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12 Remarks on mechanical linkages 231 IntroductionIn this paper we continue the discussion of the deformation theory of representationsin relation to the deformation theory of mechanical linkages that we began in [KM1].W.Goldman and J.Millson in [GM2] prove that for the fundamental group of anycompact K�ahler manifold M and a compact Lie group G the only singularities ofthe representation variety Hom(�1(M);G) are quadratic. In this paper we studythe possible singularities of representation varieties of uniform lattices in the groupSO(3; 1). Note that according to J.Carlson and D.Toledo [CT] lattices in SO(n; 1)(n > 2) can't be isomorphic to fundamental groups of compact K�ahler manifolds.Thus the results of [GM2] are not applicable in our case. We construct cocompactre
ection groups �j � SO(3; 1) and irreducible representations �j : �j ! SO(3) sothat �1(�1) is Zariski dense and �2(�2) is �nite, such that the singularities of thevarieties Hom(�j; SO(3)) at �j and V (�j; SO(3)) = Hom(�j; SO(3))=SO(3) at [�j]are strongly nonquadratic (see Section 2 for de�nitions).We prove this by �nding nonzero classes � 2 H1(�j; so(3)) such that the �rstobstructions [�; �] 2 H2(�j; so(3)) to the \integrability" of � are trivial, but thevectors � are not tangent to any curve in V (�j; SO(3)) since the second obstructionsto the integrability of � are nonzero.In Section 5 we prove that strongly nonquadratic singularities are inherited bynormal subgroups of �nite index. Thus by taking �nite-index subgroups we prove thefollowingTheorem 10.7. There exists a compact hyperbolic 3-manifold M1 and an irre-ducible in�nite representation � : �1(M1) ! SO(3) such that the singularities of thevarieties Hom(�1(M1); SO(3)) at �1 and V (�1(M1); SO(3)) at [�1] are not quadratic.In Section 6 we prove that for a group � strongly nonquadratic singularity at thetrivial representation into SO(3) implies that for any semi-simple Lie group G thevariety Hom(�;G) again has a nonquadratic singularity at the trivial representation.Thus,Theorem 10.8. There exists a compact hyperbolic 3-manifold M2 such that forany semi-simple Lie group G the varieties Hom(�1(M2);G) and V (�1(M2);G) havenonquadratic singularities at the trivial representation.To the best of our knowledge these are the �rst examples of this sort.Our examples are based on constructions of mechanical linkages in S2, which arenot rigid at the 1-st and 2-nd order, but some of the 1-st order deformations can't beextended to deformations of the order 3.These examples contrast sharply with the result of [Ka]: for any cocompact re-
ection group � � SO(3; 1) the variety Hom(�; SO(4; 1)) is smooth at the pointid : � ,! SO(4; 1). We discuss vanishing of the cup-product H1(�; so(4; 1)Ad) �H1(�; so(4; 1)Ad)! H2(�; so(4; 1)Ad) in Section 11.
2



2 Varieties with nonquadratic singularitiesIn this section we prove a simple but useful criterion for detection of higher ordersingularities.Suppose that x = (x1; :::; xn) and f1(x); :::; fm(x) are homogeneous quadratic poly-nomials with coe�cients in a �eld k andR = k [x1; :::; xn](f1; :::; fm) (1)Let  0 : R! k be the evaluation at zero.Lemma 2.1 Suppose that  1 : R ! k[t]=(t2) is a homomorphism lifting  0 and 2 : R! k[t]=(t3) is a homomorphism lifting  1. Then there exists 1 : R! k [t] (2)lifting  1.Proof: Let  1(xi) = ait,  2(xi) = ait+ bit2. Thenfj(a1t+ b1t2; :::; ant+ bnt2) � 0( mod t3); j = 1; :::; m (3)Since all polynomials fj are quadratic we conclude:fj(a1t; :::; ant) = 0 (4)Therefore we take  1 =  1. 2Let V be a variety de�ned over k, o 2 V be a point and ÔV;o the complete localring. We denote by Jmo (V ) = Homk�alg(ÔV;o ;k[t]=tm+1) (5)the m-th order jet space at o 2 V and by � : Jmo ! To(V ) the natural projection tothe Zariski tangent space.We say that V has a nonquadratic singularity at o if the complete local ring of Vat o is not formally isomorphic to the complete local ring of zero in an a�ne varietyW given by homogeneous quadratic equations.Lemma 2.2 Suppose that � 2 J2o (V ) has the property that �(�) is not tangent to anyformal curve in V . Then V has a nonquadratic singularity at o.Proof: Suppose to the contrary that V has a quadratic singularity and W is thecorresponding variety given by the quadratic equationsf1 = 0; :::; fm = 0 (6)Let � 2 J20 (W ) be the image of � under this isomorphism. Then � corresponds toa pair ( 1;  2) as in Lemma 2.1. It follows that the homomorphism  1 given byLemma 2.1 will de�ne a curve tangent to �(�). This contradiction proves that V hasa nonquadratic singularity. 2Suppose V is a variety such that there exists � 2 J2o (V ) with the property that�(�) =2 �(J3o (V )). In this case we say that the variety V has a strongly nonquadraticsingularity at the point o. The tangent vector �(�) is said to be obstructed at the3-rd order but not at the 2-nd order.It follows from Lemma 2.2 that the existence of a strongly nonquadratic singularityof V at a point o implies the nonquadratic singularity of V at o.3



3 Computation of H2(�; g)Let � be a �nitely-presented group and � : �! G be a representation into the groupG of real points of a linear algebraic group de�ned over R. Denote by g the Lie algebraof G. There exists a smooth compact 4-manifold M such that � = �1(M) (see [ST],p. 180). We let p : X !M be the universal cover , hence � acts freely and properlyon X. We consider g as �-modulus via the adjoint representation Ad � �. In thissection we show how to compute H i(�; g), i = 0; 1; 2 in terms of di�erential forms onM . Proposition 3.2 may be of independent interest.Let P be the principal G-bundle with 
at connection !0 associated to � andadP the associated 
at bundle of Lie algebras (with the �ber isomorphic to g). LetA�(M; adP ) (resp. A�(X; p�adP )) be the di�erential graded Lie algebra of smoothadP -valued forms on M (resp. smooth p�adP -valued forms on X). Let U1; :::; UNbe a cover of M by contractible open sets such that all the intersections of the Ui'sare contractible. We let U = fU1; :::; UNg. The inverse image p�1(Ui) is a countabledisjoint union of contractible sets permuted simply-transitively by �. We choose anindexing of the components by � such that Ui;�
 = �Ui;
. Thusp�1(Ui) = [
2�Ui;
 (7)We let ~U = fUi;
; i = 1; :::; N; 
 2 �g be the resulting cover of X. Then all theintersections of the Ui;
's are also contractible.Let Sq (resp. ~Sq ) denote the q simplices in Nerve(U) (resp. Nerve( ~U)). If � 2 Sq(resp. � 2 ~Sq ) we let U� (resp. U~�) denote the corresponding q-fold intersection.Now Ui0;
0 \ ::: \ Uiq ;
q 6= ; (8)implies Ui0 \ ::: \ Uiq 6= ;Hence each q-simplex ofNerve( ~U) corresponds to a unique q-simplex �(�) onNerve(U)and we obtain a simplicial map� : Nerve( ~U)! Nerve(U) (9)Now let � = (i0; i1; :::; iq) be a q-simplex of Nerve(U). The inverse image p�1(U�)is a countable union of components permuted simply-transitively by �. Each ofthese components corresponds to a unique simplex in ��1(�). Thus � acts simply-transitively on ��1(�). Therefore we may choose a �-equivariant bijection F : ~Sq !Sq � �. We write U~� = U�;
 with F (~�) = (�; 
). Hence �U�;
 = U�;�
 ; � 2 �.Let AqM (resp. AqX) denote the sheaves associated to the q-forms onM with valuesin adP (resp. q-forms on X with values in p�adP ). We let p�;
 denote the restrictionpjU�;
 . We have an induced isomorphism of sectionsp��;
 : �(U�;AqM)! �(U�;
 ;AqX) (10)Let Cp(U ;AqM) and Cp( ~U ;AqX) be the corresponding �Cech cochain groups. HenceCp(U ;AqM) = Y�2Sp �(U�;AqM) (11)4



Cp( ~U ;AqX) = Y~�2 ~Sp �(U~�;AqX) (12)The group � acts on Cp( ~U ;AqX) by(� � !)�;
 = (��1)�!�;��1
 (13)Let G;H be groups and V be an H-module. Then we will de�ne the induced G-module IndGHV with the underlying vector spaceHomR(H)(R(G); V ) = fT : G! V : T (gh) = hT (g)g (14)equipped with the G-action g0T (g) = T (g�10 g) (15)We recall Shapiro's Lemma [B], Ch. 3, Proposition 6.2:Hp(G; IndGHV ) = Hp(H; V ) (16)Lemma 3.1 The �-modules Cp( ~U ;AqX) satisfyH i(�; Cp( ~U ;AqX)) = 0; all p; q and i > 0Proof: Denote by e the trivial subgroup of �. We claim that there is an isomorphismof �-modules ' : Ind�eCp(U ;AqM)! Cp( ~U ;AqX) (17)Indeed, we de�ne '(T ) for T 2 Hom(R(�); Cp(U ;AqM)) by'(T )�;
 = p��;
T (
)� (18)We claim that ' is a �-module isomorphism. Indeed we have'(�T )�;
 = p��;
(�T )(
)� = p��;
T (��1
)� (19)and (�'(T ))�;
 = (��1)�'(T )�;��1
 = (��1)�p��;��1
T (��1
)� (20)But p�;��1
 � ��1 = p�;
 and the claim follows.The Lemma follows from Shapiro's Lemma (taking H = e). 2Proposition 3.2 Hp(�;Aj(X; p�adP )) = 0; p > 0Proof: We consider the Eilenberg-MacLane, �Cech double complex C :;: with Cp;q =Cp(�; Cq( ~U ;AjX)). Let T :C :;: be the total complex. We claimH i(TC :;:) = 0, i > 0. To see this we �lter T :C :;: by q. Then F iT :C :;: is the subcomplexsuch that (F iT :C :;:)n = �q�iCn�q;q (21)The E1-term of the resulting spectral sequence is given byEp;q1 = Hp(�; Cq( ~U ;AjX)) (22)5



By Lemma 3.1 Ep;q1 = 0; p > 0. AlsoE0;q1 = H0(�; Cq( ~U ;AjX)) = Cq(U ;AjM) (23)Since AjM is a �ne sheaf the E2-term of the spectral sequence has only one non-zeroterm and E0;02 = Aj(M; adP )The claim follows by the basic theorem on the spectral sequences associated to adouble complex, [McC], Theorem 3.10.We now �lter C :;: by p and �nd that the E1-term is given byEp;q1 = Cp(�; Hq( ~U ;AjX)) (24)Hence the E1-term is concentrated on the p-axis withEp;01 = Cp(�;Aj(X; p�adP )) (25)Hence the E2-term is concentrated on the the p-axis withEp;02 = Hp(�;Aj(X; p�adP )) (26)But by the fundamental theorem on the spectral sequences associated to a doublecomplex we have Hp(�;Aj(X; p�adP )) = Hp(TC :;:) = 0; p > 0 (27)2Remark 3.3 In the case p = 1 and dim(M) = 2 Proposition 3.2 was proven by I.Krain [Kra].We can now prove the result we need.Proposition 3.4 There are canonical morphisms'p : Hp(�; g)! Hp(M; adP ) such that(i) '1 is an isomorphism;(ii) '2 is a monomorphism onto the kernel ofp� : H2(M; adP )! H2(X; p�adP )Proof: We consider the Eilenberg-MacLane de Rham double complex C :;: with Cp;q =Cp(�;Aq(X; p�adP )). Here Cp;q is the group of inhomogeneous cochains on � withvalues in the �-module Aq(X; p�adP ) { see [MacL], Ch. 4, x5. We let (T :C :;:; D) bethe associated total complex. We �rst claim thatH :(T :C :;:) = H :(M; adP )To see this �lter T :C :;: by q. Then the resulting spectral sequence has Ep;q1 =Hp(�;Aq(X; p�adP )). Hence by Proposition 3.2 we have Ep;q1 = 0; p > 0. Sincewe have E0;q1 = Aq(M; adP ) the claim follows.6



We will need to make explicit how the isomorphism : H2(M; adP )! H2(T :C :;:)is obtained. A class in H2(T :C :;:) is represented by a cocycle (for the double complex)(a; b; c) 2 C0(�;A2(X; p�adP ))� C1(�;A1(X; p�adP ))��C2(�;A0(X; p�adP )) = T 2C :;: (28)The cocycle condition is equivalent toda = 0; �a = db; �b = dc; �c = 0 (29)The isomorphism  is induced by the map of cochains  : A2(M; p�adP ) ! T 2C :;:given by  (!) = (p�!; 0; 0). The content of the previous argument is that givena cocycle (a; b; c) 2 T 2C :;: we can �nd a cochain (e; f) 2 C0(�;A1(X; p�adP )) �C1(�;A0(X; p�adP )) = T 1C :;: such that(a; b; c)�D(e; f) = (a0; 0; 0)for some a0 2 C0(�;A1(X; p�adP )). Since (a0; 0; 0) is a cocycle in the total complexda0 = 0 and �a0 = 0 whence a0 = p�! with ! a closed adP -valued 1-form on M .We now �lter T :C :;: by p. We �nd that Ep;01 = Cp(�; g) and consequently Ep;02 =Hp(�; g). We de�ne 'p to be the compositionEp;02 ! Ep;01 = F pHp(TC :;:) � Hp(M; adP ) (30)Since H1(X)
g = 0, it is immediate that '1 is an isomorphism and '2 is a monomor-phism. It remains to identify the image of '2.By general results on the spectral sequences associated to a double complex [McC],Theorem 2.1, the image of '2 is the subspace of H2(M; adP ) consisting of classes of�ltration level 2 for the �ltration induced via the isomorphism  from the �ltrationT 2C :;: by p. Hence ! 2 Im('2) if and only if  (!) is cohomologous to a cocycle inT 2C :;: of the form (0; 0; c). We now prove that  (!) is cohomologous to a cocycleof the form (0; 0; c) if and only if p�! is exact in A2(X; p�adP ). Suppose �rst that (!) is cohomologous to such a cocycle. Then there exists (e; f) 2 T 1C :;: such thatde = p�!, �e = df , �f = 0. Now e 2 A1(X; p�adP ) so p�! is exact.Now suppose that p�! is exact. Then there exists e 2 A1(X; p�adP ) such thatde = p�!. For each 
 2 �, �e(
) is a closed p�adP -valued 1-form on X. Since Xis simply-connected there exists f(
), a smooth section of p�adP , such that df(
) =�e(
). Put c = �f . Then c(�; 
) is a parallel section of p�adP for �; 
 2 � and de�nesan element of Z2(�; g). The cochain (e; f) gives a cohomology from  (!) = (p�!; 0; 0)to (0; 0; c) and the proposition follows.24 The Massey triple productLet � be a �nitely-presented group. We assume that � = �1(M) whereM is a smoothcompact 4-manifold as in the previous section so that M = X=�.7



We recall that the 1-st cohomology group H1(�; g) is isomorphic to the Zariskitangent space of the representation variety V (�;G) at the point [�].In this section we show that a nonzero tangent vector � 2 H1(�; g) is obstructedat 3-rd order, but not at 2-nd order if and only if the cup-product[�; �] 2 H2(�; g) (31)vanishes but the Massey triple producth�j�j�i 2 H2(�; g)=I (32)is nonzero. Here I � H2(�; g) is the subspaceI = f[�; �] : � 2 H1(�; g)g (33)It will be crucial for us that we can compute H i(�; g), i = 1; 2 and the deformationspace of � in terms of di�erential forms.Choose a point x0 2M and de�ne an augmentation� : A�(M; adP )! g (34)as follows. For � 2 A0(M; adP ) de�ne �(�) = �(x0). For � 2 Ai(M; adP ), i > 0we de�ne �(�) = 0. We let A�(M; adP )0 denote the kernel of �. We abbreviateA�(M; adP )0 to L�. We have an isomorphismH1(L�) ��!Z1(�; g) (35)Here Z1(�; g) is the space of Eilenberg-MacLane 1-cocycles. The map � is inducedby the period map � : A1(M; adP )! C1(�; g) (36)(here C1(�; g) is the space of Eilenberg-MacLane 1-cochains), which is de�ned asfollows. Let p : X !M be the universal cover. Choose a base-point ~x0 2 X over x0.Let � 2 A1(M; adP ). De�ne �(�) 2 C1(�; g) by�(�)(
) = Z 
~x0~x0 p�� (37)Here we identify p�� with an g-valued 1-form on X by parallel translation from ~x0.We will need another description of the period map � . We de�new : H1(L�)! Z1(�; g) (38)as follows. Given [�] 2 H1(L�) choose a representing closed 1-form � 2 L�. Let~� = p��. Let f : X ! g be the unique function satisfying(i) f(~x0) = 0;(ii) df = ~�.De�ne w([�]) 2 Z1(�; g) byw([�])(
) = f(x)� Ad�(
)f(
�1x)We observe that w is well-de�ned. Indeed, if [�] is exact in L� then w([�]) = 0.8



Lemma 4.1 w = � .Proof: We have f(x) = R x~x0 ~� whencew([�])(
) = Z x~x0 ~� � �(
) Z 
�1x~x0 ~� = Z x~x0 ~� � Z 
�1x~x0 �(
)~� =Z x~x0 ~� � Z 
�1x~x0 
�~� =Z x~x0 ~� � Z 
~x0x ~� = Z 
~x0~x0 ~�2 Let [�]; [�] 2 H1(�; g), choose di�erential forms �; � 2 L1 representing theseclasses. De�ne [�; �] to be the wedge product of these forms where we use the Liebracket in g to multiply the coe�cients of these forms. The corresponding classM2([�]) := [�; �] 2 H2(�; g) is called the cup-product of � with itself.Now let Q � Z1(�; g) be the quadratic cone consisting of those cocycles � suchthat [�; �] = 0 in H2(�; g). Let ~Q � H1(L�) be the quadratic cone consisting of thoseclasses � such that [�; �] = 0 in H2(L�). The next lemma is a consequence of [GM1],Lemma 4.1.Lemma 4.2 The period map � carries the cone ~Q onto the cone Q.We now de�ne the Massey triple product h�j�j�i as follows. Choose a closed form�1 2 L1 representing �. Since � 2 Q there exists �2 2 L1 such that d�2 = [�1; �1].Lemma 4.3 [�1; �2] 2 H2(�; g).Proof: By Proposition 3.4 it su�ces to prove that p�[�1; �2] is exact. Since X issimply-connected there exists �1 2 A0(X; p�adP ) such that d�1 = p��1. We willabbreviate p��j to ~�j henceforth. The graded Jacobi identity [GM2], x1.1, implies[�1; [~�1; ~�1]] = 2[~�1; [�1; ~�1]] (39)and hence d[�1; [�1; ~�1]] = 32[�1; [~�1; ~�1]] (40)To conclude we have only to observe thatd[�1; ~�2] = [~�1; ~�2] + [�1; [~�1; ~�1]] (41)2 De�ne M3(�) = h�j�j�i to be the class of [�1; �2] in H2(�; g)=I. We recall thatI = f[�; �] : � 2 H1(�; g)g (42)is the ideal generated by [�].Lemma 4.4 h�j�j�i is well-de�ned. 9



Proof: We check that [�1; �2] is closed. Indeedd[�1; �2] = [�1; d�2] = [�1; [�1; �1]] = 0 (43)The last equality follows from the graded Jacobi identity in L�. The reader will checkthat h�j�j�i is independent of choices of the forms �; �2. 2One de�nes the higher Massey n-fold product operationsMn similarly (see [GM3]),we will need them only for n = 2; 3.We now relate the the operations Mn to in�nitesimal deformations of representa-tions. Let An denote the truncated polynomial ring R[t]=(tn+1). If m < n we have asurjection �m;n : An ! AmWe abbreviate �m�1;m to �m. Observe that the set Hom(�;G)(An) of An-points ofthe a�ne variety Hom(�; g) is the set of \curves"�t = �0 + �1t + :::+ �ntn (44)such that �t(xy) � �t(x)�t(y)(mod tn+1) (45)We let Hom(�;G)�(An) denote the subset of the above set such that �0 = � where� : �! G is a �xed representation. We have the induced maps�n : Hom(�;G)�(An)! Hom(�;G)�(An�1) (46)obtained by dropping the last term. We use �1;n to project Hom(�;G)�(An) intoHom(�;G)�(A1). We will denote the image ofHom(�;G)�(An) byHom1(�;G)�(An),it consists of in�nitesimal deformations of the representation � which are \integrableup to order n". By [GM1], x4.4 we have natural bijections of sets:Hom(�;G)�(A1) �= Z1(�; g) (47)Hom1(�;G)�(A2) �= Q (48)The bijections in (47) and (48) are obtained as follows. Let �t = � + �1t 2Hom(�;G)�(A1). De�ne c 2 Z1(�; g) byc(
) = �1(
)�(
)�1The reader will verify that c satis�es the cocycle identityc(
1
2) = c(
1) + Ad �(
1)c(
2)If there exists �2 : � ! G such that � + �1t + �2t2 2 Hom(�;G)(A2) then it iseasily checked [GM2], x4.4, that [c; c] is exact, whence c 2 Q. The map �2 is just thecorrespondence �t 7! c.We now wish to identify Hom1(�;G)(A3) as well as the map �3. De�ne C � Qby C = f� 2 Q : h�j�j�i = 0g (49)Lemma 4.5 There is a canonical bijection Hom1(�;G)(A3) �= C corresponding tothe map �3. 10



Proof: We replace the in�nitesimal deformation theory of � with the equivariantdeformation theory of the 
at connection !0. Precisely, we replace the groupoidR0An(�) of [GM2], x6.4, with the equivalent groupoid F 0An(!0) of [GM2], x6.4. Theobjects of F 0An(!0) are in�nitesimal deformations (parameterized by Spec(An)) of!0 and the morphisms are in�nitesimal deformations of the identity in the groupof gauge transformations. By Corollary 6.4 of [GM2] the holonomy map induces acanonical bijection hol from the set of isomorphism classes IsoF 0An(!0) to the setHom(�;G)(An). For n = 1 we obtain the bijection w. For n = 2 we obtain thebijection � between ~Q and Q of Lemma 4.2. Thus to prove the lemma we have tosolve the following problem.Let �1 2 ~Q with hol(�1) = �(�1) = �. Hence there exists �2 2 L1 such that!2 = �1t+ �2t2 satis�es d!2 + 12[!2; !2] � 0(mod t3) (50)Find necessary and su�cient conditions that there exist �2; �3 2 L1 such that !3 =�1t+ �2t2 + �3t3 satis�es d!3 + 12[!3; !3] � 0 (mod t4) (51)For any choice of �2; �3 satisfying (51) we have:d�2 = [�1; �1] ; d�3 = [�1; �2] (52)Hence there exists a closed form � such that �2 = �2+�. We �nd that �2; �3 exist asabove if and only if there is a closed 1-form � 2 L1 and a 1-form �3 2 L1 such thatd�3 = [�1; �2] + [�1; �] (53)The latter equation holds if and only if the cohomolgy class of [�1; �2] belongs to I.2 Thus we obtain the main result of this section.Theorem 4.6 Let � be a �nitely-presented group as above and � : � ! G be a rep-resentation. Then the varieties Hom(�;G) and V (�;G) have strongly nonquadraticsingularities at the points � and [�] if and only if there exists � 2 H1(�; g) such that:[�; �] = 0 in H2(�; g)h�j�j�i 6= 0 in H2(�; g)=I5 Nonquadratic singularities for representations ofsubgroups of �nite indexIn this section we will prove that strongly nonquadratic singularities of representationvarieties are inherited by normal subgroups of �nite index.
11



Theorem 5.1 Suppose that � is a �nitely presented group as in x4, �0 is a torsion-free normal subgroup in � of �nite index. Let G be a semisimple Lie group suchthat the representation variety Hom(�;G) has strongly nonquadratic singularity at apoint �. Then the varieties Hom(�0;G) and V (�0;G) also have strongly nonquadraticsingularities at the points �0 = �j�0 and [�0] respectively.Proof: According to Theorem 4.6 there exists a class � 2 H1(�; g) such thatM2(�) = 0but M3(�) 6= 0 in H2(�; g)=I. Let � 0 be the image of � under the inclusionH1(�; g)! H1(�0; g)Let I 0 � H2(�0; g) be de�ned byI 0 = f[�0; � 0] : �0 2 H1(�0; g)g (54)Our goal is to prove that h� 0j� 0j� 0i 6= 0 in H2(�0; g)=I 0 (in this case Theorem 4.6would imply that we have a strongly nonquadratic singularity). Let � = �=�0 andM = X=�0. Denote by A�(M; adP )�the subalgebra of invariants in A�(M; adP ).We let �1; �2 be �-invariant 1-forms on M so that [�1; �1] = d�2 and [�1] = �.Since M3(�) 6= 0 for each �3; � 2 A1(M; adP )� with d� = 0 we have the property:[�2; �1] 6= [�; �1] + d�3 (55)We now de�ne the Reynolds operatorR : A1(M; adP )! A1(M; adP )� (56)by the formula: R(�) = 1j�j X
2� 
�� (57)Then R is a morphism of complexes, R(�) = � for � 2 A1(M; adP )� and R satis�esthe Reynolds identityR([�; �]) = [�;R(�)]; � 2 A1(M; adP )�; � 2 A1(M; adP ) (58)Suppose now that M3(� 0) = 0 in H2(�0; g)=I 0. Then there exists �0 2 A1(M; adP )with d�0 = 0 and �03 2 A1(M; adP ) such that[�2; �1] = [�0; �1] + d�03 (59)We apply the operator R to this formula and use the fact that �2; �1 are �-invariantsto obtain [�2; �1] = [R(�0); �1] + dR(�03) (60)Since R(�0) and R(�03) are �-invariants this contradicts the property (55). 2Remark 5.2 In the proof we used heavily the fact that the singularity is strongly non-quadratic which means that it su�ce to consider only 2 and 3-fold Massey products.In the case of higher-order singularities one may need more complicated calculations.12



6 Singularities near the trivial representationIn this section we will prove that if Hom(�; SO(3)) has a strongly nonquadraticsingularity at the trivial representation 1 then (Hom(�;G); 1) also has a stronglynonquadratic singularity at 1 for all semi-simple Lie group G.To begin with we may replace SO(3) by SU(2) since 1 has the same (local)deformation theory in the two groups (both deformation problems are controlled byA�(M)
 so3 where �1(M) = �).Let g be the Lie algebra of a semi-simple group G. It must contain so(3) and thisinclusion induces a monomorphism of the controlling di�erential graded Lie algebrasfor the trivial representation A�(M)
so(3) ,! A�(M)
g. We will identify A�(M)
so(3) with the image of this embedding. Since so(3) is semi-simple we may �nd anso(3)-invariant complement m to so(3) in g. We have [so(3);m] � m.Now we can proveTheorem 6.1 Suppose that the (Hom(�; SO(3)); 1) has a strongly nonquadratic sin-gularity. Then for any semi-simple Lie group G the germ(Hom(�;G); 1) also has a strongly nonquadratic singularity.Proof: According to Theorem 4.6 there exists a class [�] 2 H1(�; so(3)) such that[�; �] = d�1 in H2(�; so(3)) andh�j�j�i 6= 0 in H2(�; so(3))=Iso(3) (61)Here Iso(3) denotes the ideal f[�; !] : ! 2 H1(�; so(3))g. Assume that h�j�j�i = 0 inH2(�; g)=Ig. Then there exists a closed form � 2 A1(M)
g such that [�; �1]+[�; �] istrivial inH2(�; g). We write � = � 0+� 00 with � 0 2 A1(M)
so(3) and � 00 2 A1(M)
m.We obtain [�; �1 + � 0] + [�; � 00]is trivial in H2(�; g). However the �rst summand belongs to A2(M)
 so(3) and thesecond one to A2(M)
m since [so(3);m] � m. We also have the splitting of complexesA�(M)
 g = A�(M)
 so(3)�A�(M)
 mThus the sum of the closed forms [�; �1 + � 0], [�; � 00] is exact if and only if the bothforms are exact. This means [�; �1 + � 0] = 0 in H2(�; so(3)). This contradicts ourassumption that M3(�) 6= 0 in H2(�; so(3)). 27 Construction of latticesIn this and following two sections we will construct lattices in SO(3; 1) and theirrepresentations which give representation varieties with strongly nonquadratic singu-larities.
13
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Figure 1Start with a graph � in S2 which is drawn on Figure 1. We assign numbers nj 2 Zto edges of � as on Figure 1; we shall omit the number 2 using the standard conventionfor Dynkin diagrams. If the label m = 4 then we denote the labelled graph by �2, ifm = 7 then we denote the labelled graph by �1. (Instead of the number 7 here onecan choose any prime number m � 7.)Then we add extra edges and vertices Q;F1; F2 to � to triangulate the comple-mentary regions of S2 � �. Denote the result by �# (Figure 2). Finally we add 14extra vertices Z1; :::; Z14 to the graph �# as on Figure 3 (we omit the labels Zj). Allthe edges added to the graph �# have the label 2. The result is a labelled planargraph � = �j, j = 1; 2.
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Figure 2Consider the graph �� dual to �. We assign integers to the edges of �� as follows.If the edge e� of �� intersects an edge e of � then we assign to e� the same numberwhich is assigned to e.
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Figure 3Lemma 7.1 There exists a compact �nitely-sided convex polyhedron � = �j in H 3(j = 1; 2) whose faces correspond to complementary regions of the graph ��j and thedihedral angle at each edge e of �� is equal to �=n if the number n is assigned to e.Proof: All vertices of �� have valency 3 since � was the 1-skeleton of a triangulation.Then, by examining the graphs �;�# and �, we conclude that for each simple closedloop ` � �:(a) either the number of edges in ` is 3 and ` bounds a triangle in S2� � or theedges of ` are labelled as (4; 4; k) with k = 4; 7;(b) or the number of edges in ` is 4 and a label on at least one edge of ` is > 3;(c) or the number of edges in ` is 4 and one of components of S2 � ` containsexactly one edge;(d) or the number of edges in ` is at least 5.Then the existence of � follows from the Andreev's theorem (see [T], Theorem13.6.1). 2We label faces of � by the letters A;Bj; C::: which denote corresponding verticesof the dual graph �. According to Poincare's theorem on fundamental polyhedra[Mk], the group � = �j generated by re
ections �S in faces of the polyhedron �j is16



discrete and �j is the fundamental polyhedron of �. Hence � is a uniform lattice.The system of relations in � can be described as follows. Suppose that S;Q are twofaces of S2� �� which have a common edge e with the label q. Then the product ofre
ections �S � �Q in the faces S;Q has order q.8 Construction of linkagesWe construct geodesic maps �i : �! �2, i = 1; 2 as follows. Consider the unit sphere�2 in R3 with center at zero. Choose the following points on �2:D = C = (0; 1; 0); Bj = (0; 1=p2; (�1)j=p2); j = 1; 2;A = (sin t; cos t; 0); E = (sin 2t; cos 2t; 0);where t = �=m, t =2 Z�=2, m = 4; 7. Hence the vectors D;E are linearly inde-pendent. Note that the number m here is the same as the label of the segments[A;C]; [A;E]; [E;D] in the graphs �i, i = 1; 2. (See Figure 4.)
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Figure 4If two vertices of � are connected by an edge then connect the correspondingpoints of �i(�) by the shortest geodesic segment on �2. We introduce a path metricon � by pull{back of the spherical metric via �i. �(0) shall denote by the set ofvertices of �. The graph � is an abstract mechanical linkage and �i(�) � �2 is itsrealization in 2-sphere.9 Deformations of mechanical linkagesIn this section we drop the index i for the linkage �i and the map �i since thearguments will be independent on the choice of m = 4; 7. Consider the deformationvariety Def(�) of the linkage � in the sphere �2 which is the space of all geodesic17



maps h : �! �2 which are isometries on all edges (we do not divide out by the groupSO(3)).The space Def(�) has a natural structure of an algebraic variety which can bedescribed as follows. We shall regard points of the unit sphere �2 as unit vectors inR3 . Denote by � the number of vertices in � and by � the number of edges.De�ne the polynomial map R : R3� � R3� ! R�+� (62)by the formula R(p; q) = (:::; pi � qj; :::) (63)where q = (q1; :::; q�); p = (p1; :::; p�) 2 R3� and the dot product appears if either thevertices vi; vj of � are connected by an edge or i = j.Now let p = (p01; :::; p0�) be the collection of unit vectors corresponding to thecon�guration �(�(0)) and r0 = R(p; p) 2 R�+� . Then the identi�cation Def(�) =R�1(r0) gives the deformation space a structure of the algebraic variety.Thus the Zariski tangent space Tp(Def(�)) to Def(�) is given by the kernelof the map R(p; �) : R3� ! R�+� . Elements of Tp(Def(�)) are called in�nitesimaldeformations of  (�). An in�nitesimal deformation q0 is called trivial if it belongsto the kernel of the projection T (Def(�)) ! T (Def(�)=SO(3)). This means thatthere exists an element of the Lie algebra � 2 so(3) = R3 such that q0j = ��pj, where� � � is the vector product in R3 .The second order jet space J2p (Def(�)) of the variety Def(�) is described asfollows. Let q0 2 Tp(Def(�)); q00 2 R� . Then (q0; q00) 2 J2p (Def(�)) i�R(q0; q0) +R(p; q00) = 0 (64)The elements (q0; q00) are called second order deformations of the con�guration p;in such case q00 is called the acceleration of the deformation (q0; q00). An elementq0 2 Tp(Def(�)) is called second order integrable if there exists q00 such that (q0; q00) 2J2p (Def(�)). Similarly we can de�ne higher order deformations. Suppose that p :[0; 1]! �2 is a smooth curve such that p(0) = p so thatdmdtm p(t)jt=0 = q(m)and the identities pj(t) � pi(t) = pj(0) � pi(0) are satis�ed up to the order m of t ! 0for each vi; vj 2 � connected by an edge. Then the vector �!q = (q0 = q(1); q00 =q(2); q000 = q(3); :::; q(m)) is an in�nitesimal deformation of order m. These deformationsbelong to the m-th order jet space Jmp (Def(�)) of the variety Def(�) at p. Anin�nitesimal deformation q0 2 Tp(Def(�)) is called m-th order integrable if thereexists �!q 2 Jmp (Def(�)) such that q(1) = q0.Theorem 9.1 There exists a nontrivial in�nitesimal deformationq0 2 T�(Def(�))which is 2-nd order integrable but is not 3-rd order integrable.18



Proof: The in�nitesimal deformation q0 is given by the following velocities:D0 = C 0 = E 0 = 0; B0j = (1; 0; 0) ( j = 1; 2); A0 = (0; 0; 1)We choose the acceleration vectors in p00 as follows:D00 = E 00 = 0; B00j = (0; 0; (�1)j+1=p2); ( j = 1; 2);C 00 = (2� 1= sin2 t; 0; 0); A00 = (1= sin t� 2 sin t;�2 cos t; 0)Then direct calculations show that:Bj �B00j = �1; A � A00 = �1; A00 �E = 0; A00 � C + C 00 � A = 0;B00j � C = B00j �D = Bj � C 00 = 0Thus (q0; p00) 2 J2�(Def(�)).Now we will prove that there is no 3-jet (q0; q00; q000) in J3�(Def(�)). Suppose thatsuch jet exists. We will retain notations A00; B00 etc for its components.Proposition 9.2 The deformations (q00; q000) can be chosen so that E 00 = 0.Proof: Recall that E � E = 1; E � E 00 = 0 since (q0; q00) 2 J2�(Def(�)). Hence a directcalculation shows that there exists a skew-symmetric matrix S with the property:E 00 = �SE. We de�ne a 1-parameter family of orthogonal transformations byQt = exp(t2S)The curve p(t) = p(0)+ q0t+ q00t2=2+ q000t3=6 is order 3 tangent to the variety Def(�)at the point p(0) = �. The same is true for the curve q(t) = Qt(p(t)). The curve q(t)has the same 1-st derivative as p(t) but the restriction of the deformation q(t) to thevertex E has zero second derivative SE +E 00. Thus instead of (p; q00; q000) we can takethe 3-jet (p0; p00; p000) of the curve p(t). 2In what follows we shall assume that E 00 = 0 which will simplify our calculations.Let �00 = C 00 �D00;�000 = C 000 �D000. The scalar products Bj � C and Bj �D must bepreserved up to the 3-rd order, thusC 000 �Bj + 3C 00 �B0j + C �B000j = 0 (65)D000 �Bj + 3D00 �B0j +D �B000j = 0 (66)This implies that �000 �Bj = �00 �B0j. The vectors Bj , j = 1; 2 are linearly independent,B01 = B02 and �000 � C = 0, thus we conclude �000 � Bj = 0, j = 1; 2. It follows that�00 � B0j = 0. However �00 � C = 0 and the vectors B0j; C are linearly independent.Hence �00 = (0; 0; �). The scalar product D � E must be preserved up to the secondorder, therefore D00 � E = 0, E � (0; 0; �) = 0 which implies C 00 � E = 0. The vectorsC;E are linearly independent, thus the equality C 00 �C = 0 implies that C 00 = (0; 0; 
).We have 0 = A � C 00 + A00 � C, thus A00 � C = 0 and on the other hand A00 � E = 0.It follows that A00 � A = 0 since the vector A is a linear combination of C;E. Recallhowever that the scalar product A �A must be preserved up to the second order, henceA � A00 + A0 � A0 = 0. We conclude that A0 � A0 = 0 which contradict the assumptionthat A0 is the unit vector (0; 0; 1). 2Note that the in�nitesimal deformation q0 is nontrivial since it is not extendableto a 3-rd order deformation of the linkage.19



10 Representation varieties with nonquadraticsingularitiesLet � = �i be one of two re
ection groups constructed in Section 7. We de�ne arepresentation � : � ! SO(3) as follows. Suppose that a face of the fundamentalpolyhedron � is labelled by a letter S which is the label of a vertex S in the graph�. Then we let �(�S) be the rotation of order two around the vector �(S) � �2.Otherwise (if S 2 � is not a vertex of �) we let �(�S) = 1. It follows from the list ofrelations of the group � and the geometry of � that � is a homomorphism (see theproof of Lemma 10.4). (For instance, the rotations �(�A)�(�E); �(�D)�(�E); �(�A)�(�D)have orders dividing m).Lemma 10.1 If t = �=m = �=4 then the group �i(�i) is �nite. If m = 7 then thegroup �i(�i) is in�nite. Moreover in the latter case the group �i(�i) is Zariski densein SO(3).Proof: We �rst assume that t = �=m = �=4. It is easy to see that the �nite collectionof vectors f(�1; �2; �3); �j 2 f0; 1;�1gg is invariant under the generators of the group�2(�2). These vectors span R3 , thus the group �2(�2) is �nite. Suppose now thatm � 7 is a prime number. Then the group �1(�1) contains the rotation �1(Q) =�1(�C � �A) of order m around the axis z. The rotation �1(�BQ�B) has axis di�erentfrom z and the same order m. On the other hand, if K � SO(3) is a �nite subgroupwhich contains an element of prime order m � 7 then this is a dihedral group andaxes of all such elements in K must coincide. We conclude that �1(�1) is in�nite.The representation � is irreducible, thus �1(�1) contains two elements of in�nite orderwith di�erent axes, thus �1(�1) is Zariski dense in SO(3). 2Remark 10.2 It follows that for m � 7 the group �1(�1) is dense in SO(3) in theclassical topology.Theorem 10.3 For each i = 1; 2 the representation variety Hom(�i; SO(3)) has astrongly nonquadratic singularity at the point �i and the quotient variety V (�i; SO(3))has a strongly nonquadratic singularity at the point [�i].Proof: We again drop the index i for the groups �i and representations �i. Denoteby � � � the re
ection group generated by �S , S 2 �. Theorem 3.2 of [KM1] impliesthat there exists an isomorphism 	 between the germ of the variety Hom(�; SO(3))near � and the germ of the variety Def(�) near �(�). The last variety has nontriv-ial elements of T�(Def(�)) which can be extended to second order jets, but are notextendable to 3-rd order jets. Hence, the same holds for the variety Hom(�; SO(3))at �. Since 	 is SO(3)-invariant it induces an isomorphism of quotient germs. Con-sequently the germ of V (�; SO(3)) at [�] also has an in�nitesimal deformation withthe above properties.Lemma 10.4 The restriction mapRes : Hom(�; SO(3))! Hom(�; SO(3)) (67)is an isomorphism of germs of these varieties near the representation �.20



Proof: Let N be the normal subgroup of � generated by the set 
 of re
ections in thefaces of the polyhedron � corresponding to the vertices Q;Fi; Zj that were erased inpassing from � to �. The composition ' : �! �! �=N is clearly a surjection. Weclaim that it is also an injection. Let � be the set of re
ections in the faces of � notincluded in the set 
 above (the \rest of generators of �"). Then � has a presentationof the form: � = h�;
 : �2; !2; (�i�j)2mij ; (!k!l)2nkl; (�s!r)2psri (68)Here � runs through �, ! through 
 and the numbers nkl; mij; psr are determined bythe labels of edges of the graph �.The above presentation for � induces a presentation for �=N by adding the extrarelation ! = 1 for all ! 2 
. We can then eliminate the relations (!k!l)2nkl ; (�s!r)2psrsince the generators � have order 2. We obtain the following presentation for �=N :�=N = h� : �2; (�i�j)2mij i (69)Now it is clear that ' is an isomorphism since � has the same presentation and'(�j) = �j. The isomorphism ' : �! �=N induces an isomorphism of varietiesHom(�=N; SO(3))! Hom(�; SO(3))(see Remark below).We now prove that the quotient map �! �=N induces an isomorphism of germs(Hom(�=N; SO(3)); �)! (Hom(�; SO(3)); �). IndeedHom(�=N; SO(3)) is the inverse image of the trivial representation under the restric-tion map Hom(�; SO(3))! Hom(h
i; SO(3)) where h
i is the subgroup generatedby elements in 
. Since �jh
i is the trivial representation 1, we obtain an induced�ber square of germs(Hom(�=N; SO(3)); �) �! (Hom(�; SO(3)); �)# #f1g �! (Hom(h
i; SO(3)); 1)We claim that the trivial representation is an isolated point ofHom(h
i; SO(3)). Indeed, T1(Hom(h
i; SO(3))) is the space of 1-cocyclesZ1(h
i; so(3)). But since h
i is generated by elements of order 2 and acts triviallyon so(3) we have Z1(h
i; so(3)) = 0. Hence T1(Hom(h
i; SO(3))) = f0g and theclaim follows. Hence the bottom arrow of the above square is an isomorphism andconsequently the top one is also. 2Corollary 10.5 The map Res induces a mapRes : V (�; SO(3))! V (�; SO(3)) (70)which is an isomorphism of germs near [�].Proof: Follows from SO(3)-invariance of the map Res. 2
21



Remark 10.6 In the above proof we have used the fact that the isomorphism ofgroups ' : � ! �=N induces an isomorphism of representation varieties. Since thedescription of a representation variety Hom(�; H) depends on a presentation of theabstract group � this is not obvious. We prove that now. The coordinate ring R of arepresentation variety represents the functor of points A ! Hom(�; H)(A) where Ais an a�ne k-algebra. But since Hom(�; H)(A) = Hom(�; H(A)), a homomorphismof abstract groups induces a natural transformation of the above functors. Hence anisomorphism of abstract groups induces a natural isomorphism of functors and so therepresenting objects (the two coordinate rings) are isomorphic.This discussion concludes the proof of Theorem 10.3. 2Now we can prove two main theorems of this paper.Theorem 10.7 There exists a cocompact torsion-free lattice �01 in SO(3; 1) and anirreducible representation �1 : �01 ! SO(3) such that the varieties Hom(�01; SO(3))and V (�01; SO(3)) have nonquadratic singularities at �1 and [�1] respectively.Proof: Take any torsion-free normal subgroup of �nite index �01 � �1 where �1 is asin Theorem 10.3. Then the assertion follows from Theorems 10.3, 4.6, 5.1. 2Theorem 10.8 There exists a cocompact torsion-free lattice �02 in SO(3; 1) such thatfor any semi-simple Lie group G the varieties Hom(�02;G) and V (�02;G) have non-quadratic singularities at the trivial representation 1 and its conjugacy class [1] re-spectively.Proof: We have constructed a lattice �2 � SO(3; 1) and a �nite representation �2 :�2 ! SO(3) with a strongly nonquadratic singularity of the germ (Hom(�2; SO(3)); �2).Take any torsion-free normal subgroup of �nite index �02 � �2 such that �2(�02) = 1.Then the assertion follows from Theorems 4.6, 5.1, 6.1. 211 Deformation theory near the identity represen-tationSuppose that � � SO(3; 1) is a cocompact lattice, � is the identity representation� ,! SO(3; 1). We are interested in the germ (V (�; SO(4; 1)); [�]). Recall thatthe embedding SO(3; 1) ,! SO(4; 1) corresponds to the totally-geodesic embeddingH 3 ,! H 4 . Denote by � the re
ection in H 4 which �xes H 3 pointwise. Then the Liealgebra so(4; 1) splits as so(3; 1)�m so that � acts as 1 on so(3; 1) and �1 on m. Thissplitting is orthogonal with respect to the Killing form on so(4; 1), thus it is invariantunder the adjoint action of so(3; 1). It follows that for any �; � 2 m,[�; �] 2 so(3; 1) (71)We recall that the 1-st obstruction to the integrability of in�nitesimal deforma-tions � 2 H1(�; so(4; 1)) is the cup product [�; �]. The 1-st cohomology groupH1(�; so(4; 1)) splits as H1(�; so(3; 1))�H1(�;m)22



and the 1-st summand is equal to zero according to Calabi-Weil rigidity theorem.Thus for any class � 2 H1(�; so(4; 1)) we can choose a representative ~� 2 Z1(�;m).We owe the following argument to Gregg Zuckerman.Proposition 11.1 The cup-product[ ; ] : H1(�; so(4; 1))
H1(�; so(4; 1))! H2(�; so(4; 1)) (72)is identically zero.Proof: For classes �1; �2 2 H1(�; so(4; 1)) we choose representatives ~�1; ~�2 2 Z1(�;m).The cup product [�1; �2] is represented by the 2-cocycle on �:o(x; y) = [~�1(x); adx~�2(y)] (73)where [ ; ] is the Lie bracket on so(4; 1). Then (71) implies that o(x; y) 2 Z2(�; so(3; 1)).However, according to the Calabi-Weil rigidity and Poincare duality we getH2(�; so(3; 1)) = 02 Theorems 10.7, 10.8 imply that vanishing of the cup-product alone is not apriorienough to guarantee smoothness of the variety V (�; SO(4; 1)) near [�]. However wedon't know any examples when the identity representation [�] actually is a singularpoint. Results of [Ka] imply that such pathological examples do not exist in the classof re
ection groups.12 Remarks on mechanical linkagesOur examples of mechanical linkages were motivated by a construction due to R. Con-nelly [C] of a rigid mechanical linkage in R2 , which is not rigid at 1-st and 2-nd order.Unfortunately the in�nitesimal deformation of 2-nd order constructed by Connelly canbe extended to a deformation of 3-rd order and we can't use his construction to proveTheorem 10.7. More generally, for each positive integer n Connelly constructs a locallyrigid mechanical linkage in R2 which admits a nontrivial in�nitesimal deformation oforder n. This construction works for S2 as well but to construct a representation of aCoxeter group one needs rationality conditions for lengths of edges which are di�cultto arrange. Note that the books on mechanical engineering [ALC], [S] contain lots ofexamples of mechanical linkages which can draw quite complicated algebraic curves.We recall the classical result of A.B.Kempe [Ke] that for any planar compact realalgebraic curve C there exists a �nite collection of mechanical linkages in R2 which candraw C \piece-by-piece". To apply this theorem to construction of Coxeter groupswith arbitrarily complicated singularities of representation varieties one has to solvethe same rationality problem.Question 12.1 Suppose that V is an a�ne variety in Rn . Is it true that there exists acocompact lattice � � SO(3; 1), compact Lie group G and a representation � : �! Gsuch that the germ (Hom(�;G); �) is analytically isomorphic to the germ (V �Rm ; 0)for some m?We will address this problem in another paper [KM2].23
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