ug. In particular, the
κα act irreducibly on the weight spaces of any simple sl3–module and the
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monodromy of the connection ∇κ yields generically irreducible representa-
tions of the pure braid group P3 = Psl3 on these weight spaces and of B3 on
their zero weight space.

For g ≇ sl2, sl3, the situation is radically different and we show that there
always exists a simple g–module V such that its zero weight space V [0] is
reducible under Cg, thus answering in the negative Knutson and Procesi’s
question. In particular Cg and Z(Ug) do not generate Ugh. A suitable V
is readily found in §4.3 for g ≇ sln. For g ∼= sln, n ≥ 4, its construction
requires the general reducibility criterion outlined in the Introduction and
the Gelfand–Zetlin branching rules which are given and reviewed in §4.4 and
§4.5 respectively.

4.2. The Casimir algebra of sl3.

Theorem 4.1. If g = sl3, then

(i) Cg is a proper subalgebra of Ugh.

(ii) Ugh is generated by Cg and the center of Ug. In particular, the
Casimirs κα act irreducibly on the weight spaces of any simple g–
module.

We shall need some preliminary results. Let e1, . . . , en be the canonical
basis of Cn and Eijek = δjkei the corresponding elementary matrices. The
following is immediate

Lemma 4.2. The element Ei1j1Ei2j2 · · ·Eikjk ∈ Ugln is of weight zero iff
the sequence (j1, j2, . . . , jk) is a permutation of (i1, i2, . . . , ik).

Let I = (i1, i2, . . . , ik) be a sequence of distinct elements of {1, . . . , n} and
set

EI = Ei1i2Ei2i3 · · ·Eik−1ikEiki1 ∈ Uslhn (4.2)

Proposition 4.3. If g = sln, Ugh is generated as an algebra by the mono-
mials EI and by h.

Proof. It suffices to show that the images of the EI and h generate the
h–invariant subalgebra of the graded algebra gr(Ug) ∼= Sg. By the previous
lemma, Sgh is spanned by elements of the form p EI,σ where p ∈ Sh, I =
(i1, . . . , ik) is a sequence of elements in {1, . . . , n}, σ ∈ Sk is a permutation
and

EI,σ = Ei1iσ(1)
· · ·Eikiσ(k)

(4.3)

Writing σ as a product of disjoint cycles τ1 ◦ · · · ◦ τr with τj = (m1
j · · ·m

kj

j )
then shows that, in Sg

EI,σ = EI1 · · ·EIr (4.4)

where Ij = (im1
j
, · · · , i

m
kj
j

) and therefore that Sgh is generated by h and the

EI �
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Remark. The previous proof shows in fact that Uslhn is generated by h and
the EI corresponding to sequences I = (i1, . . . , ik) such that i1 = minl il.

Corollary 4.4. If g = sl3, Ugh is generated by h together with the three
quadratic h–invariants

F12 = E12E21 F13 = E13E31 F23 = E23E32 (4.5)

and the two cubic h–invariants

G123 = E12E23E31 G132 = E13E32E21 (4.6)

Remark. Note that if we permute any two factors in the expressions for
E123 or E132 then the difference is a quadratic invariant.

Proof of (ii) of theorem 4.1. Let θi − θj, 1 ≤ i < j ≤ 3 be the positive
roots of g = sl3. The sl2–triple corresponding to θi−θj is {Eij , Eji, Eii−Ejj},
so that

κθi−θj
= EijEji + EjiEij (4.7)

is equal to 2Fij mod Uh. By the previous corollary, Sgh is generated, as a
Cg–algebra, by the single element G = G123 +G132 since

G123 −G132 = F13 + [F23, F12] ∈ Cg (4.8)

It therefore suffices to show that G lies in the algebra generated by Cg and
Z(Ug). It will be convenient to replace g = sl3 by the isomorphic pgl3. We
claim that, modulo Cg, G is equal to the element H in the center Z(Upgl3)
given by

H =
∑

1≤i,j,k≤3

EijEjkEki (4.9)

Indeed, write H as H1 + H2 where H2 is the part of the sum for which
i, j, k are all distinct. Clearly, H1 lies in Cg. Break up the sum defining H2

according to whether the first index is 1, 2 or 3. By the remark above, each
of the resulting sums then gives G modulo Cg �

Proof of (i) of theorem 4.1. Let Q = Ugh/hUgh be the quotient of Ugh

by the (two–sided) ideal generated by h. Let σ be the Chevalley involution
of Ug given by σ(X) = −Xt for X ∈ g. σ leaves h invariant and descends to
an involution of Q fixing the image of Cg. It therefore suffices to show that
σ does not act trivially on Q or on the associated graded gr(Q). However
the image of G = G123 +G132 in gr(Q) satisfies σ(G) = −G since, in gr(Q)

σ(E123) = −E132 and σ(E132) = −E123 (4.10)

�

Corollary 4.5. Let V be a simple sl3–module. Then, Artin’s pure braid
group P3 acts generically irreducibly on the weight spaces of V . In particular,
Artin’s braid group B3 acts generically irreducibly on the zero weight space
of V .
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4.3. The Casimir algebra of g ≇ sln. Assume that g is simple and not
isomorphic to sln and let V be the kernel of the commutator map [·, ·] :
g ∧ g→ g. It is known that V is a simple g–module [Re].

Theorem 4.6. The zero weight space V [0] is reducible under Cg. In partic-

ular, Cg and Z(Ug) do not generate Ugh.

Proof. Since g ∧ g ∼= g⊕ V and the zero weight space of g ∧ g has a basis
given by hi ∧ hj , 1 ≤ i < j ≤ n, and eα ∧ fα, α ∈ R+, where h1, . . . , hn is a
basis of h, we find that

dimV [0] =
n(n− 1)

2
+ |R+| =

n(n− 1)

2
+
m− 3n

2
(4.11)

where m = dim(g) > 3n. Thus, h∧h is a proper subspace of the zero weight
space of V and it suffices to show that it is invariant under the κα. This
follows at once from the fact that, for any t1, t2 ∈ h,

eαfα t1 ∧ t2 = eα (α(t1)fα ∧ t2 + α(t2)t1 ∧ fα)
= α(t1)hα ∧ t2 + α(t2)t1 ∧ hα

(4.12)

�

4.4. A general reducibility criterion for V [0]. Let Θ be the Chevalley
involution of g relative to a choice of simple root vectors eαi , fαi , i.e., the
automorphism of g defined by

Θ(eαi) = −fαi ,Θ(fαi) = −eαi and Θ(hαi) = −hαi (4.13)

If V is a simple, finite–dimensional g–module, and V Θ is the module ob-
tained by twisting the action of g by Θ, then V Θ is isomorphic to the dual
V ∗ of V . In particular, if V is self–dual, there exists an involution ΘV acting
on V such that, for any X ∈ g,

ΘVXΘV = Θ(X) (4.14)

Although ΘV is only unique up to a sign, we shall abusively refer to it as
the Chevalley involution of V . Since Θ acts as −1 on the Cartan subalgebra
h and fixes the Casimirs κα, ΘV leaves the zero weight space V [0] invariant
and commutes with the action of Cg. The following gives a useful criterion
to show that ΘV does not act as a scalar on V [0] and therefore that the
latter is reducible under Cg.
Proposition 4.7. Let V be a self–dual g–module with V [0] 6= 0. Let r ⊂ g

be a reductive subalgebra normalised by h. Assume that there exists a non–
zero vector v ∈ V [0] lying in a simple r–module U such that U ≇ U∗. Then,
ΘV does not acts a scalar on V [0] and the latter is reducible under Cg.
Proof. The assumptions imply that Θ leaves r invariant and therefore acts
as a Chevalley involution on it. Thus, ΘV U ⊂ V is a simple r–module
isomorphic to U∗ which has zero intersection with U since U ≇ U∗. In par-
ticular, ΘV v is not proportional to v �
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We record for later use the following alternative proof of theorem 4.6.

Proposition 4.8. Let g ≇ sln and let V be the simple, self–dual g–module

V = Ker[·, ·] ⊂ ∧2
g. Then, the Chevalley involution Θ does not act as a

scalar on V [0].

Proof. Θ acts as +1 on the subspace h ∧ h ⊂ V [0] and as −1 on the span

of the vectors eα ∧ fα ∈
∧2

g[0]. The conclusion follows since, as noted in
the proof of theorem 4.6, h ∧ h is a proper subspace of V [0] �

4.5. The Gelfand–Zetlin branching rules. Let e1, . . . , en be the canon-
ical basis of Cn and Eabec = δbcea the corresponding elementary matrices.
Consider the chain of subalgebras

gl1 ⊂ gl2 ⊂ · · · ⊂ gln−1 ⊂ gln (4.15)

where each glk is spanned by the matrices Eij, 1 ≤ i, j ≤ k. By the Gelfand–
Zetlin branching rules [GZ1, Zh1], the irreducible representation Vλ of glk
with highest weight λ = (λ1, . . . , λk) ∈ Zk decomposes under glk−1 as

res
glk−1

glk
Vλ =

⊕

λ

Vλ (4.16)

where Vλ is the irreducible glk−1–module with highest weight λ and λ =

(λ1, . . . , λk−1) ∈ Zk−1 ranges over all dominant weights of glk−1 satisfying
the inequalities

λ1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λk−1 ≥ λk (4.17)

which we denote by λ ≻ λ. Since the above decomposition is multiplicity–
free, it follows, by restricting in stages from gln to gl1 along (4.15), that any
simple gln–module V possesses a basis labelled by Gelfand–Zetlin patterns,
i.e., arrays µ of the form

µ
(n)
1 µ

(n)
2 · · · µ

(n)
n−1 µ(n)

n

µ
(n−1)
1 · · · µ

(n−1)
n−1

µ
(2)
1 µ

(2)
2

µ
(1)
1

(4.18)

where the top row µ(n) is equal to the highest weight of V and each pair

µ(k) ∈ Zk, µ(k−1)Zk−1 of consecutive rows satisfies µ(k) ≻ µ(k−1). Up to a
scalar factor, the vector vµ corresponding to the above pattern is uniquely
determined by the requirement that it tranforms under each glk ⊂ gln ac-
cording to the irreducible representation with highest weight µ(k). In par-

ticular, since the central element
∑k

i=1Eii ∈ glk acts in the latter as multi-

plication by |µ(k)| =∑k
i=1 µ

(k)
i , we find that, for any 1 ≤ i ≤ n,

Eiivµ =
(
|µ(i)| − |µ(i−1)|

)
vµ (4.19)
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so that vµ has weight zero for the action of sln iff, for any 1 ≤ i ≤ n,

|µ(i)| = i|µ(1)| = iµ
(1)
1 (4.20)

For later use in §6.1, we shall need the non–vanishing of some of the matrix
coefficients for the action of the simple roots vectors of gln in the above
basis. This follows from the explicit formulae for the action of all elementary
matrices Eij in a suitably normalised Gelfand–Zetlin basis vµ which may be
found in [GZ1, Zh2].

Theorem 4.9 (Gelfand–Zetlin). Let µ be a Gelfand–Zetlin pattern, then,
for any 1 ≤ i ≤ n− 1

Ei i+1vµ =
∑

µ′

ciµ,µ′vµ′ (4.21)

where the sum ranges over all patterns µ′ obtained from µ by adding 1 to
one of the entries of its ith row and the coefficients ciµ,µ′ are non–zero and,

Ei+1 ivµ =
∑

µ′

c̃iµ,µ′vµ′ (4.22)

where the sum ranges over all patterns µ′ obtained from µ by substracting 1
to one of the entries of its ith row and the coefficients c̃iµ,µ′ are non–zero.

Corollary 4.10. Let µ be a Gelfand–Zetlin pattern, then

Ei i+1Ei+1 ivµ =
∑

µ′

diµ,µ′vµ′ (4.23)

where the sum ranges over all patterns µ′ differing from µ by the addition
and the substraction of 1 on a pair of (not necessarily distinct) entries of
the ith row and diµ,µ′ 6= 0 if µ 6= µ′.

4.6. The Casimir algebra of sln, n ≥ 4.

Theorem 4.11. If g = sln, n ≥ 4, there exists a simple g–module V such
that V [0] is reducible under Cg. In particular, Cg and Z(Ug) do not generate

Ugh.

Proof. By proposition 4.7, it suffices to exhibit an irreducible representa-
tion V of gln which is self–dual as sln–module and a Gelfand–Zetlin pattern µ
describing a zero–weight vector for sln in V such that, for some 2 ≤ k ≤ n−1,

the slk–module U with highest weight µ(k) = (µ
(k)
1 , . . . , µ

(k)
k ) is not self–dual.

Since the highest weight of U∗ is (−µ(k)
k , . . . ,−µ(k)

1 ), such a U is self–dual

iff the sum µ
(k)
i +µ

(k)
k+1−i does not depend upon i = 1 . . . k. The following is

a suitable Gelfand–Zetlin pattern µ



CASIMIR OPERATORS AND GENERALISED BRAID GROUPS 29

4 3 2 · · · 2 1 0
... ... ... ... ... ...

4 3 2 1 0
4 3 1 0

4 1 1
3 1

2

(4.24)

since the sl3–module with highest weight (4, 1, 1) isn’t self–dual and, for any
n ≥ 4, the sln–module with highest weight

(4, 3, 2, . . . , 2︸ ︷︷ ︸
n−4

, 1, 0) (4.25)

is self–dual �

5. A conjecture of Kwon and Lusztig on quantum Weyl groups

5.1. We discuss below some results of Kwon on q–Weyl group actions of
Artin’s braid group Bn on the zero weight spaces of U~sln–modules [Kw].
We disprove in particular a conjecture of his and Lusztig’s stating the irre-
ducibility of all such representations.

Let U~g be the Drinfeld–Jimbo quantum group corresponding to g [Dr1, Ji],
which we regard as a Hopf algebra over the ring C[[~]] of formal power series
in the variable ~. By a finite–dimensional representation of U~g we shall
mean a U~g–module V which is topologically free and finitely–generated
over C[[~]]. The isomorphism class of such a representation is uniquely de-
termined by that of the g–module V = V/~V.

Lusztig, and independently Kirillov–Reshetikhin and Soibelman [Lu, KR,
So], proved that any such V carries an action, called the quantum (or q–
)Weyl group action of the braid group Bg. Its reduction mod ~ factors

through the Tits extension W̃ given by the triple exponentials (2.36) with
ti = 1. Specifically, this action is given by mapping the generator Si of Bg

to the triple q–exponential [Sa]

expq−1
i

(q−1
i Eiq

−Hi
i ) expq−1

i
(−Fi) expq−1

i
(q−1
i Eiq

−Hi
i )q

Hi(Hi+2)/2
i

= expq−1
i

(−q−1
i Fiq

Hi
i ) expq−1

i
(Ei) expq−1

i
(−q−1

i Fiq
Hi
i )q

Hi(Hi+2)/2
i

(5.1)

where Ei, Fi,Hi are the generators of U~g corresponding to the simple root
αi, qi = q〈αi,αi〉~ and the q–exponential is defined by

expq(X) =
∑

n≥0

qn(n−1)/2

[n]q!
Xn (5.2)
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where the q–factorials are given by

[n]q =
qn − q−n
q − q−1

and [n]q! = [n]q[n− 1]q · · · [1]q (5.3)

Recently, Kwon investigated the q–Weyl group action of Artin’s braid group
Bn = Bsln on the zero weight space of a simple U~sln–module V. He gave
a general criterion for it to be irreducible [Kw]4 and showed moreover that
this criterion holds for all representations of U~sl3. From these findings, he
and Lusztig conjectured that the action of Bn on V[0] is irreducible for any
simple U~sln–module V. We shall prove the following

Theorem 5.1. The Kwon–Lusztig conjecture is false for any complex, sim-
ple Lie algebra g not isomorphic to sl2, sl3.

The proof of theorem 5.1 is given in the next subsection and relies on con-
siderations very similar to those of §4.4, namely the use of the quantum
Chevalley involution.

5.2. Classical and Quantum Chevalley involution. Let Θ~ be the
quantum Chevalley involution, i.e., the algebra automorphism of U~g de-
fined by

Θ~(Ei) = −Fi, Θ~(Fi) = −Ei and Θ~(Hi) = −Hi (5.4)

As in the classical case, Θ~ acts on any self–dual finite–dimensional repre-
sentation of U~g leaving its zero weight space invariant. Since Hi acts as
zero on V[0], we see from (5.1) that Θ~ centralises Bg on V[0]. Corollary
5.4 below relates the action of Θ~ on V[0] to that of the classical Chevalley
involution Θ on V [0]. We shall need a number of preliminary results. Let

U = 1 + ~Ug[[~]] (5.5)

and recall that any element x ∈ U is invertible and possesses a unique square
root x1/2 ∈ U .

Lemma 5.2. Let

U+ = {x ∈ U|Θ(x) = x} and U− = {x ∈ U|Θ(x) = x−1} (5.6)

Then, any x ∈ U has a unique factorisation as x = x+ · x− with x± ∈ U±.

Proof. Let x → x∗ be the anti–involution of U defined by x∗ = Θ(x)−1.
We proceed as in the existence of a polar decomposition. If x = x+x− is a
factorisation with x∗+ = x−1

+ and x∗− = x−, then

x∗x = x−x
−1
+ x+x− = x2

− (5.7)

so that x− = (x∗x)1/2 and x+ = xx−1
− are uniquely determined by x. Define

now x± by

x− = (x∗x)1/2 and x+ = xx−1
− = x(x∗x)−1/2 (5.8)

4when coefficients are extended to the field C((~)) of formal Laurent series, which we
tacitly assume.
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Then, x = x+x−, x∗− = x− and

x∗+x+ = (x∗x)−1/2x∗x(x∗x)−1/2 = 1 (5.9)

as claimed �

Proposition 5.3. There exists an algebra isomorphism Ψ : U~g → Ug[[~]]
which is C[[~]]–linear, acts as the identity on h and satisfies

Ψ ◦Θ~ ◦Ψ−1 = Θ (5.10)

Proof. Let Φ : U~g → Ug[[~]] be an algebra isomorphism acting as the
identity on h [Dr2, Prop. 4.3]. The algebra automorphisms Θ and Φ ◦Θ~ ◦
Φ−1 of Ug[[~]] have the same reduction mod ~. Since H1(g, Ug) = 0, there
exists b ∈ U = 1 + ~Ug[[~]] such that

Φ ◦Θ~ ◦Φ−1 = Ad(b) ◦Θ (5.11)

Note that, since both Θ and Φ ◦Θ~ ◦ Φ−1 act as −1 on h, b lies in Uh. We
wish to find c ∈ Uh such that Ψ = Ad(c) ◦Φ satisfies (5.10). By (5.11), this
is equivalent to Ad(cbΘ(c)−1) = 1, i.e., to

cbΘ(c)−1 = z (5.12)

for some z ∈ Z = 1 + ~Z(Ug)[[~]]. Using lemma 5.2 to factor b, c and z, the
above equation becomes

b+b− = c−1zΘ(c) = c−1
− c−1

+ zc+c
−1
− = z+z−c

−2
− (5.13)

Since z± ∈ Z and z−c
−2
− ∈ U−, the solvability of this equation is therefore

equivalent to b+ ∈ Z. To see that this holds, note that Ad(b) ◦ Θ is an
involution by (5.11). This yields Ad(bΘ(b)) = 1 and therefore

bΘ(b) = ζ ∈ Z (5.14)

Writing this in components, yields

b+b− = ζΘ(b)−1 = ζ+ζ−b−b
−1
+ = ζ+b

−1
+ · ζ−b+b−b−1

+ (5.15)

Since ζ+b
−1
+ ∈ U+ and ζ−b+b−b

−1
+ ∈ U−, this implies, by uniqueness of

factorisation,
b+ = ζ+b

−1
+ (5.16)

whence b+ = ζ
1/2
+ ∈ Z as claimed �

Corollary 5.4. Let V be a self–dual, finite–dimensional U~g–module and
let V = V/~V be its reduction mod ~. Then, V and V [[~]] are isomorphic
as h ⋊ Z2–modules where the generator of Z2 acts as Θ~ on V and as the
classical Chevalley involution Θ on V . In particular, Θ~ acts as a scalar on
V[0] iff it acts as a scalar on V [0].

Proof. The isomorphism Ψ : Ug[[~]] → Ug[[~]] given by proposition 5.3
endows V [[~]] with the structure of a U~g–module such that the action of
h ⊂ U~g coincides with that of h ⊂ g. Since V and V [[~]] have the same
reduction mod ~, they are isomorphic as U~g, and therefore h–modules.
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Equation (5.10) then guarantees that, under this isomorphism, the Cheval-
ley involution of V is mapped to the Chevalley involution of V �

Proof of theorem 5.1. It follows from proposition 4.8 and the proof of
theorem 4.11 that if g ≇ sl2, sl3, there exists a simple, self–dual g–module
V such that Θ does not act as a scalar on V [0]. By corollary 5.4, Θ~ does
not act as scalar on V [[~]] and the latter is reducible under the q–Weyl group
action of Bg �

We mention in passing the following q–analogue of proposition 3.13

Proposition 5.5. Let V be a finite–dimensional representation of U~g with
non–trivial zero weight space V[0]. Then, V[0] is irreducible under Bg iff it
is irreducible under Pg.

Proof. By proposition 1.2.1 of [Sa], Si acts on the zero–weight space of
the indecomposable U~sl

αi
2 –module of dimension 2n+1 as multiplication by

(−1)nq
n(n+1)
i . It follows that the image of Si in End(V[0]) is a polynomial

in the image of S2
i ∈ Pg whence the conclusion �

5.3. A Kohno–Drinfeld theorem for q–Weyl groups. Let V be a finite–
dimensional representation of U~g and V = V/~V its reduction mod ~. It
was conjectured in [TL2], by analogy with the Kohno–Drinfeld theorem,
that the q–Weyl group action of Bg on V is equivalent to to the monodromy
action of Bg on ∇κ studied in the present paper. This conjecture is proved
in [TL3] for a number of pairs (g, V ) including vector representations of
classical Lie algebras and adjoint representations of all simple Lie algebras
and in [TL2] for all representations of g = sln. More precisely,

Theorem 5.6 ([TL2]). Assume that g ∼= sln. Let µ be a weight of V and

V µ =
⊕

ν∈Wµ

V [ν] (5.17)

the direct sum of the weight spaces of V corresponding to the Weyl group
orbit of µ. Let σ(Bg) ⊂ N(T ) be a Tits extension and

ρσ : Bg→ GL(V µ[[h]]) (5.18)

the corresponding monodromy representation defined by proposition 2.3 by
regarding h as a formal variable. Let πW : Bg → GL(Vµ) be the q–Weyl
group action. Then, ρh and πW are equivalent for ~ = 2πih.

Combining the above theorem with corollary 3.14, we obtain the following

Proposition 5.7. Let V be a finite–dimensional representation of U~sln and
set V = V/~V. The following statements are equivalent

(i) V[0] is irreducible under the q–Weyl group action of Bn.
(ii) V[0] is irreducible under the q–Weyl group action of Pn.
(iii) V [0] is irreducible under the Casimir algebra Csln .
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In particular, by theorem 4.1, the q–Weyl group action of P3 on the zero
weight space V[0] of a U~sl3–module is always irreducible, a slight refinement
of a result of Kwon asserting the irreducibility of V[0] under the full braid
group B3.

6. Irreducible representations of Cg
The aim of this section is to show that the connection ∇κ yields irreducible
monodromy representations of Bg of arbitrarily large dimension. For g clas-
sical, we show for example in subsections 6.1–6.3 that, with V the adjoint
representation if g ∼= sln and the defining vector one otherwise, the weight
spaces of all Cartan powers of V are irreducible under the Casimir algebra Cg.
For g of exceptional type, we obtain in §6.4 a slightly weaker result : for every
p ∈ N, the zero weight space of the pth Cartan power of ad(g) has a subspace
Kp which is irreducible under Cg and such that limp→+∞ dimKp = +∞.

6.1. Irreducible representations of Csln.

Theorem 6.1. For any p, q ∈ N, the action of Csln on the weight spaces of
the simple sln–module of highest weight (p, 0, . . . , 0,−q) is irreducible.

Proof. For any 2 ≤ k ≤ n and a, b ∈ N, set λ
(k)
a,b = (a, 0, . . . , 0,−b) ∈ Zk

so that the Gelfand–Zetlin basis of the simple gln–module V with highest

weight λ
(n)
p,q is parametrised by patterns of the form

λ =




λ
(n)
pn,qn
...

λ
(k)
pk,qk
...

λ
(2)
p2,q2

r




(6.1)

where the pk = pk(λ), qk = qk(λ) and r = r(λ) are integers satisfying

p = pn ≥ pn−1 ≥ · · · ≥ p2 ≥ 0 (6.2)

q = qn ≥ qn−1 ≥ · · · ≥ q2 ≥ 0 (6.3)

p2 ≥ r ≥ −q2 (6.4)

The vectors of a given weight µ = (µ1, . . . , µn) correspond to patterns sat-
isfying in addition

r = µ1 and, for any 2 ≤ k ≤ n, pk − qk = Mk (6.5)

where Mk =
∑k

i=1 µk. We claim that the commuting Casimir operators
Cglk

, 2 ≤ k ≤ n, have joint simple spectrum on the weight space V [µ], with
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corresponding diagonal basis given by Gelfand–Zetlin vectors. Indeed, Cglk

acts on vλ ∈ V [µ], with λ of the form (6.1), as multiplication by

〈λ(k)
pk,qk

, λ(k)
pk,qk

+ 2ρ(k)〉 = p2
k + q2k + (k − 1)(pk + qk)

= 2q2k + 2qk(Mk + k − 1) +Mk(Mk + k − 1)
(6.6)

where 2ρ(k) =
∑k

i=1 θi(k − 2i + 1) is the sum of the positive roots of glk.
Since 2qk + Mk = qk + pk ≥ 0 and the the right–hand side of (6.6) is a
parabola with vertex at

q0k = −1

2
(Mk + k − 1) < −Mk

2
(6.7)

the Cglk
–eigenvalue of a pattern λ of form (6.1) and weight µ determines

pk(λ) and qk(λ) uniquely as claimed.

We claim now that if K ⊆ V [µ] is a non–zero subspace invariant under Csln ,
then K = V [µ]. To see this, it suffices to show that, for any given pattern λ
of the form (6.1) and weight µ, there exists a Gelfand–Zetlin vector lying in

K such that the corresponding pattern has the same (n−1) row λ
(n−1)
pn−1,qn−1 as

λ, for then a descending induction on n shows that K contains all Gelfand–
Zetlin vectors of weight µ. Since the Casimirs Cglk

have simple spectrum on

V [µ], K contains at least one Gelfand–Zetlin vector vλ′ . Let λ
(n−1)
p′n−1,q

′
n−1

be

the n− 1 row of the corresponding pattern. If p′n−1 = pn−1, then,

q′n−1 = −Mn−1 + p′n−1 = −Mn−1 + pn−1 = qn−1 (6.8)

and we are done. If p′n−1 < pn−1(λ), we may further assume that p′n−1 =

maxeλ
pn−1(λ̃), where the maximum is taken over all patterns λ̃ such that

veλ
∈ K and pn−1(λ̃) ≤ pn−1. Note then that

q′n−1 = −
n−1∑

i=1

µi + p′n−1 < −
n−1∑

i=1

µi + pn−1 = qn−1 ≤ qn (6.9)

It therefore follows by corollary 4.10 that

κθn−1−θnvλ′ = (2En−1,nEn,n−1 + (En−1,n−1 − En,n))vλ′
= av

λ′+ε
(n−1)
1 −ε

(n−1)
n−1

+ bv
λ′−ε

(n−1)
1 +ε

(n−1)
n−1

+ cvλ′
(6.10)

for some a, b, c ∈ C with a 6= 0. Hence, K contains v
λ′+ε

(n−1)
1 −ε

(n−1)
n−1

in

contradiction with the maximality of p′n−1. The case p′n−1 > pn−1 follows
similarly �

Remark. The same method of proof shows for example that the Casimir
algebra Csln acts irreducibily on all weight spaces of the irreducible repre-
sentations with highest weight of the form (p, q, 0, . . . , 0) where p, q are any
integers satisfying p ≥ q ≥ 0. More generally, one can show that if the com-
muting Casimirs Cglk

, k = 2 . . . n, have joint simple spectrum on the weight
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space V [µ] of a simple sln–module V , then Csln acts irreducibly on V [µ].
The proof is similar to that of theorem 6.1 but somewhat more involved
technically and will be given in a future publication.

6.2. Irreducible representations of Csom. Let g = som, with m = 2n or
m = 2n + 1, and identify h∗ and Cn with basis θ1, . . . , θn so that the roots
of g are the θi ± θj, 1 ≤ i 6= j ≤ n if m = 2n and θi ± θj, 1 ≤ i 6= j ≤ n and
±θi, 1 ≤ i ≤ n if m = 2n+ 1. Recall that the defining representation V of g

has highest weight θ1. The aim of this subsection is to prove the following

Theorem 6.2. For any p ∈ N, the action of Csom on the weight spaces of
the simple som–module Vpθ1 of highest weight pθ1 is irreducible.

As a corollary, the monodromy action of Psom on the weight spaces of Vpθ1,
and of Bsom on its zero weight space, is generically irreducible. The proof of
theorem 6.2 for the case m = 2n is given in §6.2.1 and follows readily from
theorem 6.1 and the fact that Vpθ1 decomposes, when restricted to the equal
rank subalgebra gln ⊂ so2n, as a direct sum of irreducible representations
with highest weight of the form (p− q, 0, . . . , 0,−q), with q = 0 . . . p, in such
a way that each so2n–weight space of Vpθ1 is contained in only one of these.
The case m = 2n + 1 requires a little more work since the restriction to
so2n of the so2n+1–module Vpθ1 is multiplicity–free but the corresponding
weight spaces do not possess such a nice property. Still, each decomposes
as a sum of weight spaces for the simple so2n–summands which are readily
seen to be inequivalent, and by the previous discussion irreducible, repre-
sentations of Cso2n . The proof is then completed by showing that the short
root Casimirs κθi

, i = 1 . . . n of so2n+1 define non–zero maps between these
weight spaces. This fact requires an explicit description of the operators κθi

which is obtained in §6.2.2 by realising Vpθ1 as the space of homogeneous
harmonic functions on V ∗ of degree p.

6.2.1. Even orthogonal Lie algebras. Let V ∼= C2n be an even–dimensional
complex vector space endowed with a non–degenerate, symmetric, bilinear
form (·, ·). Split V as the direct sum U ⊕ U∗ of two maximal isotropic
subspaces for (·, ·) which we identify with each other’s dual and consider the
equal rank embedding gl(U) → so(V ) given by X → X ⊕−Xt. Under the
corresponding restriction, the Koike–Terada branching rules [KT] yield5

res
GL(U)
SO(V ) Vpθ1 =

p⊕

q=0

V(p−q)θ1−qθn
(6.11)

Let µ = µ1θ1 + · · · + µnθn be a weight of Vpθ1. Since 1 ∈ gl(U) acts on
the weight space Vpθ1[µ] as multiplication by |µ| = µ1 + · · · + µn and on
V(p−q)θ1−qθn

as multiplication by p− 2q, we deduce from (6.11) that

Vpθ1 [µ] = V(p+|µ|)/2·θ1−(p−|µ|)/2·θn
[µ] (6.12)

5these rules are reviewed in more detail in subsection 7.4.
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Theorem 6.2 for m = 2n now follows from theorem 6.1 �

6.2.2. Odd orthogonal Lie algebras. Let now V ∼= C2n+1, n ≥ 2, be an
odd–dimensional orthogonal vector space with bilinear form (·, ·). Choose
a basis e−n, . . . , e−1, e0, e1, . . . , en such that (ei, ej) = δi,−j and denote the

corresponding coordinate functions by x−n, . . . , x−1, z, x1, . . . , xn. Let V ⊂
V be the orthogonal complement of e0 and

so2n
∼= so(V ) ⊂ so(V ) ∼= so2n+1 (6.13)

the corresponding orthogonal Lie algebra. Identifying V with V
∗

and V
with V ∗ using (·, ·), we denote by SpV and SpV the spaces of homogeneous
polynomials of degree p on V and V respectively, and by HpV , HpV their
subspaces of harmonic functions for the Laplacians

∆ = 2
n∑

i=1

∂i∂−i and ∆ = ∆ + ∂2
z (6.14)

Let ρ = 2
∑n

i=1 xix−i ∈ S2V be the squared norm function on V .

Proposition 6.3.

(i) Any f ∈ SpV may be uniquely written as

f =
∑

k,l≥0
2k+l≤p

hk,lρ
kzl (6.15)

where hk,l ∈ Hp−(2k+l)V .
(ii) The map f −→ (h0,p, h0,p−1, . . . , h0,1) restricts to an so2n–equivariant

isomorphism

HpV ∼=
p⊕

q=0

HqV (6.16)

(iii) Under this isomorphism, the action of the short root Casimirs κθi

of so2n+1 has homogeneous components κdθi
of degrees d = −2, 0,+2

only with respect to the N–grading on HpV given by (6.16). More-
over, if f ∈ HqV
κ−2
θi
f = −2∂i∂−if (6.17)

κ+2
θi
f =

{
−2(ǫ+ 2)(ǫ+ 1)PH(xix−if) if q ≤ p− 2

0 otherwise
(6.18)

where PH(g) denotes the projection of g ∈ SV onto the subspace of
harmonic functions and ǫ is 0 or 1 according to whether p − q is
even or odd.

Proof. (i) follows by expanding f =
∑p

l=0 flz
l in powers of z and then each

homogeneous component fl ∈ Sp−lV in terms of spherical harmonics. Such
expansions are well–known to be unique (see, e.g., [Ho, §4]).
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(ii) Since, for any g ∈ SV ,

∆(ρg) = 4ng + 4Eg + ρ∆g (6.19)

where E =
∑n

i=1 xi∂−i + x−i∂i is the Euler operator giving the N–grading

on SV , we get, for any k ∈ N,

∆(ρkg) = 4k(n + k − 1)ρk−1g + 4kρk−1Eg + ρk∆g (6.20)

so that if g is harmonic of degree q, then ∆(ρkg) = 4k(n+ k − 1 + q)ρk−1g.
It readily follows that the function f =

∑
k,l hk,lρ

kzl ∈ SpV is harmonic if,
and only if, for any k ≥ 1 and l ≥ 0

4k(n − 1 + p− k − l)hk,l = −(l + 1)(l + 2)hk−1,l+2 (6.21)

This shows that the harmonic coefficients hk,l of f are uniquely determined
by (h0,p, . . . , h0,0) and, conversely, that any sequence (g0, . . . , gp) with gq ∈
HqV determines recursively the harmonic coefficients of a harmonic function
f with h0,q = gp−q for any q = 0 . . . p. In fact, for m ≥ 2 and 1 ≤ k ≤ ⌊m2 ⌋

hk,m−2k =
(−1)k

4kk!

m!(n+ p−m− 1)!

(m− 2k)!(n + p−m+ k − 1)!
h0,m (6.22)

(iii) Identifying so2n+1 with V ∧ V , the root vectors eθi
and fθi

may be

chosen as
√

2 · e0 ∧ ei and
√

2 · e−i ∧ e0 respectively [FH] and therefore act
on SV by

eθi
=
√

2(z∂−i − xi∂z) (6.23)

fθi
=
√

2(x−i∂z − z∂i) (6.24)

Thus, κθi
= 1/2(eθi

fθi
+ fθi

eθi
) acts on SV by

−2z2∂i∂−i + 2(1 + x−i∂−i + xi∂i)z∂z + (xi∂i + x−i∂−i)− 2xix−i∂
2
z (6.25)

and therefore, when restricted to HpV , possesses only homogeneous com-
ponents κdθi

of even degree d with |d| ≤ 2. Let now h ∈ HqV be a har-
monic function of degree q and regard it as an element of HpV of the form∑

2k+l=p−q hk,lρ
kzl where the hk,l are determined by (6.22) with h0,p−q = h.

Then, up to terms of strictly lower order in z, κθi
h = −2∂i∂−ihz

p−q+2 which

yields (6.17) since ∂i∂−ih is harmonic. Similarly, let ǫ = p − q − 2⌊p−q2 ⌋ ∈
{0, 1} so that the expansion of h is of the form

h0,p−qz
p−q + · · · + h⌊ p−q

2
⌋−1,ǫ+2 ρ

⌊ p−q
2

⌋−1zǫ+2 + h⌊ p−q
2

⌋,ǫ ρ
⌊ p−q

2
⌋zǫ (6.26)

Then, up to terms of strictly higher order in ρ, the coefficient of zǫ in the
expansion of κθi

h is equal to

−2(ǫ+ 2)(ǫ+ 1)PH(xix−ih⌊ p−q
2

⌋−1,ǫ+2)ρ
⌊ p−q

2
⌋−1 (6.27)

Since this should be of the form h̃⌊ p−q
2

⌋−1,ǫρ
⌊ p−q

2
⌋−1 where h̃⌊ p−q

2
⌋−1,ǫ is a

harmonic coefficient in the expansion of some h̃ ∈ Hq−2V , it readily follows

that h̃ = −2(ǫ+ 2)(ǫ+ 1)PH(xix−ih) and therefore that (6.18) holds �
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Lemma 6.4. Let µ = µ1θ1 + · · · + µnθn be a weight of HqV and set |µ| =∑
i |µi|. Then,

(i) |µ| ≤ q and |µ| = q mod 2.
(ii) µ is also a weight of Hq+2V and, provided q ≤ p − 2, any κ+2

θi

restricts to a non–zero map HqV [µ] −→ Hq+2V [µ].
(iii) If |µ| < q, then µ is also a weight of Hq−2V and, for some 1 ≤ i ≤ n,

κ−2
θi

restricts to a non–zero map HqV [µ] −→ Hq−2V [µ].

Proof. (i) A function f ∈ SV is of weight µ iff it is a linear combination
of monomials of the form

f =
∑

m±1,...,m±n

λm1,m−1,...,mn,m−nx
m1
1 x

m−1

−1 · · · xmn
n x

m−n
−n (6.28)

where the m±i ∈ N satisfy mi − m−i = µi for any 1 ≤ i ≤ n. If f is
homogeneous of degree q, then, for each of the monomials involved,

q =
n∑

i=1

(mi +m−i) =
n∑

i=1

(2min(mi,m−i) + |µi|) (6.29)

(ii) It is a simple consequence of the decomposition into spherical harmonics
that a function f ∈ SV has a zero harmonic projection only if f is divisible
by ρ. Since dimV ≥ 4, ρ is an irreducible polynomial and it follows from
(6.18) that, if f ∈ HqV with q ≤ p − 2, κ+2

θi
f is zero iff f itself is divisible

by ρ. Since f is harmonic however, f = PH(f) = 0. Thus, if q ≤ p− 2, κ+2
θi

restricts to an injective map on HqV [µ] the image of which lies in Hq+2V [µ]
since κθi

is of weight 0.

(iii) Expanding f ∈ SqV [µ] as in (6.28) shows that ∂i∂−if = 0 iff only
monomials with mim−i = 0 are involved. Thus, if f is harmonic and lies in
the joint kernel of all κ−2

θi
, it follows from (6.17) and (6.29) that q = |µ|. As

a consequence, if |µ| < q, at least one κ+2
θi

restricts to a non–zero map on

HqV [µ] which, because κθi
is of weight zero, maps into Hq−2V [µ] �

Proof of theorem 6.2 for m = 2n+1. Let µ be a weight of Vpθ1
∼= HpV .

Regarding µ as an so2n–weight and using the decomposition (6.16) and
lemma 6.4, we find

HpV [µ] =
⊕

|µ|≤q≤p
q=|µ| mod 2

HqV [µ] (6.30)

By §6.2.1, the above summands are irreducible representation of Cso2n which
are moreover inequivalent since the Casimir operator of so2n acts on HqV ∼=
Vqθ1 as multiplication by q(q + 2(n − 1)). Thus, if {0} 6= K ⊆ HpV [µ] is a

subspace invariant under Cso2n+1 it must contain one of theHqV appearing in
(6.30). Applying (ii) and (iii) of lemma 6.4, we see however that K contains
them all and therefore that K = HpV [µ] �
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6.3. Irreducible representations of Csp2n
. Let V ∼= C2n be a symplectic

vector space and sp(V ) ∼= sp2n the corresponding symplectic Lie algebra.
Let 〈·, ·〉 be the symplectic form on V and choose a basis e±1, . . . , e±n of V
satisfying 〈ei, ej〉 = sign(i)δi+j,0. Consider as Cartan subalgebra h of sp(V )
the span of the diagonal matrices Di = Eii − E−i,−i, i = 1 . . . n, where
Eabec = δbcea are the elementary matrices in the basis e±i and let {θi} be
the basis of h∗ ∼= Cn dual to {Di}. Then, the long roots of sp(V ) are ±2θi,
1 ≤ i ≤ n and the short ones θi ± θj, 1 ≤ i 6= j ≤ n. Note that, as a simple
sp2n–module, V has highest weight θ1.

Theorem 6.5. For any p ∈ N, the action of Csp2n
on the weight spaces of

the simple sp2n–module Vpθ1 of highest weight pθ1 is irreducible.

Proof. We proceed, in spirit, as in the proof of theorem 6.1 for g = sln with
the Gelfand–Zetlin Casimirs Cglk

, k = 1 . . . n, replaced by the (commuting)
long root Casimirs κ2θi

. We claim that the operators κ2θi
have joint simple

spectrum on any weight space of Vpθ1. To see this, realise Vpθ1 as the space
SpV of homogeneous functions of degree p on V ∗, which we identify with V
by means of the symplectic form 〈·, ·〉. Let x±1, . . . , x±n be the coordinate
functions corresponding to e±1, . . . , e±n and consider the weight basis of
SpV given by the monomials

xα,β = xα1
1 · · · xαn

n xβ1
−1 · · · xβn

−n (6.31)

where α, β ∈ Nn are multi–indices satisfying |α| + |β| = p. The sl2–triple
e2θi

, f2θi
and h2θi

acts on V as Ei,−i, E−i,i and Eii−E−i−i respectively [FH,
§16.1], and therefore on SV as

e2θi
= xi∂−i, f2θi

= x−i∂i and h2θi
= xi∂i − x−i∂−i (6.32)

so that

e2θi
xα,β = βix

α+εi,β−εi (6.33)

f2θi
xα,β = αix

α−εi,β+εi (6.34)

h2θi
xα,β = (αi − βi)xα,β (6.35)

where εi is the ith basis vector of Zn. It follows that the monomial xα,β lies
in the (αi− βi) weight space of an irreducible sl2θi

2 of highest weight αi + βi
and therefore that

C2θi
xα,β =

1

2
(αi + βi)(αi + βi + 2)xα,β (6.36)

For any given µ ∈ Zn, the weight space SpV [µ] is spanned by all xα,β with
α− β = µ. Since the function t→ t(t+ 2)/2 is injective on t ≥ 0, the C2θi

–
eigenvalue of a monomial xα,β ∈ SpV [µ] determines αi + βi and therefore
αi, βi uniquely since αi−βi = µi. It follows that the long root Casimirs κ2θi

have simple spectrum on SpV [µ].
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We turn now to the action of the short root Casimirs κθi−θj
and κθi+θj

on SpV . The root vectors eθi−θj
and fθi−θj

act on V as Eij − E−j−i and
Eji − E−i−j respectively [FH, §16.1] and therefore on SV as

eθi−θj
= xi∂j − x−j∂−i (6.37)

fθi−θj
= xj∂i − x−i∂−j (6.38)

from which it readily follows that

κθi−θj
xα,β =

1

2
(αi(αj + 1) + (αi + 1)αj + βi(βj + 1) + (βi + 1)βj)x

α,β

− αiβixα−εi+εj ,β−εi+εj

− αjβjxα+εi−εj ,β+εi−εj

(6.39)

Similarly, eθi+θj
and fθi+θj

act on V by Ei−j +Ej−i and E−ji+E−ij respec-
tively and therefore on SV as

eθi+θj
= xi∂−j + xj∂−i (6.40)

fθi+θj
= x−i∂j + x−j∂i (6.41)

from which it readily follows that

κθi+θj
xα,β =

1

2
(αi(βj + 1) + (αi + 1)βj + αj(βi + 1) + (αj + 1)βi)x

α,β

+ αiβix
α−εi+εj ,β−εi+εj

+ αjβjx
α+εi−εj ,β+εi−εj

(6.42)

Let now µ ∈ Zn be a weight of SpV . Since the long root Casimirs κ2θi

generate the algebra of diagonal matrices in the monomial basis {xα,β} of
SpV [µ] and the first terms in the right–hand sides of (6.39) and (6.42) are
diagonal in that basis, the irreducibility of SpV [µ] under Cg will follow if we
can show that any subspace K ⊆ SpV [µ] containing at least one monomial
and invariant under the shift operators Sij, 1 ≤ i 6= j ≤ n given by

Sij x
α,β = αiβix

α−εi+εj ,β−εi+εj (6.43)

is equal to SpV [µ]. Let xα,β ∈ SpV [µ] be a fixed monomial. We wish to prove

by induction on i = 1 . . . n − 1 that there exists a monomial xα
(i),β(i) ∈ K

such that

α
(i)
j = αj and β

(i)
j = βj (6.44)

for any 1 ≤ j ≤ i. It then follows easily from this that xα,β ∈ K since

αn − βn = µn = α(n−1)
n − β(n−1)

n (6.45)
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and

αn + βn = p−
n∑

j=1

(αj + βj) = p−
n∑

j=1

(α
(n−1)
j + β

(n−1)
j )

= α(n−1)
n + β(n−1)

n

(6.46)

so that α = α(n−1) and β = β(n−1). Let

Kα,β
i = {(α̃, β̃)|xeα,eβ ∈ K and α̃j = αj, β̃j = βj , ∀1 ≤ j ≤ i− 1} (6.47)

a non–empty set by induction. If there exists a pair (α̃, β̃) ∈ Kα,β
i with

α̃i > αi, then β̃i > βi since α̃i − β̃i = µi = αi − βi and

Seαi−αi
ii+1 xeα,eβ = α̃i(α̃i − 1) · · · (αi + 1) · β̃i(β̃i − 1) · · · (βi + 1)

· xeα−(eαi−αi)(εi−εi+1),eβ−(eβi−βi)(εi−εi+1)
(6.48)

implies that xeα−(eαi−αi)(εi−εi+1),eβ−(eβi−βi)(εi−εi+1) ∈ K so that Kα,β
i+1 is non–

empty. We may therefore assume that α̃i ≤ αi for any pair (α̃, β̃) ∈ Kα,β
i .

Choose (α̃, β̃) ∈ Kα,β
i with α̃i maximal. If α̃i = αi, we are done. Otherwise,

note that, for any j = 1 + 1 . . . n,

Sjix
eα,eβ = α̃jβ̃jx

eα+εi−εj ,eβ+εi−εj (6.49)

implies that xeα+εi−εj ,eβ+εi−εj ∈ K, thus violating the maximality of α̃i,

unless α̃j β̃j = 0. Thus, for any such j, min(α̃j , β̃j) = 0 whence

p = |α̃|+ |β̃|

= |µ|+ 2

n∑

k=1

min(α̃k, β̃k)

= |µ|+ 2

i−1∑

k=1

min(α̃k, β̃k) + min(α̃i, β̃i)

< |µ|+ 2
i∑

k=1

min(αk, βk)

≤ |µ|+ 2
n∑

k=1

min(αk, βk)

= p

(6.50)

and therefore a contradiction �

Remark. Since the highest weights of the adjoint representations of sln and
sp2n are (1, 0, . . . , 0,−1) and (2, 0, . . . , 0) respectively, theorems 6.1 and 6.5
might lead one to conjecture that the weight spaces of the pth Cartan power
of the adjoint representation of any simple Lie algebra g are irreducible
under the Casimir algebra Cg. We will prove in §7.7 that this is true for the
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zero weight space when p = 1, 2 and show in §7.4 that this fails for g = som
if p ≥ 3.

6.4. Irreducible representations of Cg, g exceptional. Let g be a com-
plex, simple Lie algebra of exceptional type and let θ be the highest root of
g.

Theorem 6.6. For any p ∈ N, there exists a subspace Kp of the zero weight
space of the simple g–module with highest weight pθ which is irreducible
under Cg and such that limp→∞ dimKp =∞.

Proof. We shall need the following simple

Lemma 6.7. Let R be a root system and α 6= ±β ∈ R two long roots which
are not orthogonal. Then, R ∩ (Zα+ Zβ) is a root system of type A2.

Proof. Since ‖α‖ = ‖β‖, one has 〈α, β∨〉 = ±1. Replacing β by −β if
necessary, we may assume that 〈α, β∨〉 = −1. Thus, ±α,±β,±(α + β) =
±σβα ∈ R and it is easy to check that these are the only Z–linear combi-
nations of α, β which lie in R since any other has norm strictly larger than
‖α‖ �

An inspection of the tables in [Bo] shows that if g is of exceptional type, there
is a unique simple root α of g which is not orthogonal to θ and is, moreover,
long. Applying the above lemma to the pair (α, θ) yields a subalgebra

l = Chα ⊕ Chθ
⊕

γ∈R(g)∩(Zα+Zθ),γ≻0

Ceγ ⊕ Cfγ ⊂ g (6.51)

which is isomorphic to sl3 and has as highest root vector eθ. Choose hl =
Chα ⊕ Chθ as Cartan subalgebra of l and denote by l∗p (resp. g∗p) the
irreducible representation of l (resp. g) with highest weight pθ. Since l∗p

is generated by e⊗pθ inside l⊗p ⊂ g⊗p, it follows that g∗p contains l∗p as
l–submodule. This inclusion induces one of weight spaces l∗p[0] ⊂ g∗p[0]
since h = hl⊕ h⊥l and h⊥l centralises l. By theorem 6.1, l∗p[0] is irreducible
under Cl. Let U = Cgl∗p[0] be the Cg–submodule of g∗p[0] generated by l∗p[0]
and decompose it as a sum

⊕
i Ui of irreducible summands with projections

pi. By Schur’s lemma, the restriction of each pi to l∗p[0] is either zero or
injective. Thus, the dimension of at least one of the Ui’s is greater or equal
to that of l∗p[0] and therefore tends to infinity with p �

7. Zero weight spaces of self–dual g–modules

7.1. The aim of this section is to show that, when g ≇ sl2, sl3 is classical or
g2, the zero weight spaces of most self–dual, simple g–modules are reducible
under the Casimir algebra of g, thus strengthening the results of section 4.

Our results are perhaps more appealing for g = sln and g2, where we give
a complete classification of those self–dual V for which V [0] is irreducible
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in subsections 7.2 and 7.3 respectively. For g = sln, these are the Cartan
powers of the adjoint representation considered in §6.1, another infinite series
if n = 4, and the representations with highest weight of the form

λ = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
k

), 0 ≤ k ≤ n/2

For g = g2, only finitely many V turn out to have an irreducible zero weight
space, namely the first and second Cartan powers of the fundamental rep-
resentations.

The reducibility of V [0] is obtained by showing that the Chevalley involution
of g which, as pointed out in §4.4, acts on any self–dual g–module and cen-
tralises the Casimirs κα, does not act as a scalar on V [0]. In most cases, this
is achieved by using proposition 4.7, that is finding a reductive subalgebra
r ⊂ g such that the restriction of V to r contains a non self–dual summand
with non–trivial intersection with V [0]. For g = sln, we use r = glk for some
2 ≤ k ≤ n − 1, and for g = g2, r = sl3. The corresponding restrictions are
computed by using the Gelfand–Zetlin and Perroud branching rules respec-
tively [GZ1, Pe].

The method of proof is very similar for the cases where g = so2n+1, so2n

and sp2n, which are treated in subsections 7.4–7.6. The reductive subalge-
bra in this case is r = gln and restriction to it is computed by using the
Koike–Terada branching rules [KT]. These however are combinatorial, in
that they express the branching as a sum of gln–modules with manifestly
positive multiplicities, only when the highest weight λ = (λ1, . . . , λn) of the
g–module is such that λi = 0 for i > n/2 and we restrict to this range
for technical simplicity. Within it, we give a complete classification of all
simple, self–dual V for which V [0] is irreducible under Cg. The general case,
and that of the Lie algebras of types E and F will be dealt with in a future
publication.

The analysis of the zero weight spaces of the small (i.e., first and second)
Cartan powers of the adjoint representation of g, which is needed to complete
the above classification results, is relegated to a separate subsection 7.7 since
they turn out to be irreducible for any g. Finally, in §7.8, we systematise
our findings by conjecturing that, for any g and self–dual g–module V , V [0]
is irreducible under Cg iff the Chevalley involution acts as a scalar. We note
also that the classification sketched above proves this conjecture for g = sln
and g2, as well as for the irreducible representations of g = so2n+1, so2n, sp2n

with highest weight λ such that λi = 0 for i > n/2. We also give a conjec-
turally complete list of all self–dual, irreducible representations of these Lie
algebras for which V [0] is irreducible under Cg.
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Remark. Since the reducibility of the self–dual zero weight spaces V [0] we
consider is always obtained by showing that the Chevalley involution does
not act as a scalar on V [0], our results also imply, by corollary 5.4, that
the quantum Weyl group action of Bg on the zero weight spaces of most
self–dual U~g–modules is reducible.

7.2. Self–dual representations of sln.

Theorem 7.1. Let V be a simple, self–dual sln–module with non–trivial
zero weight space V [0]. Then, V [0] is irreducible under the Casimir algebra
Csln if the highest weight λ of V is of one of the following forms

(i) λ = (p, 0, . . . , 0,−p), p ∈ N.
(ii) λ = (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
k

), for some 0 ≤ k ≤ n/2

(iii) λ = (p, p,−p,−p), p ∈ N.

Conversely, if λ is of none of the above forms, then, for some k < n, V
contains a simple glk–summand U with U ≇ U∗ and U ∩ V [0] 6= {0}. In
particular, V [0] is reducible under Csln by proposition 4.7.

Since the case (i) follows from theorem 6.1, the “if” part of theorem 7.1 is
settled by the following two lemmas.

Lemma 7.2. If Vn,k is the simple sln–module with highest weight

λ
(n)
k = (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
k

) (7.1)

then Vn,k[0] is irreducible under Csln .

Proof. We claim that the Casimirs Cglm
, m = 2, . . . n, have joint simple

spectrum on Vn,k[0]. Indeed, the mth row of a zero weight Gelfand–Zetlin

pattern corresponding to Vn,k is of the form λ
(m)
l , for some 0 ≤ l ≤ m/2.

Since Cglm
acts as multiplication by 2l(m− l+1) on the representation with

highest weight λ
(m)
l and the function f(x) = 2x(m − x + 1) is injective on

the interval [0, (m + 1)/2], the Cglm
–eigenvalue of a zero weight Gelfand–

Zetlin pattern determines its mth row uniquely, as claimed. The proof is
now completed as in theorem 6.1 �

Lemma 7.3. For any p ∈ N, let Vp be the simple sl4–module with highest
weight (p, p,−p,−p). Then, Vp[0] is irreducible under Csl4 .

Proof. The Gelfand–Zetlin patterns corresponding to Vp[0] are of the form

p p −p −p
p 0 −p

q −q
0

(7.2)
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for some 0 ≤ q ≤ p, so that they are separated by the action of the Casimir
of sl2 ⊂ sln. The proof is now completed as in theorem 6.1 �

Remark. Note that Vp is the 2pth Cartan power of the second exterior

power
∧2 C4 of the vector representation of sl4. Under the isomorphism

sl4 ∼= so6, the latter becomes the vector representation of so6 so that lemma
7.3 is consistent with theorem 6.2.

Proof of theorem 7.1. Assume that the highest weight λ of V is not
of the form (i)–(iii) and let

s(λ) = |{i = 1 . . . n− 1|λi − λi+1 > 0}| (7.3)

be the number of steps in the corresponding Young diagram. Noting that
s(λ) = 2 for the highest weights of the form (i)–(iii), we begin by proving
that V [0] is reducible under Csln if s(λ) ≥ 3. Suppose first that n = 2k + 1
is odd. Since V [0] 6= {0}, we may assume that the sum |λ| of the entries in
λ is zero so that, by self–duality, λ is of the form

λ = (a1, . . . , al, 0, . . . , 0,−al, . . . ,−a1) (7.4)

for some a1 ≥ · · · ≥ al > 0, with at least one middle zero. Since s(λ) ≥ 3,
there exists some 1 ≤ i ≤ l − 1 such that ai > ai+1. Let µ be the sln−1–
weight obtained by replacing ai by ai− 1 in the ith position, −al by −al+1
in the n − l + 1th position and by omitting the middle zero. Then, |µ| =∑n−1

i=1 µi = |λ| = 0 and

µi + µn−i = −1 6= 1 = µl + µn−l (7.5)

so that µ is a non–self dual weight of sln−1 such that Vµ ∩ V [0] 6= {0}.

Consider now the case where n = 2k is even. Assuming again that |λ| = 0,
we find that

λ = (a1, . . . , al, 0, . . . , 0︸ ︷︷ ︸
n0

,−al, . . . ,−a1) (7.6)

where the number n0 of zeroes is even. If n0 > 0, the sln−1 weight µ
obtained by replacing the two middle zeroes by a single one in λ is self–
dual and satisfies |µ| = 0 and s(µ) = s(λ). By our previous analysis, there
therefore exists a non–self dual sln−2 weight ν ≺ µ ≺ λ such that |ν| = 0
and Vν ∩ V [0] 6= 0. If, on the other hand, n0 = 0, then

λ = (a1, · · · , an/2,−an/2, · · · ,−a1) (7.7)

with an/2 > 0. Let 1 ≤ i ≤ n/2 − 1 be such that ai > ai+1. Then, the
non–self dual sln−1–weight µ ≺ λ obtained by replacing ai by ai − 1 in the
ith position and the pair an/2,−an/2 allows to conclude.
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Consider now the case s(λ) ≤ 2. By self–duality, we may take λ of the form

λ = (p, . . . , p︸ ︷︷ ︸
k

, 0, . . . , 0,−p, . . . ,−p︸ ︷︷ ︸
k

) (7.8)

for some 0 ≤ k ≤ n/2. By assumption, k ≥ 2 and p > 1 since λ is not
of the forms (i)–(ii). If n is odd, replacing the innermost pair (p,−p) by
(p − 1,−(p − 1)) and suppressing the middle zero yields an sln−1 weight µ
with s(µ) ≥ 3 and our previous analysis allows to conclude. If n is even and
there are two or more middle zeroes, we suppress one of them to obtain an
sln−1–weight ν of of the form treated in the previous paragraph. If there
are no middle zeroes, then by assumption n ≥ 6. We change the innermost
pair (p,−p) to 0 and proceed as above �

7.3. Representations of g2. Recall that, for g = g2, every g–module V is
self–dual and has a non–trival zero weight space. The aim of this subsection
is to prove the following.

Theorem 7.4. The zero weight space V [0] of a simple g2–module V is
irreducible under the Casimir algebra Cg2 iff V is a trivial or fundamental
representation, or its second Cartan power.

The proof of the theorem is given in the next three propositions. We begin
by reviewing Perroud’s branching rules for the equal rank inclusion sl3 ⊂ g2

[Pe]. Let α1, α2 be the long and short simple roots of g2 respectively and
̟1,̟2 the corresponding fundamental weights6. Let Vλ be the simple g2–
module with highest weight λ = m1̟1+m2̟2. Consider the set of Gelfand–
Zetlin patterns µ(a, b, c) of the form

m1 +m2 m2 0
a b

c
(7.9)

Then,

ressl3
g2
Vλ =

⊕

µ(a,b,c)

V(m1+c,a−m2+b,0) (7.10)

Proposition 7.5. The zero weight spaces of the fundamental representa-
tions of g and of their second Cartan powers are irreducible under Cg.
Proof. By theorem 7.24, V [0] is irreducible if V is the first or second Cartan
power of V̟1 since the latter is the adjoint representation of g. Taking now
V = V̟2, V2̟2 , we obtain, from Perroud’s branching rules

ressl3
g2
V̟2 = C⊕R1 (7.11)

ressl3
g2
V2̟2 = ad(sl3)⊕R2 (7.12)

where R1, R2 are reducible sl3–modules with trivial zero weight spaces, and
the irreducibility of V [0] follows from theorem 4.1 �

6we follow here Perroud’s convention [Pe] which are the opposite of the usual ones
[Bo, FH]
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Proposition 7.6. Let V be a simple g2–module with highest weight λ =
m1̟1 + m2̟2. If m1 + m2 ≥ 3, the zero weight space of V is reducible
under Cg2.

Proof. By proposition 4.7, it suffices to prove that the restriction of V to
sl3 contains an irreducible summand U with U [0] 6= {0} and U ≇ U∗. We
begin by treating the special cases m1 = 0 and m2 = 0. Assume first that
m2 = 0 so that b = 0 in (7.9). If m1 = 0 mod 3, then setting a = c = 0 in
(7.10) yields ressl3

g2
V ⊃ V(m1,0,0). Similarly, if m1 = 1 mod 3, with m1 > 1,

taking a = 1 and c = 1 yields ressl3
g2
⊃ V(m1+1,1,0). Finally, if m1 = 2 mod 3,

m1 > 2, a = 1, c = 0 yields ressl3
g2
⊃ V(m1,1,0) as required. Assume now that

m1 = 0 and m2 ≥ 3 so that a = m2 in (7.9). Then, taking b = 0, c = 3, we
find ressl3

g2
⊃ V(3,0,0).

Consider now the case m1,m2 > 0. The values of (a, b, c) corresponding to
the Gelfand–Zetlin patterns (7.9) are readily seen to span the integral points
of a convex polytope in R3 with vertices given by

(m2, 0, 0), (m2, 0,m2), (m2,m2,m2), (7.13)

(m1 +m2, 0, 0), (m1 +m2, 0,m1 +m2), (7.14)

(m1 +m2,m2,m2), (m1 +m2,m2,m1 +m2) (7.15)

The image P (m1,m2) ⊂ R3 of this polytope under the Perroud map π :
(a, b, c) → (m1 + c, a − m2 + b, 0) is the convex hull of the images of the
above points, namely

(m1, 0, 0), (m1 +m2, 0, 0), (m1 +m2,m2, 0), (7.16)

(m1,m1, 0), (2m1 +m2,m1, 0), (7.17)

(m1 +m2,m1 +m2, 0), (2m1 +m2,m1 +m2, 0) (7.18)

and is readily seen to be described by the following inequalities in the plane
(µ1, µ2, 0) ⊂ R3

m1 ≤ µ1 ≤ 2m1 +m2 (7.19)

0 ≤ µ2 ≤ m1 +m2 (7.20)

0 ≤ µ1 − µ2 ≤ m1 +m2 (7.21)

Moreover,

ressl3
g2
V =

⊕

µ∈P (m1,m2)∩N3

Vµ ⊗ C|π−1(µ)| (7.22)

We seek to derive a contradiction from the assumption that all summands in
(7.22) with non–trivial zero weight space are self–dual. Let U be a summand
with U [0] 6= {0} and U ∼= U∗ so that its highest weight is of the form
µ = (2k, k, 0) for some k ∈ N. Let τ : Z3 → Z3 be defined by

τ(ν1, ν2, ν3) = (ν1 − 1, ν2 + 1, ν3) (7.23)
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so that, if τ(µ) ∈ P (m1,m2) (resp. τ−1(µ) ∈ P (m1,m2)) then Vτ(µ) ⊂ V
(resp. Vτ−1(µ) ⊂ V ) is a non self–dual sl3–summand with non–trivial zero
weight space. We shall need the following

Lemma 7.7. Assume that m1,m2 6= 0 and that µ = (2k, k, 0) ∈ P (m1,m2).

(i) If τ(µ) /∈ P (m1,m2), then k ∈ {1,m1/2}.
(ii) If τ−1(µ) /∈ P (m1,m2), then k ∈ {m1 +m2 − 1,m1 +m2/2}.

Proof. (i) By assumption, τ(µ) violates at least one of the inequalities
(7.19)–(7.21), so that at least one of the following conditions holds

µ1 = m1 (7.24)

µ2 = m1 +m2 (7.25)

µ1 − µ2 ∈ {0, 1} (7.26)

The condition k = µ1 − µ2 = 0 is ruled out by the fact that (0, 0, 0) /∈
P (m1,m2) ifm1 > 0. Similarly, k = µ2 = m1+m2 leads to (2(m1+m2),m1+
m2, 0) ∈ P (m1,m2) which violates (7.19) since m2 > 0. We are therefore
left with µ1 = m1 or µ1 − µ2 = 1 which lead to k = m1/2, 1 respectively.
(ii) Similarly, τ−1(m) /∈ P (m1,m2) iff at least one of the following equations
holds

µ1 = 2m1 +m2 (7.27)

µ2 = 0 (7.28)

µ1 − µ2 ∈ {m1 +m2 − 1,m1 +m2} (7.29)

µ2 = 0 and µ1 − µ2 = m1 +m2 imply that µ = (0, 0, 0) and µ = (2(m1 +
m2),m1 + m2) respectively both of which are ruled out by m1,m2 > 0.
Thus, µ1 = 2m1 + m2 or µ1 − µ2 = m1 + m2 − 1 hold yielding k ∈
{m1 +m2/2,m1 +m2 − 1} �

Returning to our main argument, if all sl3–summands in V with non–trivial
zero weight spaces are self–dual then τ(µ), τ−1(µ) /∈ P (m1,m2) for any
µ ∈ P (m1,m2) of the form (2k, k, 0). By the above lemma, this implies

{1,m1/2} ∩ {m1 +m2 − 1,m1 +m2/2} 6= ∅ (7.30)

so that at least one of the following equations holds

m1 +m2 = 2 (7.31)

m1 +m2/2 = 1 (7.32)

m1/2 +m2 = 1 (7.33)

m1/2 +m2/2 = 0 (7.34)

contradicting the fact that m1 +m2 ≥ 3 �

Proposition 7.8. Let U be the Cartan product of the two fundamental
representations of g2. Then, U [0] is reducible under Cg2.
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Proof. It suffices to show that the Chevalley involution of g = g2 does
not act as a scalar on U [0]. Let α1, α2 be the short and long simple roots
respectively 7 and label the positive roots by

αi = (i− 2)α1 + α2, 2 ≤ i ≤ 5 and α6 = 3α1 + 2α2 (7.35)

so that the highest root is θ = α6. The corresponding fundamental weights
̟1,̟2 of g are

̟1 = 2α1 + α2 = α4 and ̟2 = 3α1 + 2α2 = α6 (7.36)

so that V̟2
∼= ad(g2) and V = V̟1

∼= C7 has weights 0 and ±αi, i = 1, 3, 4
[FH, §22.1]. Choose a Cartan–Weyl basis eαi , fαi , hα1 , hα2 of g and a weight
basis v±αi , i = 1, 3, 4 and v0 of V̟1 where vβ has weight β. The highest
weight vector in U ⊂ g2 ⊗ V is eα6 ⊗ vα4 so that

u0 = fα4fα6 eα6 ⊗ vα4 ∈ U [0] (7.37)

Computing u0 explicitly yields

u0 = fα4 (−hα6 ⊗ vα4 + aeα6 ⊗ v−α3)

= −α4(hα6)fα4 ⊗ vα4 + bhα6 ⊗ v0 + ceα3 ⊗ v−α3

(7.38)

where the constants a, b, c depend upon the choices of the basis of V̟i ,
i = 1, 2 and are not zero by elementary sl2–representation theory. On the
other hand, if Θ is the Chevalley involution of g, then Θ hαi = −hαi and,
up to multiplicative constants

Θ eαi = fαi Θ fαi = eαi Θ vαi = v−αi (7.39)

so that Θu0 is not proportional to u0 �

7.4. Self–dual representations of orthogonal and symplectic Lie al-

gebras. Let g be one of so2n+1, so2n, sp2n and retain the notation of sub-
sections 6.2 and 6.3. Let V be a simple g–module with highest weight
λ =

∑n
i=1 λiθi. Recall that, if g ∼= so2n, V is self–dual iff λn = 0 and that

V is always self–dual if g is isomorphic to so2n+1 or sp2n. The zero weight
space V [0] of V is non–trivial iff |λ| =∑i λi ∈ 2N if g ∼= sp2n, iff λi ∈ N for
any 1 ≤ i ≤ n if g ∼= so2n+1 and iff λi ∈ Z for any 1 ≤ i ≤ n and |λ| ∈ 2N

for g ∼= so2n.

Assume now that V ∼= V ∗, V [0] 6= {0} and that λ satisfies

λi = 0 for i > n/2 (7.40)

The aim of this subsection is to prove the following

7we adhere now to the standard notation [FH]
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Proposition 7.9. If λ 6= 0 is of none of the following forms

λ = (p, 0, 0, . . . , 0), p ∈ N (7.41)

λ = (2, 1, 0, . . . , 0) (7.42)

λ = (2, 2, 0, . . . , 0) (7.43)

λ = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0), 1 ≤ k ≤ n (7.44)

then, for some k ≤ n, V contains a simple, non–self dual glk–summand U
with U ∩ V [0] 6= {0}. In particular, V [0] is reducible under the Casimir
algebra Cg by proposition 4.7.

The (ir)reducibility of V [0] under Cg for λ of one of the forms (7.41)–(7.44)
will be treated in subsections 7.5 and 7.6. The proof of proposition 7.9 relies
on the branching rules for the equal rank inclusion gln ⊂ g obtained by Koike
and Terada [KT, thm. A1] which we begin by reviewing. Let Va, Vb, Vc be
the simple gln–modules with highest weights a, b, c ∈ Zn respectively and
denote by

LRc
a,b = dimHomgln

(Vc, Va ⊗ Vb) (7.45)

the corresponding tensor product multiplicity given by the Littlewood–
Richardson rules [FH]. Let

[b, c] = (b1, . . . , bn)− (cn, . . . , c1) (7.46)

be the highest weight of Vb ⊗ V ∗
c . Then, for any highest weight λ satisfying

(7.40),

res
gln
so2n+1 Vλ =

⊕

β,κ∈Pn

LRλ
β,κ

⊕

µ,ν∈Pn

LRβ
µ,ν V[µ,ν] (7.47)

res
gln
sp2n

Vλ =
⊕

β,κ∈Pn

LRλ
β,2κ

⊕

µ,ν∈Pn

LRβ
µ,ν V[µ,ν] (7.48)

res
gln
so2n Vλ =

⊕

β∈Pn,κ∈Pn/2

LRλ
β,(2κ)′

⊕

µ,ν∈Pn

LRβ
µ,ν V[µ,ν] (7.49)

In (7.47)–(7.49), Pn ⊂ Nn is the set of partitions with at most n parts,
Pm ⊂ N∞ is the set of partitions whose parts are at most equal to m and, for
ρ ∈ Pm, ρ′ ∈ Pm is the conjugate partition. Note that, by the Littelwood–
Richardson rules, the β, µ, ν involved in the above sums all satisfy (7.40).
In particular,

[µ, ν] =

{
(µ1, . . . , µn/2,−νn/2, . . . ,−ν1) if n is even

(µ1, . . . , µ(n−1)/2, 0,−ν(n−1)/2, . . . ,−ν1) if n is odd
(7.50)

so that V[µ,ν] is self–dual iff µ = ν since V ∗
[µ,ν] = V[ν,µ].
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We will use the above branching formulae mostly with β = λ and κ = 0 by
showing the existence of µ, ν ∈ Pn with

LRλ
µ,ν 6= 0, (7.51)

µ 6= ν and |µ| = |ν| (7.52)

where |µ| = ∑
i µi, so that V[µ,ν] ⊂ Vλ isn’t self–dual but has a non–trivial

zero weight space. To this end, we need an effective way to check (7.51). This
is provided by the Parthasarthy–Ranga Rao–Varadarajan (PRV) conjecture
[PRV] proved by Kumar [Ku]. Following [Ku], we denote by µ the unique
dominant weight in the Weyl group orbit of a gln–weight µ.

Theorem 7.10 (Kumar). Let λ, µ, ν be integral gln–weights with λ domi-
nant and

λ = µ+ ν (7.53)

Then, LRλ
µ,ν 6= 0.

In the light of the above theorem, it is sufficient to find weights µ′, ν ′ ∈ Nn

such that λ = µ′ + ν ′ and |µ′| = |ν ′| and then take µ = µ′, ν = ν ′, provided
µ 6= ν. When this last requirement cannot be met, we will find a non self–
dual glk–summand of the self–dual V[µ,ν] by resorting to theorem 7.1.

Proof of proposition 7.9. Assume first that |λ| =∑n
i=1 λi is even. Let

Io = {i| λi ∈ 2N + 1} (7.54)

and set

λe =
∑

i/∈Io

λiei and λo =
∑

i∈Io

λiei (7.55)

where ei is the canonical basis of Zn, so that λ = λe + λo. Since |λ| ∈ 2N,
|Io| is even. Partition Io as I+

o ⊔ I−o with |I±o | = |Io|/2 and set

λ±o =
∑

i∈I±o

λi + 1

2
ei +

∑

i∈I∓o

λi − 1

2
ei ∈ Nn (7.56)

Let

µ± = λe/2 + λ±o ∈ Nn (7.57)

so that

λ = µ+ + µ− with |µ+| = |µ−| (7.58)

Choosing β = λ and κ = 0 in the Koike–Terada branching formulae and
using the PRV conjecture we readily obtain that the restriction of V to gln
contains a summand with highest weight [µ+, µ−]. If µ+ 6= µ− this summand

isn’t self–dual and the theorem follows. If, on the other hand, µ+ = µ− but
neither are of the form

(p, 0, . . . , 0), (p, p, 0, . . . , 0) or (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) (7.59)
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for some p ∈ N and k ≤ n/2, then V
[µ+,µ−]

is a self–dual gln–module but,

by theorem 7.1 contains a non–self dual glk–summand U with U∩V [0] 6= {0}.

We need therefore only consider the case where µ+ = µ− and both are of the
form (7.59). If, under this assumption, λo 6= 0, then all its non–zero entries
must be 1’s or else each µ±, and therefore µ±, would have two distinct non–
zero entries. In particular λe 6= 0 or λ would be of the form (7.44), so that
λ1 ∈ 2N + 2 since λ is dominant. Pick j ∈ I+

o and set

µ̃± = µ± ± e1 ∓ ej ∈ Nn (7.60)

Then again λ = µ̃+ + µ̃−,

|µ̃+| = |µ̃−| but µ̃+ 6= µ̃− (7.61)

If, on the other hand, λo = 0, then

λ = (2a, . . . , 2a︸ ︷︷ ︸
l

, 0, . . . , 0) (7.62)

for some a ≥ 1 and 2 ≤ l ≤ n/2. If a = 1, then l ≥ 3 since λ is not of the
form (7.43) and we may take instead β = λ, κ = 0 and

µ = (2, 0, 1, . . . , 1︸ ︷︷ ︸
l−2

, 0, . . . , 0) (7.63)

ν = (0, 2, 1, . . . , 1︸ ︷︷ ︸
l−2

, 0, . . . , 0) (7.64)

In this case µ = ν but, by theorem 7.1, the simple gln–module with highest
weight

[µ, ν] = (2, 1, . . . , 1︸ ︷︷ ︸
l−2

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
l−2

,−2) (7.65)

contains a simple glk–summand which isn’t self–dual and intersects V [0]
non–trivially. If, on the other hand, a > 1, then l ≥ 2 since λ is not of the
form (7.41) and we take β = λ, κ = 0 and

µ = (2a− 1, 1, a, . . . , a︸ ︷︷ ︸
l−2

, 0, . . . , 0) (7.66)

ν = (1, 2a − 1, a, . . . , a︸ ︷︷ ︸
l−2

, 0, . . . , 0) (7.67)

and again conclude via theorem 7.1.

Assume now |λ| ∈ 2N + 1, so that g ∼= so2n+1. With l = min{i|λj = 0,∀j >
i}, set

β = λ− el = (λ1, . . . , λl−1, λl − 1, 0, . . . , 0) (7.68)

and κ = e1 = el so that Lλβ,κ 6= 0 by the PRV conjecture. Since |β| ∈ 2N, we
may apply the first part of the proof to β to conclude unless the latter is of
one of the forms (7.41)–(7.44). (7.42) is ruled out by the fact that |β| ∈ 2N
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and (7.44) by the fact that λ itself is not of the form (7.44). If, on the other
hand, β is of the form (7.41) or (7.43) then λl = 1 and either l = 2 or l = 3
and λ = (2, 2, 1, 0, . . . , 0). If l = 2, then λ = (p, 1, 0, . . . , 0) where, in view of
the theorem’s assumptions, p ≥ 3. In that case, we take κ = (p−3, 0, . . . , 0)
and

β = (3, 1, 0, . . . , 0) (7.69)

µ = (2, 0, 0, . . . , 0) (7.70)

ν = (1, 1, 0, . . . , 0) (7.71)

If, on the other hand, λ = (2, 2, 1, 0, . . . , 0), we choose κ′ = (0, 1, 0, . . . , 0),
κ = κ′ and

β = (2, 1, 1, . . . , 0) (7.72)

µ = (2, 0, 0, . . . , 0) (7.73)

ν = (0, 1, 1, . . . , 0) (7.74)

�

7.5. Self–dual representations of som.

Theorem 7.11. Let g = som, with m = 2n, 2n + 1, and let V be a simple,
self–dual g–module with V [0] 6= {0}. Then, V [0] is irreducible under the
Casimir algebra Cg if its highest weight λ has one of the following forms,

(i) λ = (p, 0, . . . , 0), p ∈ N.
(ii) λ = (2, 2, 0, . . . , 0).
(iii) λ = (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0), 1 ≤ k ≤ n.

(iv) λ = (1, . . . , 1︸ ︷︷ ︸
n−1

,−1).

Conversely, if λ 6= 0 is of none of the above forms and satisfies λi = 0 for
i > n/2, then V [0] is reducible under Cg.
Proof. Case (i) is the contents of theorem 6.2. Case (ii) follows from
theorem 7.24 since the highest weight of the adjoint representation of g is
(1, 1, 0, . . . , 0). Cases (iii) and (iv) follow from proposition 7.12 below since
the corresponding λ’s are the highest weights of the exterior powers of the
vector representation U ∼= Cm of g or, if m = 2n and λ = (1, . . . , 1,±1) of
the eigenspaces of the Hodge star operator inside

∧n U . Finally, the con-
verse follows from proposition 7.13 below, which gives the reducibility of
V [0] if λ = (2, 1, 0, . . . , 0) and proposition 7.9 which deals with all other
cases �

Let U ∼= Cm be the vector representation of g = som and recall that the

exterior powers
∧k U , 0 ≤ k < m/2 are simple g–modules and that, for m

even the eigenspaces
∧m/2

± U ⊂ ∧m/2 U of the Hodge ∗–operator are also
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irreducible under g. For m odd, all exterior powers of U have non–trivial
zero weight spaces while, for m even, only the even exterior powers do.

Proposition 7.12.

(i) If m = 2n + 1 is odd, the zero weight spaces
∧k U [0], 0 ≤ k ≤ n,

are irreducible under the Casimir algebra of g.

(ii) If m = 2n is even, the zero weight spaces
∧2k U [0], 0 ≤ k ≤ n/2−1,

and, if n is even, the zero weight spaces
∧n

± U [0] are irreducible
under the Casimir algebra of g.

Proof. By proposition 3.13, it suffices to show that the above zero weight
spaces are irreducible under the Weyl group of g. This is proved by a simple,
direct calculation in [Re, section 3] �

Proposition 7.13. Let g = so2n+1 and let U be the simple g–module with
highest weight λ = (2, 1, 0, . . . , 0). Then, U [0] is reducible under the Casimir
algebra Cg of g.

Proof. We claim that the Chevalley involution Θ of g does not act as a
scalar on the zero weight space U [0]. Let v2θ1±θ2 ∈ U be the highest weight
vectors in U so that

v0 = fθ1fθ v2θ1+θ2 (7.75)

where θ = θ1+θ2 is the highest root of g, lies in U [0]. It suffices to show that
Θv0 is not proportional to v0. Let for this purpose V = Vθ1

∼= C2n+1 be the
defining representation of g and realise U as the highest weight component
of V ⊗ ad(g). We may then take

v2θ1+θ2 = e1 ⊗ eθ (7.76)

where {e±i, e0} is the standard weight basis of V with e±i of weight ±θi and
e0 of weight 0 so that e1 is the highest weight vector. This yields,

v0 = fθ1(ae−2 ⊗ eθ − e1 ⊗ hθ)
= be−2 ⊗ eθ2 + ce0 ⊗ hθ − e1 ⊗ fθ1

(7.77)

where a, b, c are some (non–zero) constants. Since, up to a sign

Θ ei = e−i, Θ e0 = e0, Θ eα = −fα and Θ hθ = −hθ (7.78)

Θv0 is not proportional to v0 �

7.6. Representations of sp2n.

Theorem 7.14. Let g = sp2n and let V be a simple g–module with V [0] 6=
{0}. Then, V [0] is irreducible under the Casimir algebra Cg if its highest
weight λ has one of the following forms,

(i) λ = (2p, 0, . . . , 0), p ∈ N.
(ii) λ = (2, 2, 0, . . . , 0).
(iii) λ = (1, . . . , 1︸ ︷︷ ︸

2k

, 0, . . . , 0), 1 ≤ k ≤ n/4.
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Conversely, if λ 6= 0 is not of the above form and satisfies λi = 0 for i > n/2,
then V [0] is reducible under Cg.
Proof. The irreducibility of V [0] if λ is of the form (i), (ii) or (iii) follows
from theorem 6.5 and propositions 7.16 and 7.15 below respectively. The
converse follows from proposition 7.9 �

Proposition 7.15. Let Vk be the simple sp2n–module with highest weight

λk = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) (7.79)

with 1 ≤ k ≤ n/2. If k is even, so that Vk[0] 6= {0}, then Vk[0] is irreducible
under Csp2n

.

Proof. By (7.48)

res
gln
sp2n

Vk =

k⊕

l=0

Vl,k (7.80)

where Vl,k is the simple gln–module with highest weight

µl,k = (1, . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
k−l

) (7.81)

Thus, Vk[0] = Vk/2,k[0] and the claim follows from lemma 7.2 �

The rest of this subsection will be devoted to the proof of the following

Proposition 7.16. The zero weight space of the simple g–module with high-
est weight 2θ1 + 2θ2 is irreducible under the Casimir algebra Cg of g.

We shall need an explicit description of V2θ1+2θ2 . The latter is the second
Cartan power of the representation with highest weight θ1 + θ2, which may
in turn be realised as the subspace

∧2
0 V ⊂

∧2 V of vectors whose pairing
with the symplectic form is zero.

Lemma 7.17. Let e : S2
∧2

0 V −→
∧4 V be the exterior multiplication given

by
e(u1 ∧ v1 · u2 ∧ v2) = u1 ∧ v1 ∧ u2 ∧ v2 (7.82)

Then e is surjective and
Ker(e) ∼= V2θ1+2θ2 (7.83)

Proof. The highest weight vector of
∧2

0 V is vθ1+θ2 = e1 ∧ e2. Since e
is g–equivariant and maps the highest weight vector of V2θ1+2θ2 , namely
vθ1+θ2 · vθ1+θ2 , to zero, one has

V2θ1+2θ2 ⊂ Ker(e) (7.84)

On the other hand, a simple application of the Weyl dimension formula
yields

dimV2θ1+2θ2 =
n(n− 1)(2n − 1)(2n + 3)

3
(7.85)
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which is readily seen to be equal to

dimS2
2∧

0
V − dim

4∧
V (7.86)

It therefore suffices to show that e is surjective to prove (7.83). Recall
first that, for any 2 ≤ k ≤ n, the irreducible representation with highest
λk = θ1 + · · · + θk may be realised as the kernel of the surjective map

τk :
∧k V → ∧k−2 V given by contracting with the symplectic form (·, ·).

Explicitly,

τk(v1∧· · ·∧vk) =
∑

1≤i<j≤k

(−1)i+j−1(vi, vj)v1∧· · ·∧v̂i∧· · ·∧v̂j∧· · ·∧vk (7.87)

In particular, if n ≥ 4, which we henceforth assume,

4∧
V =

4∧
0
V ⊕

2∧
0
V ⊕ C (7.88)

as g–modules. Consider now the image of the exterior multiplication e in∧4 V . It contains the highest weight vector

vθ1+···+θ4 = e1 ∧ e2 ∧ e3 ∧ e4 = e(e1 ∧ e2 · e3 ∧ e4) (7.89)

of
∧4

0 V and therefore contains
∧4

0 V . Similarly, the image of τ4 ◦ e contains
the highest weight vector

vθ1+θ2 = e1 ∧ e2 = τ4 ◦ e(e1 ∧ e3 · e−3 ∧ e2) (7.90)

of
∧2

0 V and therefore contains
∧2

0 V . Finally

τ2 ◦ τ4 ◦ e : S2
2∧

0
→ C (7.91)

is readily seen to be non–zero and therefore surjective from which it follows
that e itself is surjective if n ≥ 4. The remaining cases are treated by a
simple variant of the above argument by noting that, if n = 3,

4∧
V ∼=

2∧
V (7.92)

via the Hodge ∗–operator and, if n = 2,
∧4 V ∼= C �

Remark. It follows from the previous lemma that

dim(V2θ1+2θ2 [0]) = dimS2
2∧

0
V [0] − dim

4∧
V [0]

= n(n− 1)

(7.93)

Consider now the following zero weight vectors in S2
∧2 V

aij = ei ∧ e−j · ej ∧ e−i (7.94)

bij = ei ∧ ej · e−j ∧ e−i (7.95)

cij = ei ∧ e−i · ej ∧ e−j (7.96)
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where 1 ≤ i < j ≤ n for aij and bij and 1 ≤ i ≤ j ≤ n for cij , and set

eij = cii + cjj − 2cij

= (ei ∧ e−i − ej ∧ e−j) · (ei ∧ e−i − ej ∧ e−j)

∈ S2
2∧

0
V

(7.97)

Lemma 7.18.

(i) For 1 ≤ i < j ≤ n, the vectors

vij = aij + bij (7.98)

hij = eij − aij + bij (7.99)

form a basis of the zero weight space of V2θ1+2θ2 .
(ii) One has

κ2θk
vij = −4δk∈{i,j}vij (7.100)

κ2θk
hij = 0 (7.101)

Proof. The vectors vij , hij lie in the kernel of the exterior multiplication
e and are readily seen to be linearly independent. By the remark following
lemma 7.17 they therefore are a basis of V2θ1+2θ2 [0]. A straightforward
calculation, using the fact that e2θk

and f2θk
may be chosen to act as the

elementary matrices Ek,−k,−E−k,k on V respectively [FH, §16.1], yields

fθk
eθk

aij = −δk∈{i,j}(aij + bij) (7.102)

fθk
eθk

bij = −δk∈{i,j}(aij + bij) (7.103)

fθk
eθk

cij = 0 (7.104)

and therefore (7.100)–(7.101) since κα acts as 〈α,α〉fαeα on zero weight vec-
tors �

Thus, the (commuting) long root Casimirs κ2θk
are diagonal in the basis

vij, hij . We turn now to the action of the short root Casimirs κθk±θl
in this

basis.

Lemma 7.19. One has

−κθk+θl
vij = δ{i,j},{k,l} (ekl + 2bkl)

+ δ|{i,j}∩{k,l}|,1 (vij + v{i,j}∆{k,l}) (7.105)

−κθk+θl
hij = (5δ{i,j},{k,l} + δ|{i,j}∩{k,l}|,1) (ekl + 2bkl)

+ δ|{i,j}∩{k,l}|,1 (hij − h{i,j}∆{k,l}) (7.106)

Proof. A straightfoward calculation, using the fact that eθk+θl
and fθk+θl

may be chosen to act on V as the elementary matrices Ek,−l + El,−k and
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−(E−k,l + E−l,k) respectively [FH, §16.1], shows that, for 1 ≤ i < j ≤ n,

−κθk+θl
aij = δ|{i,j}∩{k,l}|,1 (aij + b{i,j}∆{k,l}) (7.107)

−κθk+θl
bij = δ{i,j},{k,l} (eij + 2bij)

+ δ|{i,j}∩{k,l}|,1 (bij + a{i,j}∆{k,l}) (7.108)

−κθk+θl
cij = δ{i,j},{k,l} (−eij − 2bij)

+ δ|{i,j}∩{k,l}|,1 (cij − c{i,j}∆{k,l}) (7.109)

−κθk+θl
cii = 2δik (cii − cil + bil)

+ 2δil (cii − cik + bik) (7.110)

where {i, j}∆{k, l} is the symmetric difference {i, j} \ {k, l} ⊔ {k, l} \ {i, j}.
Assembling these results, one finds

−κθk+θl
eij = 4δ{i,j},{k,l} (eij + 2bij)

+ δ|{i,j}∩{k,l}|,1 (eij − e{i,j}∆{k,l})

+ δ|{i,j}∩{k,l}|,1 (ekl + 2bkl)

(7.111)

and therefore the formulae (7.105)–(7.106) �

Lemma 7.20. One has

κθk−θl
vij = δ{i,j},{k,l} (−ekl + 2akl)

+ δ|{i,j}∩{k,l}|,1 (vij − v{i,j}∆{k,l}) (7.112)

κθk−θl
hij = (5δ{i,j},{k,l} + δ|{i,j}∩{k,l}|,1) (ekl − 2akl)

+ δ|{i,j}∩{k,l}|,1 (hij − h{i,j}∆{k,l}) (7.113)

Proof. A straightfoward calculation, using the fact that eθk−θl
and fθk−θl

may be chosen to act on V as the elementary matrices −Ek,l + E−l,−k and
−El,k + E−k,−l respectively [FH, §16.1], shows that,

κθk−θl
aij = δ{i,j},{k,l} (−eij + 2aij)

+ δ|{i,j}∩{k,l}|,1 (aij − a{i,j}∆{k,l}) (7.114)

κθk−θl
bij = δ|{i,j}∩{k,l}|,1 (bij − b{i,j}∆{k,l}) (7.115)

κθk−θl
cij = δ{i,j},{k,l} (−eij + 2aij)

+ δ|{i,j}∩{k,l}|,1 (cij − c{i,j}∆{k,l}) (7.116)

κθk−θl
cii = 2δik (cii − cil − ail)

+ 2δil (cii − cik − aik) (7.117)
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Assembling these results, one finds

κθk−θl
eij = 4δ{i,j},{k,l} (eij − 2aij)

+ δ|{i,j}∩{k,l}|,1 (eij − e{i,j}∆{k,l})

+ δ|{i,j}∩{k,l}|,1 (ekl − 2akl)

(7.118)

and therefore formulae (7.112)–(7.113) �

Let us summarise the findings of the previous two lemmas.

Corollary 7.21. For any 1 ≤ k < l ≤ n, set

Pkl = −κθk+θl
+ κθk−θl

2
and Mkl =

κθk+θl
− κθk−θl

2
(7.119)

Then,

Pkl vij = δ{i,j},{k,l} hkl + δ|{i,j}∩{k,l}|,1 v{i,j}∆{k,l} (7.120)

Pkl hij = (5δ{i,j},{k,l} + δ|{i,j}∩{k,l}|,1) vkl (7.121)

Mkl vij = δ{i,j}∩{k,l}6=φ vij (7.122)

Mkl hij = 5δ{i,j},{k,l} hkl + δ|{i,j}∩{k,l}|,1 (hij − h{i,j}∆{k,l} + hkl) (7.123)

Proof of Proposition 7.16. Let U ⊆ V2θ1+2θ2 [0] be a subspace invariant
under Cg. By lemma 7.18, it decomposes as (U∩V )⊕(U∩H) where V (resp.
H) is the span of the vij (resp. hij). If U ∩ V is non–zero, it must contain
at least one vij since, by lemma 7.18, 1/16 κ2θi

κ2θj
acts on V2θ1+2θ2 [0] as

the projector onto vij. A repeated application of (7.120) then shows that U
contains all of V . Since Pijvij = hij by (7.120), U ⊇∑i,j PijV ⊇ H whence

U = V [0]. If, on the other hand, U ∩V = {0}, then, by (7.121) Pklu = 0 for
any 1 ≤ k < l ≤ n and u ∈ U . Thus, if u =

∑
uijhij ∈ U = U ∩H, then,

for any 1 ≤ k < l ≤ n,

0 = Pklu = (5ukl +
∑

i6=k,l

uil +
∑

j 6=k,l

ukj)vkl = (3ukl +
∑

i6=l

uil +
∑

j 6=k

ukj)vkl

(7.124)
Regarding u as a symmetric, n × n matrix with zero diagonal entries, we
may rewrite the above system of equations as

−3u = Q(Pu+ uP ) = Q(l(P ) + r(P ))Qu (7.125)

where P is the n × n matrix with all entries equal to 1, l(P ), r(P ) ∈
End(Mn(C)) are the operators of left and right multiplication by P and Q is
the projection onto the subspace of matrices with zero diagonal in Mn(C).
This implies that u = 0 since l(P ), r(P ), Q, and therefore Q(l(P ) + r(P ))Q
are positive semi–definite. It follows that U = {0} �
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7.7. Small Cartan powers of the adjoint representation. We prove
in this subsection that, for any simple g, the zero weight spaces of the first
and second Cartan powers of the adjoint representaton of g are irreducible
under the Casimir algebra Cg.

Proposition 7.22. For any complex, simple Lie algebra g, h = ad(g)[0] is
irreducible under Cg.
Proof. The result follows at once from proposition 3.13 because h is irre-
ducible under W �

Let now θ be the highest root of g and eθ a corresponding root vector.
Clearly, eθ · eθ lies in C2g ⊂ S2g and therefore so does

ad(fθ)
2 eθ · eθ = 2h2

θ − 4fθ · eθ (7.126)

Lemma 7.23. If g is simply–laced, the vectors

vα = eα · fα −
1

2
h2
α ∈ S2g (7.127)

corresponding to the positive roots of g form a basis of the zero weight space
of C2g.

Proof. Since vθ lies in C2g[0], so do all the vα since the Weyl group of g

transitively permutes the roots of g. Since the vα are linearly independent,
it suffices to show that the dimension of C2g[0] is equal to the number of
positive roots of g, which will be proved case–by–case. For g = sln, C

2g has
highest weight (2, 0, . . . , 0,−2). A simple computation using Gelfand–Zetlin
patterns then shows that dim(C2g[0]) = n(n− 1)/2 which is the number of
positive roots of g. For g = so2n, we may assume that n ≥ 4 since so6

∼= sl4.
The highest weight of the adjoint representation is (1, 1, 0, . . . , 0) and the
Koike–Terada branching formulae (7.49) yield

res
gln
so2n C

2g = C⊕ V(1,0,...,0,−1) ⊕ V(2,0,...,0,−2) ⊕ V(1,1,0,...,0,−1,−1) ⊕R (7.128)

where R has trivial zero–weight space. Since V(1,0,...,0,−1) is the adjoint rep-
resentation of gln, the zero–weight spaces of the first three summands have
dimensions 1, n− 1, n(n− 1)/2 respectively and it therefore suffices to show
that dimV(1,1,0,...,0,−1,−1)[0] = n(n − 3)/2 for then dim(C2g[0]) = n(n − 1)
which is the number of positive roots of so2n.

To compute dimV(1,1,0,...,0,−1,−1)[0], let U be the vector representation of gln
and recall that the exterior powers of U are minuscule representations of gln
i.e., their weights lie on a single orbit under the Weyl group. Moreover, a
straightforward application of the Weyl character formula shows that for a
minuscule representation Vλ with highest weight λ and any other irreducible
representation Vµ with highest weight µ, one has

Vλ ⊗ Vµ =
⊕

λ′

Vλ′+µ (7.129)
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where the sum ranges over the weights λ′ in the Weyl group orbit of λ such
that λ′ +µ is dominant (see, e.g., [TL1, prop. II.2.2.2]). For Vλ =

∧2 U and

Vµ =
∧2 U∗, this yields,

2∧
U ⊗

2∧
U∗ = C⊕ V(1,0,...,0,−1) ⊕ V(1,1,0,...,0,−1,−1) (7.130)

Equating the dimensions of the zero weight spaces of each side yields

dimV(1,1,0,...,0,−1,−1)[0] = n(n− 3)/2 (7.131)

as required.

Finally, for g of exceptional type, the program LiE [LiE] yields

dim(C2 ad(E6)[0]) = 36 (7.132)

dim(C2 ad(E7)[0]) = 63 (7.133)

dim(C2 ad(E8)[0]) = 120 (7.134)

which are the number of positive roots of E6, E7 and E8 respectively �

Theorem 7.24. If g is a complex, simple Lie algebra, the zero weight spaces
of the first and second Cartan powers of the adjoint representation of g are
irreducible under Cg.

Proof. Assume first that g is simply–laced and fix a positive root α. We
claim that the vector vα ∈ C2g[0] given by (7.127) is the unique eigenvector
for Cα in g ⊗ g[0], and a fortiori in C2g[0], with eigenvalue corresponding
to the Casimir eigenvalue of the 5–dimensional representation of slα2 . To see
this, one readily checks that the restriction of ad(eα)3 to g⊗ g[0] is zero and
therefore that any v ∈ g⊗ g[0] decomposes uniquely as

v = vα0 + vα1 + vα2 (7.135)

where vαi lies in an irreducible slα2 summand of dimension 2i + 1. Another
straightforward computation shows that the restriction of ad(e2α) to g⊗ g[0]
maps this space onto C ·eα⊗eα. Thus, the vα2 in (7.135), which is necessarily
proportional to ad(fα)

2 ad(eα)2v, is a multiple of vα as claimed. Let now
U ⊆ C2g[0] be invariant under Cg. By what precedes, and lemma 7.23, U
necessarily contains one vα for it cannot be orthogonal to all of them. Since
U is also invariant under the Weyl group by proposition 3.13, it follows that
U contains all vα’s and is therefore equal to C2g[0].

If g = sp2n, the adjoint representation has highest weight (2, 0, . . . , 0) and
the result follows from theorem 6.5.
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The remaining cases, namely g = so2n+1, g2, f4 will be treated by restricting
C2g to the following simple, simply–laced subalgebras of equal rank r ⊂ g :

g = so2n+1 ⊃ so2n = r (7.136)

g = g2 ⊃ sl3 = r (7.137)

g = f4 ⊃ so9 = r (7.138)

In all three cases, one finds that

resrgC
2 ad(g) = C2 ad(r)⊕ V ⊕R (7.139)

where V is a simple r–module with non–trivial zero weight space and R is a
possibly reducible r–module with trivial zero weight space. Specifically, for
g = so2n+1, the Gelfand–Zetlin rules for the ortogonal groups [GZ2], [Zh2,
p. 103] yield

V = V(2,0,...,0)
∼= C2C2n (7.140)

R = V(2,1,0,...,0) (7.141)

while for g = g2, Perroud’s branching rules (7.10) give

V = V(2,1,0)
∼= ad(sl3) (7.142)

R = V(3,2,0) ⊕ V(3,1,0) ⊕ V(2,2,0) ⊕ V(2,0,0) (7.143)

Finally, for g = f4 one gets, from the program LiE [LiE] that

V = V(1,1,1,1)
∼=

4∧
C9 (7.144)

R = V1/2(3,3,1,1) (7.145)

One readily checks in each case that C2 ad(r) and V are distinguished by the
Casimir eigenvalue of r so that, by our previous analysis and theorems 7.11
for r = so2n and r = so9 and theorem 4.1 for r = sl3, the zero weight spaces
C2 ad(r)[0] and V [0] are irreducible and inequivalent representations of Cr.
Since C2 ad(g)[0] = C2 ad(r)[0] ⊕ V [0] it suffices to show that C2 ad(r)[0]
is not invariant under Cg. Let θ be the highest root of g and eθ, fθ, hθ a

corresponding slθ2 triple. In all cases, this triple lies in r so that

vθ = −1/4 ad(fθ) ad(eθ)e
2
θ = eθ · fθ −

1

2
h2
θ ∈ C2 ad(r) ⊂ C2 ad(g) (7.146)

where we are realising C2 ad(g) as the highest weight component of S2g.
Choose in each case a positive, short root α of g such that 〈θ∨, α〉 = 1 so
that the α–string through θ is of the form θ − 2α, θ − α, θ. It is easy to
see that such an α exists by consulting the tables in [Bo]. Then, a simple
computation using a Chevalley basis of g yields

−1
1

2
ad(fα) ad(eα) h2

θ = eα · fα − hα · hθ (7.147)

ad(fα) ad(eα) eθ · fθ = ±eθ−α · fθ−α ± 2eθ · fθ (7.148)
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where the signs depend on the choice of the root vectors. Thus,

1

〈α,α〉Cαvθ = ad(fα) ad(eα)vθ = eα·fα±eθ−α·fθ−α±2eθ ·fθ−hα·hθ (7.149)

which does not lie in C2 ad(r) since r is simply–laced, and α is short �

7.8. Some conjectures. Let us record the following corollary of the proofs
of theorems 7.1, 7.4, 7.11 and 7.14.

Theorem 7.25. Let g be a classical Lie algebra or g2 and let V be a simple,
self–dual g–module with V [0] 6= {0}. If g = so2n+1, so2n, sp2n, assume in
addition that the highest weight λ of V satisfies λi = 0 for all i > n/2.
Then, if V [0] is reducible under the Casimir algebra of g, the Chevalley
involution does not act as a scalar on V [0].

In other words, for the above representations V , the failure of the Chevalley
involution to act as a scalar on V [0] is the only mechanism which causes
V [0] to be reducible under the Casimir algebra Cg. It is therefore natural to
make the following

Conjecture 7.26. Let g be a complex, simple Lie algebra and let V be a
simple g–module which is self–dual and has a non–trivial zero weight space
V [0]. Then V [0] is irreducible under the Casimir algebra of g iff the Cheval-
ley involution of g acts as a scalar on V [0].

We hope to return to this conjecture in a future publication. We note also
that it would be interesting to be able to give a more precise formulation
to our observation that the zero weight space of ’most’ self–dual g–modules
is reducible under the Casimir algebra. For g = sln and g2, theorems 7.1
and 7.4 give a complete list of those V for which V [0] is irreducible. For
g = so2n+1, so2n, sp2n, we make the following

Conjecture 7.27. Let g be one of so2n+1, so2n, sp2n and V a self–dual,
simple g–module with V [0] 6= {0}. If the highest weight λ of V is not of one
of the forms listed in theorems 7.11 and 7.14 then V [0] is reducible under
Cg.

Still, it would be highly desirable to be able to formulate what ’most’ means
in a way independent of the Lie type of g. At the very least, for example,
we conjecture

Conjecture 7.28. Let V be a simple, self–dual g–module with V [0] 6= 0. If
the highest weight of V is regular, then V [0] is reducible under Cg.

The above conjecture is true for g = sln and g = g2 by theorems 7.1 and
7.4. It also holds for g = so2n, so2n+1, sp2n. The proof in this case will be
given in a future publication.
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8. Appendix : The centraliser of the Casimir algebra

The results in this section are due to P. Etingof [Et] to whom we are grateful
for allowing us to reproduce them here. Our aim is to prove the following

Theorem 8.1. The centraliser in Ug of the Casimir algebra Cg of g is
generated by the Cartan subalgebra h and the centre Z(Ug) of Ug.

The proof of theorem 8.1 rests on Knop’s calculation of the centre of the
subalgebra U~g ⊂ Ug of h–invariants and on the following result which is of
independent interest

Theorem 8.2. For any positive linear combination β ∈⊕αi · N of simple
roots, there exists a Zariski open set Oβ ⊂ h∗ such that, for any µ ∈ Oβ , the
µ− β–weight space Mµ[µ− β] of the Verma module with highest weight µ is
irreducible under the action of the Casimir algebra Cg.

Proof of theorem 8.1. Assume that x ∈ Ug lies in the centraliser of Cg.
Since x commutes with h, it lies in the h–invariant subalgebra Ugh ⊂ Ug.
We claim that x lies in fact in the centre of Ugh. Indeed, if y ∈ Ugh, both
x and y leave the weight spaces Mµ[µ − β] invariant, where µ ∈ h∗ and β
is a fixed positive linear combination of simple roots. By theorem 8.2, the
commutator [x, y] acts as zero on Mµ[µ− β] generically in µ, and therefore
for all µ. Since this holds for any β, [x, y] acts as zero on all Verma modules
and is therefore zero since these separate elements in Ug. Thus, x ∈ Z(Ugh)
as claimed. Theorem 8.1 now follows from the fact that the centre of Ugh

is Uh⊗ Z(Ug) [Knp, thm. 10.1] �

We need a preliminary result to prove theorem 8.2. Fix a weight λ ∈ h∗

and let Mt2λ be the Verma module with highest weight t2λ, where t ∈ C∗ is
some non–zero complex number. Consider the standard identifications

Mt2λ
ı−→ Un−

σ−1

−→ Sn− (8.1)

where σ is the symmetrisation map. The corresponding isomorphismMt2λ
∼=

Sn− is one of h–modules provided the adjoint action of h on Sn− is tensored
by the character t2λ. Denoting the generators of Sn− by xα and transporting
the action of g on Mt2λ to Sn−, we have the following

Lemma 8.3. Let d be the grading operator on Sn−. Then, for any t ∈ C∗

tdeαt
−d = t · 〈λ, α∨〉∂α +O(1) (8.2)

tdfαt
−d = t · xα +O(1) (8.3)

tdhαt
−d = t2 · 〈λ, α∨〉+O(1) (8.4)

where the terms O(1) have a finite limit for t −→∞.
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Proof. (8.2) Let vt2λ ∈ Mt2λ be the highest weight vector. Then, for any
sequence of positive roots β1, . . . , βk, we have

tdeαt
−d xβ1 · · · xβk

=

td−kσ−1ı

(
1

k!

∑

σ∈Sk

k∑

i=1

fβσ(1)
· · · fβσ(i−1)

[eα, fβσ(i)
]fβσ(i+1)

· · · fβσ(k)
vt2λ

)

(8.5)

The term corresponding to a fixed σ ∈ Sk and i = 1 . . . k clearly vanishes
unless α − βσ(i) is a root or zero. If α − βσ(i) is a negative root, the corre-
sponding term in Sn− is of degree ≤ k and its total contribution an O(1).
On the other hand, the total contribution of the terms for which

σ(i) ∈ Iα = {j = 1 . . . k|βj = α} (8.6)

is

td−kσ−1


 1

k!

∑

i,σ:σ(i)∈Iα

〈t2λ− βσ(i+1) · · · − βσ(k), α
∨〉fβσ(1)

· · · fβσ(i−1)
fβσ(i+1)

· · · fβσ(k)




= td+2−k〈λ, α∨〉σ−1

(
|Iα|
k

k∑

i=1

σ(
xβ1 · · · xβk

xα
)

)
+ t−1O(1)

= t〈λ, α∨〉∂αxβ1 · · · xβk
+ t−1O(1)

(8.7)

Finally, if α − βσ(i) is a positive root, a repetition of the above argument
shows that the net contribution is an O(1). (8.3) We have,

tdfαt
−d xβ1 · · · xβk

= td−kσ−1(fασ(xβ1 · · · xβk
))

= td−kσ−1(σ(xαxβ1 · · · xβk
) + r)

= txαxβ1 · · · xβk
+O(1)

(8.8)

for some r ∈ Un− of degree ≤ k, where we used fα = σ(xα) and

σ(p · q) = σ(p) · σ(q) + r′ (8.9)

for any p, q ∈ Sn− where the remainder r′ ∈ Un− is of degree ≤ deg(p) +
deg(q)− 1. (8.4) follows from the fact that the eigenvalues of hα on Mt2λ lie
in t2〈λ, α∨〉+ Z and that hα commutes with d �

Proof of theorem 8.2. Since the action of the Casimirs Cα on Mµ[µ−β]
depends polynomially on µ and irreducibility is an open condition, it suffices
to show that the set of µ for which the Cα act irreducibly on Mµ[µ− β] is
non–empty. Let λ ∈ h∗ be a regular weight and choose µ of the form t2λ,
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where t ∈ C∗. Using the notation of lemma 8.3, it is sufficient to show that
the operators

t−2 Ad(td)fαeα and t−3 Ad(td)[fαeα, fβeβ ] (8.10)

act irreducibly on any subspace of Sn− of fixed weight. Since this is again
an open condition in t and, as will be shown below, the operators at hand
have a finite limit as t →∞, it suffices to prove this for t = ∞. By lemma
8.3,

lim
t→∞

t−2 Ad(td)fαeα = 〈λ, α∨〉xα∂α (8.11)

Let now α 6= β be positive roots. Denoting by R ⊂ h∗ the root system of g,
we have

[fαeα, fβeβ ] = fαeαfβeβ − fβeβfαeα
= fαfβeαeβ − fβfαeβeα
+ δα−β∈R (cα,βfαεα−βeβ − cβ,αfβεβ−αeα)

(8.12)

where εγ = eγ or fγ according to whether the root γ is positive or negative
and the c·,· are non–zero constants. Since

fαfβeαeβ − fβfαeβeα = [fα, fβ]eαeβ + fβfα[eα, eβ ] (8.13)

we find that

[fαeα, fβeβ] = δα+β∈R

(
c′α,βfα+βeαeβ + c′β,αfβfαeα+β

)

+ δα−β∈R (cα,βfαεα−βeβ − cβ,αfβεβ−αeα)
(8.14)

for some non–zero constants c′·,·. It therefore follows from lemma 8.3 that

lim
t→∞

t−3 Ad(td)[fαeα, fβeβ ] = δα+β∈R

(
c̃′α,βxα+β∂α∂β + c̃′β,αxβxα∂α+β

)

+ δα−β∈R (c̃α,βxαεα−β∂β − c̃β,αxβεβ−α∂α)
(8.15)

where εγ is now the operator ∂γ or xγ according to whether γ is positive
or negative and the c̃·,·, c̃

′
·,· are non–zero constants. Since the summands

in the above expression have distinct homogeneity degrees with respect to
the commuting Euler operators xα∂α, it is sufficient to show that the weight
spaces of Sn−, i.e., the subspaces spanned by the monomials

∏
α≻0 x

mα
α with∑

α≻0mαα fixed, are irreducible under the operators

xα∂α, xα+β∂α∂β , xβxα∂α+β, xαεα−β∂β, xβεβ−α∂α (8.16)

which is a simple enough exercise �
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