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2 HERMANN FLASCHKA AND JOHN MILLSON1. Introdu
tionIn this paper we study 
ertain symple
ti
 quotients of n-fold produ
tsof C Pm by the unitary group U(m+1) a
ting diagonally. After 
larify-ing some basi
 properties of these quotients|when they are nonemptyand nonsingular|, we 
onstru
t the a
tion-angle variables, de�ned ona dense open subset, of an integrable Hamiltonian system. The systemgeneralizes the \bending 
ows" on the polygon spa
e of [KM96℄, and itssemi
lassi
al quantization reprodu
es formulas from the representationtheory of U(m+1).Think of a point of C Pm as the line through a unit ve
tor w 2 C m+1 ,and identify this line with the hermitean proje
tion w
w� that mapsv 2 C m+1 to (v; w)w. Pi
k n � m+1, and for i = 1; : : : ; n �x numbersri > 0; the reason for the restri
tion n � m+ 1 be
omes 
lear in equa-tion (1.1) below. Let wi 2 C m+1 be unit ve
tors, and set ei = riwi
w�i .These hermitean matri
es have rank=1 (with eigenvalues ri; 0; : : : ; 0),and may be thought of either as weighted points in C Pm or as ele-ments in an orbit Ori of U(m+1) a
ting by 
onjugation. We largelyuse the se
ond interpretation. The orbits 
arry the Kostant-Kirillovsymple
ti
 form, 
all it !i, whi
h is 2ri times the usual Fubini-Studyform on C Pm . The (diagonal) a
tion of U(m+1) on �ni=1 (C Pm ; !i) isHamiltonian, and its momentum map is given by� : (e1; : : : ; en) 7! e1 + � � �+ en:With � = 1m+1(r1+ � � �+rn), the symple
ti
 quotient ��1(�I)=U(m+1)turns out to be(1.1) f(e1; : : : ; en) j e1 + � � �+ en = �Ig=U(m+1):We denote this symple
ti
 quotient by Mr (r stands for the n-tuple(r1; : : : ; rn)).Our goal, as mentioned already, is to 
onstru
t an integrable Hamil-tonian system on Mr, possessing a
tion-angle 
oordinates de�ned al-most everywhere, and to develop some 
onne
tions with representationtheory. We now des
ribe the 
ontent of our paper in more detail.The paper [KM96℄ by Kapovi
h and Millson provides motivation andan appealing geometri
al setting. They work in the Lie algebra su(2).That is, they take m = 1 and use ei = ri(wi 
 w�i � 12I). Then eimay be thought of as a ve
tor in R3 , of length ri, and Mr be
omes thespa
e of 
losed polygons with pres
ribed side lengths ri. By analogy,we 
ontinue to refer to an n-tuple e = (e1; : : : ; en) as an n-gon, to eias the i-th edge, and to the partial sumsPi+11 ej = Ai as the diagonalsof the n-gon (
f. Figure 1 in x6). Ea
h Ai is, generi
ally, a Hermitean



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 3matrix of rank minfi+1; m+1g. Thus we may think of an n-gon as asequen
e of Hermitean matri
es (the diagonals), ea
h Ai formed fromits prede
essor Ai�1 by making a rank-1 perturbation with the nonzeroeigenvalue ri+1 of the perturbing matrix �xed in advan
e.We �rst give ne
essary and suÆ
ient 
onditions on r for the spa
esMr to be nonempty. Following [LM℄, we �nd that Mr is nonempty ifand only if r satis�es the strong triangle inequalitiesmri � r1 + � � �+ bri + � � �+ rn; 1 � i � n:Let C(n;m+1) � Rn+ be the polyhedral 
one de�ned by these inequal-ities. If we normalize r by requiring Pi ri = m + 1 we �nd that Mris nonempty if and only if r is an element of a 
ertain 
onvex poly-tope known as the hypersimplex and denoted by �n�1(m+ 1), see [Zi℄and [GGMS℄. Thus, C(n;m + 1) is the 
one on �n�1(m + 1). (Thestrong triangle inequalities are, of 
ourse, a spe
ial 
ase of the Klya
hkoinequalities on the eigenvalues of sums of hermitean matri
es [Kly98℄).We also explain, very brie
y, how to identify the spa
e Mr with aweighted 
omplex analyti
 quotient of the n-fold produ
t �n1 C Pm. Theexisten
e of the stru
ture of a 
omplex analyti
 spa
e on su
h quotientsis a spe
ial 
ase of [HL94℄ and [Sj95℄. Deligne and Mostow in [DM86℄
onstru
ted the weighted 
omplex analyti
 quotients of C P1, and the
onne
tion with the symple
ti
 quotient of produ
ts of C P1 (spatialpolygons) was found independently in [KM96℄ and [Kly92℄.The des
ription of Mr 
on
ludes with the observation that it issmooth if and only if r does not lie on 
ertain hyperplane se
tionsof the 
one C(n;m+1). The subsequent dis
ussion involving our inte-grable Hamiltonian system will be restri
ted to this generi
 
ase.In the three-dimensional setting of [KM96℄, the a
tion variables oftheir integrable system are the lengths of the diagonal ve
tors Ai, orequivalently, the positive eigenvalues of the su(2) matri
es represent-ing those ve
tors. The 
orresponding Hamiltonian 
ows, the \bending
ows", rotate half of the polygon rigidly about a �xed diagonal at 
on-stant speed, while leaving the other half of the polygon �xed. Theanalogous a
tion variables in the higher-dimensional setting are stillthe eigenvalues of the diagonals. Let �ij be the j-th eigenvalue of thei-th diagonal. A subset of the �ij will be generi
ally fun
tionally in-dependent, de�ning a real Lagrangean polarization on an open densesubset of Mr. Generi
ally again, �ij has multipli
ity one. Let Pij bethe orthogonal proje
tion on the 
orresponding eigenline. Then theHamiltonian 
ow of �ij is obtained by 
onjugating the �rst i edges bythe one-parameter group exp(p�1 tPij) and leaving the last n�i edges�xed. Sin
e \half" the polygon moves by a rigid motion and the \other



4 HERMANN FLASCHKA AND JOHN MILLSONhalf" remains �xed we still 
all these 
ows \bending 
ows". Be
auseP 2ij = Pij, the bending 
ows are 
learly periodi
 with period 2�. The
ommutativity of the 
ows is made plausible by the geometri
 pi
ture;a proof by 
al
ulation is also easy.We then turn to the momentum polyhedron and the angle vari-ables. A 
riti
al role in identifying the image of the momentum mapis played by the Weinstein-Aronszajn formula from perturbation the-ory; the simple version we need shows that the eigenvalues of Ai�1and Ai interla
e. As a 
onsequen
e, one �nds that the momentumpolytope is de�ned by 
ertain Gel'fand-Tsetlin patterns (see xx 8, 9).The angle variables also make their appearan
e at this stage. One seesfrom the Weinstein-Aronszajn formula that if ui�1;j is a unit eigenve
-tor of the diagonal Ai�1, 
orresponding to the eigenvalue �i�1;j, andif Ai = Ai�1 + ri+1wi+1 
 w�i+1 is the next diagonal, then the modu-lus of the inner produ
t (ui�1;j; wi+1) is left 
onstant by all bending
ows. One therefore expe
ts the 
olle
tion of numbers arg(ui�1;j; wi+1)to lead to the angle variables. This is almost 
orre
t. There are arbi-trary phases in the 
hoi
es of the unit eigenve
tors ui�1;j and the unitve
tors wi+1, whi
h would a�e
t the arguments of the inner produ
ts.It is therefore ne
essary to 
ombine these inner produ
ts into \fourpoint fun
tions" (w; x)(x; y)(y; z)(z; w) (the terminology 
omes from[BeS
h℄ ) in order to produ
e an angle that is independent of 
hoi
es.Be
ause of this somewhat subtle de�nition, the 
omputation of Poissonbra
kets amongst the a
tions and the angles is not straightforward.The o

urren
e and spe
ial form of Gel'fand-Tsetlin patterns in thedes
ription of the momentum polytope for the bending Hamiltoniansis explained by a basi
 observation of [HK97℄. They dis
overed thatGel'fand-Ma
Pherson duality [GGMS, p.305℄, intertwines the bendingHamiltonians on Mr and the Gel'fand-Tsetlin Hamiltonians on a sym-ple
ti
 quotient of the Grassmannian G(m + 1; C n) by the maximaltorus of PU(n). Their ideas easily extend to our setting, see x11.We 
on
lude by relating our system to representation theory. As-sume that the ri are positive integers, and that Pn1 ri is divisible bym + 1 (so that � in (1.1) is an integer). This quantization of our sys-tem yields the Pieri formula for de
omposing the n-fold tensor produ
tof symmetri
 powers NSri of the basi
 representation of U(m+1) onC m+1 . Indeed, Pieri's formula is just the Weinstein-Aronszajn formula,and the de
omposition of the tensor produ
t is indexed by latti
e pointsin the momentum polytope.The duality of Hausmann and Knutson also has a quantum analogue.It asserts the equality of the multipli
ity of the representation det� ofU(m+1) in the above n-fold tensor produ
t and the multipli
ity of the



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 5weight r of the maximal torus of U(n) in the �-th Cartan power of them + 1-st exterior power of the standard representation of U(n). Thisquantum duality is a re
e
tion of the rule for asso
iating a semistan-dard Young tableau to a Gel'fand-Tsetlin pattern (but for the spe
ialpatterns des
ribed above) [GZ86℄, see below, x12, Remark 10.It is our hope that there are analogous results for all symple
ti
quotients of produ
ts of 
ag manifolds. For general su
h produ
ts, one
an �nd integrable systems that redu
e to ours in the 
ase of proje
tivespa
e, but it appears very hard to 
onstru
t an expli
it family of Hamil-tonians with periodi
 
ows, i.e. a
tion variables. If su
h a 
onstru
tion
ould be 
arried out and the momentum polytope 
ould be 
omputed,then by 
ounting latti
e points in the momentum polytope one 
ould�nd information on de
omposing tensor produ
ts of irredu
ible rep-resentations. Many deep 
onne
tions are now known between tensorprodu
t de
ompositions and 
onvex polyhedra; these polytopes, how-ever, do not seem to arise as images of momentum mappings. One ofthe main motivations for our paper is that the spe
ial 
ase treated hereof is probably the only 
ase where everything 
an be worked out withsimple expli
it formulas.2. The moduli spa
e of n-gons in Hm+1In this se
tion, we 
olle
t the notation used throughout, and in par-ti
ular, introdu
e the moduli spa
e of n-gons with whi
h we will be
on
erned.(1) Let Hm+1 be the ve
tor spa
e of m+1 by m+1 Hermitean ma-tri
es. We identify it with the Lie algebra u(m+1) by the linearmap � : u(m + 1) ! Hm+1 given by x 7! X = p�1 x. Thismakes Hm+1 into a Lie algebra, but we shall not need to referto the indu
ed bra
ket (whi
h is [[X; Y ℄℄ = �p�1 (XY �Y X)).The symbol [�; �℄ will 
ontinue to denote the matrix 
ommutatorXY � Y X.(2) H0m+1 = fX 2 Hm+1 j TrX = 0g.(3) We identify the Lie algebra Hm+1 with its dual via the bilin-ear form (X; Y ) = TrXY . A U(m+1)-orbit O then 
arries theKostant-Kirillov symple
ti
 form. The Poisson bra
ket is de-�ned by(2.1) ff; gg(X) = p�1Tr�[rf(X);rg(X)℄X�;and the Hamiltonian equation generated by f is(2.2) _X = p�1 [rf(X); X℄:



6 HERMANN FLASCHKA AND JOHN MILLSONWith these 
onventions, H02 and its Poisson bra
ket may beidenti�ed with Eu
lidean spa
e R3 and its standard bra
ket,see x10.(4) For r > 0, we let Or denote the orbit through diag(r; 0; : : : ; 0).It is di�eomorphi
 to C Pm , and the Kostant-Kirillov form is 4rtimes the Fubini-Study form on C Pm . The elements of Or aredenoted by the letter e (for \edge", see below), usually withsubs
ript.(5) Let w 2 C m+1 be a unit ve
tor. De�ne w 
 w� 2 Hm+1 byw 
 w�(v) = (v; w)w. The elements of Or are pre
isely thematri
es of the form rw
w�. Given e 2 Or, the unit ve
tor wiis determined only up to multipli
ation by a 
omplex numberof modulus one.(6) Let r = (r1; r2; : : : ; rn) be an n-tuple of positive numbers. Wede�ne a (
losed) n-gon with side-lengths r to be an n-tuple e =(e1; e2; : : : ; en) su
h that for all i; 1 � i � n we have(a) ei 2 Ori ,(b) Pn1 ei = �I; then � = 1m+1Pm+11 ri follows from equalityof tra
es.We 
all the matri
es ei the edges of the n-gon e and ri the lengthof the edge ei. Condition (b) says that the n-gon e is 
losed(modulo the 
enter of Hm+1).(7) When r is given � always stands for 1m+1P ri. Sometimes thenotation �r is used to emphasize the dependen
e of � on r.(8) Given r, de�ne eNr to be the produ
t symple
ti
 manifold �n1 Ori .The diagonal a
tion of U(m+1) on eNr is Hamiltonian with mo-mentum map � given by�(e) = nX1 ei:(9) Given r, letfMr = ��1(�I) = fe 2 eNr j nXi=1 ei = �Ig:This is the spa
e of 
losed n-gons. The unitary group a
tsdiagonally on fMr.(10) Finally, we de�ne the moduli spa
e, Mr, of n-gons (with side-lengths r) to be the quotient of fMr by the diagonal a
tion ofU(m+1).Be
ause the stabilizer of the s
alar matrix �I is all of U(m+1), weobtain



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 7Lemma 2.1. Mr is the symple
ti
 quotient of eNr 
orresponding to the(one-point) orbit �I2 Hm+1 under the diagonal a
tion of U(m+1).3. Nonemptiness of the moduli spa
esIn this se
tion we will prove one impli
ation in the following theorem.Theorem 3.1. The moduli spa
e Mr is nonempty if and only if rsatis�es the system of strong triangle inequalitiesmri � r1 + r2 + � � �+ bri + � � �+ rn:Here bri means that ri has been omitted in the summation.The full theorem is a 
onsequen
e of the inequalities of [Kly98℄, seealso [Bel℄. It is proved expli
itly in [LM℄, Theorem 4.7. We will givean elementary proof here of the ne
essity of the inequalities.De�nition 3.1. LetX 2 H0m+1. We will say X ismaximally singular ifX is 
onjugate to a diagonal matrix with eigenvalues (r;� rm ; : : : ;� rm).We note that the orbit O0r under U(m+1) of su
h anX is the proje
tiononto tra
efree matri
es of the orbit Or through diag(r; 0; : : : ; 0).Lemma 3.1. Suppose X1; X2 2 H0m+1 are distin
t, maximally singular,and satisfy tr(X2j ) = 1. Then tr(X1X2) � �1=m, with equality if andonly if X1 and X2 
ommute.Proof. We may writeXj =rm + 1m (wj 
 w�j � 1m+ 1I);where kwjk = 1; j = 1; 2.ThenTrX1X2 =m + 1m Tr[(w1 
 w�1 � 1m + 1I)(w2
 w�2)℄=m + 1m [j(w1; w2)j2 � 1m + 1℄ � m + 1m � � 1m + 1=� 1m + 1 :Clearly we have equality if and only if (w1; w2) = 0 if and only if Xand Y 
ommute. �Proposition 3.1. Suppose that Mr is nonempty. Then r satis�es thestrong triangle inequalities.



8 HERMANN FLASCHKA AND JOHN MILLSONProof. Choose e 2 fMr. Then e1 + � � � + en = �I is equivalent tor1X1 + � � �+ rnXn = 0, where the matri
esXj =rm+ 1m (wj 
 w�j � 1m+ 1I)satisfy the hypotheses of Lemma 3.1. Alternatively,riXi = �r1X1 � � � � � driXi � � � � � rnXn:Multiply ea
h side by Xi and take the tra
e to obtainr2i = �Xj(6=i) rirjTr(XjXi) � 1m Xj(6=i) rirj:Now divide both sides by ri to obtain the result. �De�nition 3.2. C(n;m + 1) = fr 2 (R)n+ jMr 6= ;g:As mentioned in the introdu
tion, the interse
tion of C(n;m + 1)with the hyperplane P ri = m + 1 is known in the literature as thehypersimplex.4. The spa
e of n-gon linkages and the moduli spa
es ofweighted 
onfigurations on C PmIn [Sj95℄ and [HL94℄ the authors 
onstru
ted the analyti
 quotientof a (not ne
essarily proje
tive) K�ahler manifold M by the a
tion of a
omplex redu
tive group G. It is assumed that some maximal 
ompa
tsubgroup K � G a
ts in a Hamiltonian fashion on M with momentummap �. In their theory, a point m 2 M is de�ned to be semistable ifthe 
losure of the orbit G �m interse
ts the subset ��1(0) of M . Theset of semistable points is denoted by M sst; it is open inM . A point ofM is de�ned to be ni
e semistable if the orbit itself interse
ts the zeromomentum set. De�ne an equivalen
e relation, 
alled extended orbitequivalen
e, by de
laring two points to be related if their orbit 
losuresinterse
t. (That this is indeed an equivalen
e relation follows froma theorem assetring that ea
h equivalen
e 
lass of semistable points
ontains a unique ni
e semistable orbit).The analyti
 quotient of M by G, denoted M==G, is then de�nedto be the quotient of M sst by extended orbit equivalen
e. Sin
e anymomentum zero point is ni
e semistable, there is an indu
ed map fromthe symple
ti
 quotient ��1(0)=K to the analyti
 quotient. The aboveauthors prove that this map is a homeomorphism. These results wereproved earlier for the 
ase that the quotient is smooth in [Ki℄.



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 9When M is a produ
t of (partial) 
ag manifolds (so in parti
ularof proje
tive spa
es), the authors in [LM℄ gave a 
hara
terization ofsemistable points using 
onvex fun
tion theory on the asso
iated sym-metri
 spa
e. In this se
tion, we review their theory for the 
ase ofweighted 
on�gurations of points on C Pm . We will need a brief re-view of the 
ompa
ti�
ation of a symmetri
 spa
e X of non
ompa
ttype. In what follows, we let G be the 
onne
ted 
omponent of theidentity of the isometry group of X, 
hoose a basepoint o in X, andlet K be the isotropy subgroup of o. For the purpose of understand-ing the rest of this paper, the reader may spe
ialize X to the 
ase ofX = SL(m+1,C )= SU(m+1). This may be realized as the set P of pos-itive de�nite Hermitean matri
es of determinant 1; then the basepointis I and K = SU(m+1).4.1. The ideal boundary of a symmetri
 spa
e of non
ompa
ttype. We will brie
y summarize the material in [E, x1.7℄.De�nition 4.1. Two unit-speed geodesi
s � and 
 are said to beasymptotes, or be asymptoti
, if the Riemannian distan
e between �(t)and 
(t) remains bounded for t � 0.The asymptote relation between unit speed geodesi
s is an equiva-len
e relation, and the set of equivalen
e 
lasses will be denoted (anti
-ipating later developments) �1X. In what follows it will be more 
on-venient to repla
e unit-speed geodesi
s by their restri
tions to [0;1℄.These restri
tions will be referred to geodesi
 rays. Then two geodesi
rays will be equivalent if they remain a bounded distan
e apart. Everyray has an origin (its value at 0) and an initial dire
tion (the value of itsderivative at 0). The set of rays has a topology, the \
one topology".Roughly speaking, two rays are 
lose in the 
one topology if their ini-tial points are 
lose and their initial dire
tions are 
lose. For a pre
isestatement see [E℄. We give �1X the quotient topology. We let X bethe set whi
h is the disjoint union of X and �1X. The set X has anatural topology, again referred to as the 
one topology, in whi
h theindu
ed topology on X is the natural one and the indu
ed topologyon �1X is the one just des
ribed. A sequen
e of points fxng in X
onverges to the 
lass of a ray � 2 �1X, if the Riemannian distan
efrom o to xn goes to 1 and the sequen
e of initial dire
tions of thegeodesi
 segments �(0)xn 
onverges to the initial dire
tion of the ray� in T�(0)(X). In parti
ular, if � is a geodesi
 ray, then limt!1 �(t) isthe 
lass of � in �1X. We note that G a
ts on X and on �1X.



10 HERMANN FLASCHKA AND JOHN MILLSONLet So be the unit sphere in the tangent spa
e To(X). De�ne the\radial proje
tion to in�nity" � : So ! �1X by�(u) = limt!1 exp tu:We then haveLemma 4.1. The map � is a K-equivariant homeomorphism. In par-ti
ular, ea
h equivalen
e 
lass of rays 
ontains a unique representativewhi
h emanates from o.Thus the spa
e of ideal points �1X is a sphere, and the spa
e X ishomeomorphi
 to a 
losed ball. The main gain in passing from So to�1X is that one has a G-a
tion extending the K-a
tion. The G-orbitsare 
ompa
t in the 
one topology and are (partial) 
ag manifolds. Inorder to relate G � �; � 2 �1X, to a 
ag manifold, it suÆ
es to 
omputethe paraboli
 group G� whi
h stabilizes �. The rule for 
omputing G�is given in Proposition 2.17.3 of [E℄.Proposition 4.1. Let u 2 So be su
h that �(u) = �. ThenG� = fg 2 G : limt!1 e�tugetu is �niteg:This proposition translates into a very simple formula for �nding the
ag in the 
ase of interest to us, see [E℄, x2.13.8 and 2.17.27. Let � andu be as in the Proposition. So now u 2 Hm+1 � f0g. Suppose it has` distin
t eigenvalues. Arrange them in de
reasing order and de�ne apartial 
ag F� by letting Fi; 1 � i � ` � 1; be the sum of the �rst ieigenspa
es.Proposition 4.2. The 
ag F� just des
ribed is the 
ag asso
iated tothe boundary point � 2 �1X.We note that C Pm � �1X 
orresponds to the 
ags F� 
onsistingof one proper subspa
e, a line, and that u has exa
tly two distin
teigenvalues, the large one with multipli
ity 1 and the small one withmultipli
ity m. Thus by Proposition 4.2, �(u) = L, where L is theeigenline belonging to the large eigenvalue of u.4.2. The 
hara
terization of semistability via 
onvex fun
tiontheory. >From now on, we take X = SL(m+1,C )= SU(m+1), andidentify it with P as above. That is the spe
ial 
ase required in thispaper; the general X is treated in [LM℄. We de�ne the spa
e of pro-je
tive 
on�gurations C to be the n-fold produ
t �n1C Pm � �n1�1X.We assume we are give r as above. We will de�ne an open subset Csstr



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 11of C, the set of semistable weighted 
on�gurations (thinking of the i-th point as having weight ri). First, we asso
iate to a 
on�guration� = (�1; � � � ; �n) the atomi
 measure� = nX1 riÆ�i ;where Æ�i is the atomi
 measure with a single atom of mass 1 lo
atedat �i. Next, we introdu
e the Busemann fun
tion b(x; �), de�ned onthe produ
t X � �1X. If � = �(u), thenb(P; �) := limt!1(d(P; etu)� d(I; etu)):The limit exists, and is a 
onvex Lips
hitz fun
tion of P . In [LM℄, theauthors de�ne the weighted Busemann fun
tion b� to be the integralover �1X with respe
t to the measure �. Thusb�(x) = nX1 rib(x; �i):Of 
ourse, sin
e � is supported on C Pm, we 
ould just as well de�ne b�to be the integral over C Pm.There is a parti
ularly simple expli
it formula for b(P; �) for � 2 C Pm .Lemma 4.2. Let P 2 P and w 2 C � f0g. Thenb(P;w 
 w�) =p(m+ 1)=m ln (kP�1=2wk2=kwk2):It is proved in [LM℄ that a weighted 
on�guration is semistable ifand only if the weighted Busemann fun
tion is bounded below, andni
e semistable if and only if the weighted Busemann fun
tion has aminimum. One 
an use Lemma 4.2 to relate stability properties andthe strong triangle inequalities.Remark 1. When the ri's are positive integers, b� is essentially thenatural logarithm of the fun
tion studied by Kempf and Ness, [KN79℄and Ness, [Ne84℄. In these papers, P is �xed and the wi's vary (morepre
isely the wi's are 
oded into a de
omposable tensor whi
h varies).Thus, the above results are the analogues for general weights of thoseof Kempf and Ness.4.3. The analyti
 quotient and its relation to the symple
ti
quotient. We now indi
ate how the theory of [LM℄ allows one to vi-sualize the relation between the symple
ti
 and analyti
 quotients as apassage from So to the ideal boundary �1X.We extend � to a map from n-gons to 
on�gurations by �(e) = �where, if ei = riwi 
 w�i , then �i := �(wi 
 w�i ). We then have ([LM℄)



12 HERMANN FLASCHKA AND JOHN MILLSONLemma 4.3. If e 2 (Hm+1)n satis�es �(e) = 0, then �(e) is a ni
esemistable 
on�guration.We obtain an in
lusion � : fMr ! Csstr . We note that Proposition 4.2gives the expli
it formula�(e) = ([w1℄; [w2℄; � � � ; [wn℄);where ei = riwi 
 w�:Here we have used [wi℄ to denote the image of the unit ve
tor wi inC Pm.The following theorem is then a spe
ial 
ase of the general resultrelating symple
ti
 quotients and analyti
 quotients proved in [Ki℄,[Sj95℄ and [HL94℄.Theorem 4.1. The in
lusion � indu
es a homeomorphism � : Mr !Mr. When Mr is a smooth manifold, so is Mr, and � is a di�eomor-phism.Thus the moduli spa
e of n-gons Mr always has the stru
ture of a
omplex analyti
 spa
e, and when Mr is smooth it has the stru
tureof a 
omplex manifold. In fa
t, the symple
ti
 stru
ture and the 
om-plex stru
ture are 
ompatible, and a

ordingly when Mr is a smoothmanifold, it has the stru
ture of a K�ahler manifold.5. Smoothness of the Moduli Spa
esIn this se
tion we give a suÆ
ient 
ondition in terms of r for thespa
e Mr to be smooth. For m = 1, it was shown in [KM96℄ that Mrwill have singularities if, and only if, the index set f1; : : : ; ng 
an bepartitioned into proper subsets I; J so that(5.1) Xi2I ri =Xj2J rj:There then exists a polygon (in Eu
lidean spa
e), with the given sidelengths, that is 
ontained in a line segment, and su
h polygons are thesingular points of Mr. For m � 1, we adapt (5.1) as follows.De�nition 5.1. For 1 � k � m and I [ J a proper partition off1; : : : ; ng, setHI;J;k = fr 2 Rn+ j kXi2I ri = (m� k + 1)Xj2J rjg:The wall 
orresponding to this hyperplane is the interse
tionWI;J;k = HI;J;k \ C(n;m+ 1)(
f. De�nition 3.2).



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 13We will see that if r does not lie on a wall, thenMr is smooth. To thisend, we need the higher-dimensional analog of degenerate polygons.Let r 2 WI;J;k. Suppose I = fi1; : : : ; ipg; J = fj1; : : : ; jqg (so thatp + q = n), and take I and J to be ordered, i1 < i2 < : : :, j1 < j2 <: : :. Set rI = (ri1 ; : : : ; rip), and likewise for J . Choose an orthogonalde
omposition C m+1 = V1 � V2 with dimV1 = m� k+ 1 and dimV2 =k. Let H(Vi) denote the Hermitean endomorphisms of Vi. We havein
lusions �i : H(Vi)! Hm+1.Lemma 5.1. Write �I =PI ri; �J =PJ rj; �I = �I=(m�k+1); �J =�J=k, � =Pn1 ri, and � = �=(m+ 1) as usual. Then �I = �J = �.Proof. Be
ause r 2 WI;J;k, we have k�I = (m� k+1)�J , whi
h implies�I = �J . Furthermore,k� = k�I + k�J = (m� k + 1)�J + k�J = (m+ 1)�J ;when
e � = �=(m+ 1) = �J=k = �J . �De�ne a map�I;J;V1;V2 : fMrI (H(V1))� fMrJ (H(V2))! eNrby (e(1); e(2)) 7! (�"(e(")1 ); : : : ; �"(e(")n ));where in the `th entry, " = 1, resp. 2, if ` 2 I, resp. ` 2 J . Lemma5.1 shows that the image of �I;J;V1;V2 in fa
t lies in fMr, i. e. , 
onsists of
losed polygons.De�nition 5.2. We say that e 2 fMr is de
omposable if it lies in theimage of the map �I;J;V1;V2 for some 
hoi
e of I; J; V1; V2 as above.Lemma 5.2. fMr 
ontains a de
omposable polygon if, and only if, rlies on a wall.We now turn to the smoothness of Mr. Let e�r � fMr be the set ofde
omposable polygons. We note that e�r is invariant under U(m+1),and let �r be the image of e�r in Mr.Theorem 5.1. (i) fMr � e�r is a smooth manifold. (ii) The groupSU(m+1) a
ts freely on fMr � e�r, hen
e the quotient Mr � �r is asmooth manifold.Proof. First an observation. If w(t) is a smooth 
urve in C m+1 , withkw(t)k � 1, then Trw(t) 
 w(t)� � 1 implies Tr ddt(w(t) 
 w(t)�) � 0.Hen
e the derivative of the momentum map � : eNr !Hm+1 maps intoH0m+1.We now prove (i). The following fa
t is standard.



14 HERMANN FLASCHKA AND JOHN MILLSONLemma 5.3. Let Z(ei) be the 
entralizer of ei in H0m+1. Thend���e : Te( eNr)!H0m+1 is not onto () n\i=1Z(ei) 6= f0g:Indeed, the di�erential d���e will be onto if, and only if,Te1(Or1) + � � �+ Ten(Orn) = H0m+1:Letting ? denote orthogonal 
omplement in H0m+1, we see that d���e isonto if, and only if,Te1(Or1)? \ : : : \ Ten(Orn)? = f0g:But Tei(Ori)? = Z(ei), and the lemma follows.Suppose now that d���e is not onto. Choose a nonzeroX 2 \ni=1Z(ei).Suppose that X has ` distin
t eigenvalues, so that C m+1 is the orthogo-nal sum of the 
orresponding eigenspa
es Wj. For ea
h ei = riwi
w�i ,we have Cwi = ker (ei � riI). Sin
e X and ei 
ommute, wi is alsoan eigenve
tor of X. Hen
e wi 2 Wji for some ji. Now set V1 =W1+ � � �+W`�1, V2 = W`. De�ne I = fi j wi 2 V1g; J = fj j wj 2 V2g.It follows that e lies in the image of the map �I;J;V1;V2. Thus, if e isnot de
omposable, then �I is a regular value of �r. This proves part(i). For (ii), we need to 
he
k that if e is not de
omposable, then thestabilizer of e under the a
tion of U(m+1) is trivial. The argumentjust given works, be
ause we deal with matrix groups. If �e��1 = e,we write C m+1 as sum of eigenspa
es of �, and pro
eed as before. This
ompletes the proof of Theorem 5.1. �Corollary 5.1. If r does not lie on a wall, then Mr is a smooth man-ifold.We 
on
lude this se
tion by identifying the 
riti
al sidelengths of
losed polygons. We de�ne the spa
e of 
losed n-gons (with arbitraryside-lengths) byCPol(n;m+ 1) = fe 2 (Hm+1)n :Xi ei = �rIg:Theorem 5.2. Let s : CPol(n;m + 1) ! Rn be the side-length map.The set of 
riti
al values of s is the union of the walls.Proof. We have seen that r lies on a wall if, and only if, �rI is a 
riti
alvalue of � : eNr ! Hm+1. Lete 2 fMr = CPol(n;m + 1) \ eNr:



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 15The result will follow on
e we prove that Te� is onto if, and only if,Tes is onto.To show this, 
onsider a 
urve e(t) = (r1(t)w1(t) 
 w1(t)�; : : :) inCPol(n;m+1), with e(0) = e. We have _ei(0) = �iwi
w�i +Xi, where�i = _ri(0) and, as noted above,Xi = ri(wi 
 _wi(0)� + _wi(0)
 w�i ) 2 H0m+1:Moreover, sin
e e is 
losed,(5.2) nXi=1 �iwi 
 w�i � 1m+ 1 nXi=1 �iI= � nXi=1 Xi:Now Tes is surje
tive exa
tly when for every � 2 Rn there exist Xi forwhi
h (5.2) holds. The left side of (5.2) runs over all of H0m+1, hen
eso must the right side. This happens pre
isely when Te� is surje
tive.Indeed, a 
urve e(t) in eNr has ri � 
onstant, or � = 0, and the tangentmap is just Te�(X1; : : : ; Xn) =Pni=1Xi. �6. Bending HamiltoniansKapovi
h and Millson ([KM96℄) studied an integrable Hamiltoniansystem on fMr in the 
ase su(2), whi
h 
orresponds to Eu
lidean spa
eE 3 . To des
ribe their system and its rank-one generalization, we �xsome notation. Taking m = 1, we have ei = riwi 
 w�i 2 H2; i =1; : : : ; n. In x1 we introdu
ed the diagonals A0 = e1 and Ai = e1 +� � �+ ei+1; i = 1; : : : ; n� 2. Note that for a 
losed polygon, An�1 = �I,whi
h is indi
ated by a dashed line in Figure 1 (whi
h would be absentin su(m+ 1)).
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Figure 1. A polygon in u(m+ 1)



16 HERMANN FLASCHKA AND JOHN MILLSONIt was shown in [KM96℄ that (for su(2)) the fun
tions fi(e) = kAikPoisson 
ommute. The diagonalAi divides the polygon into two \
aps",and the 
ow generated by fi is 2�-periodi
, 
onsisting of a rigid rota-tion of one 
ap about the diagonal. In this 
ase, kAik is the positiveeigenvalue of Ai. The analogs of \bending Hamiltonians" for m > 1are again the eigenvalues of the diagonals.Notation 6.1. The eigenvalues of Ai are denoted by �ij in de
reasingorder, �i1 � : : : � �i;m+1.We note that An�2 = �I� en, whi
h has eigenvalues � (multipli
itym) and � � rn, and those are �xed. Thus only the �ij for 1 � i �n � 3 are of possible interest. Furthermore, it will be seen in x7 thato� submanifolds of fMr of lower dimension, the nontrivial �ij (thosenot identi
ally 0 or �) are simple. In that 
ase, they will be smoothfun
tions of e, whi
h is assumed throughout the present se
tion.6.1. Bending Flows. We want to 
al
ulate the Hamiltonian ve
tor�elds and 
ows generated by the �ij. By analogy with the 
ase of E 3 ,we 
all them \bending 
ows".On a produ
t of orbits, the Poisson bra
ket is the sum of the orbitbra
kets, and the next formula is evident from (2.2):Proposition 6.1. Suppose f : fMr ! C is smooth and depends onlyon e1; : : : ; ei+1. Then the Hamiltonian system generated by f is_ek = (p�1 [rkf(e1; : : : ; ei+1); ek℄; if 1 � k � i + 1,0; if i+ 1 < k � n,(6.1)where rk denotes gradient with respe
t to ek, all other ej being held�xed.To solve these equations when f = �ij, we need a standard lemmafrom perturbation theory.Lemma 6.1. Let � be an isolated eigenvalue of A 2 Hm+1, with uniteigenve
tor u. Then r�(A) = u
 u�.Proof. For A0 suÆ
iently 
lose to A, the eigenvalue �(A0) and (withproper 
hoi
e of phase) normalized eigenve
tor u(A0) vary analyti-
ally in a neighborhood of �; u. Take a 
urve A(t)u(t) = �(t)u(t),and take the inner produ
t with the unit length u(t) to get �(t) =(A(t)u(t); u(t)). Di�erentiate and set t = 0, and use (Au; _u(0)) +(A _u(0); u) = �((u; _u(0)) + ( _u(0); u)) = 0, resulting in_�(0) = ( _A(0)u; u) = Tr( _A(0)u
 u�);as was to be shown. �



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 17We write Ej(A) for the spe
tral proje
tion onto the �j eigenspa
eof A; the lemma thus states that r�j(A) = Ej(A), and in parti
ularr�ij(e) = Ej(Ai).Proposition 6.2. For i = 1; : : : ; n � 3 and j = 1; : : : ; m + 1, thefun
tion �ij : e 7! �j(Ai) is smooth wherever that eigenvalue is simple.It is the Hamiltonian for the system_ek = (p�1 [Ej(e1 + � � �+ ei+1); ek℄; if 1 � k � i + 1,0; if i+ 1 < k � n.(6.2)The Hamiltonian 
ow �tij(e) = e(t) is given byek(t) = (�Ad exp(p�1 tEj(Ai))�(ek); if 1 � k � i+ 1,ek; if i + 1 < k � n.(6.3)Proof. To obtain the system (6.2) we wish to apply Proposition 6.1. Itis ne
essary to relate the partial gradients rk�ij to the full gradient,r�ij = Ej(Ai). A

ording to Lemma 6.1, the former are found by
omputing _Ai(t) = (e1 + � � �+ ek(t) + � � �+ ei)_= _ek(t);but be
ause _Ai(0) is tangent to Ork , this only determines r�ij up toa ve
tor normal to the orbit:rk�ij(Ai) = Ej(Ai) + Yk; Yk 2 NekOrk :Then, sin
e [Yk; ek℄ = 0, we have [rk�ij; ek℄ = [Ej(Ai); ek℄, and (6.2)follows.Next, add the equations (6.2) for 1 � k � i+ 1 to �nd_Ai(t) = p�1 [Ej(Ai(t)); Ai(t)℄:Sin
e Ai 
ommutes with its own spe
tral proje
tions, we get _Ai(t) = 0and Ai(t) = Ai. With 
onstant Ai, the solution of (6.2) is immediate.�Corollary 6.1. The 
ows �ij have period 2� in t.Proof. If P is a proje
tion, then P 2 = P . Consequently, exp(p�1 tP ) =I+ (exp(p�1 t)� 1)P , whi
h has period 2�. �6.2. Involutivity. It is not a priori 
lear from the formulas for �ijthat these 
ows 
ommute. This is a short 
al
ulation; we again workonly with simple eigenvalues of the Ai.Proposition 6.3. f�ij; �k`g = 0 for 1 � i; k � n � 3 and 1 � j; ` �m+ 1.



18 HERMANN FLASCHKA AND JOHN MILLSONProof. By Proposition 6.1 and the proof of Proposition 6.2,f�ij; �k`g(e) = p�1 i+1Xs=1 Tr�es[Ej(Ai) + Ys; E`(Ak) + Zs℄�;where Ys; Zs are normal to Ors . The ad-invarian
e of the tra
e bilinearform shows that both Ys and Zs are annihilated by es. This leavesf�ij; �k`g(e) = p�1 i+1Xs=1 Tr�[es; Ej(Ai)℄E`(Ak)�= p�1Tr�[Ai; Ej(Ai)℄E`(Ak)�= 0: �Remark. The proof works more generally, if instead of Ai and Ak onehas PI ei and PJ ej, with I � J . Thus, for example, the eigenvaluesof e2+ e3 and e1+ � � �+ e5 are in involution. On the other hand, if �; �are eigenvalues of e1 + e2 and e2 + e3, respe
tively, thenf�; �g(e) = p�1Tr�e2[E�(e1 + e2); E�(e2 + e3)℄�;whi
h need not be zero. See [KM01℄ for more information.7. The Weinstein-Aronszajn FormulaThe diagonal Ai is a rank-one perturbation of Ai�1, and be
ause ofthis, the eigenvalues �ij and �i�1;j are related in a spe
ial way. This
onne
tion is the simplest instan
e of the Weinstein-Aronszajn formula[Kato, Ch.4, x6℄. We des
ribe the formula and two 
onsequen
es thatwill be used later.Let A be an (m + 1) � (m + 1) Hermitean matrix with eigenvalues�1; : : : ; �m+1 and let u1; : : : ; um+1 be 
orresponding orthonormal eigen-ve
tors. (If an eigenvalue has multipli
ity > 1, whi
h is now permitted,the 
hoi
e of its eigenve
tors is irrelevant). Let w 2 C m+1 be a unitve
tor, and let r 2 R. Set L = A + rw 
 w�, and 
all its eigenvalues�1; : : : ; �m+1. Finally, de�ne �1; : : : ; �m+1 2 C by w =Pm+1j=1 �juj.Proposition 7.1.(7.1) det(zI� L)det(zI� A) = 1� r m+1Xj=1 j�jj2z � �j :.



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 19Proof. Write Rz = (zI� A)�1 for the resolvent of A. The left side of(7.1) is = det �(zI� A)�1(zI� A� rw 
 w�)�= det(I�Rz(rw 
 w�))= det(I� r(Rzw)
 w�):Now, det(�I� r(Rzw)
w�) is the 
hara
teristi
 polynomial of a rank-one matrix, and so has an m-fold root at � = 0 and a simple root at� = r(Rzw;w). Setting � = 1 we get(7.2) det(I� r(Rzw)
 w�) = 1� r(Rzw;w):The lemma now follows by expanding w in (7.2) in the basis uj. �It is 
onvenient to write (7.1) more expli
itly:(7.3) (z � �1) : : : (z � �m+1)(z � �1) : : : (z � �m+1) = 1� r m+1Xj=1 j�jj2z � �j :Corollary 7.1. The j�jj2 are rational fun
tions of �k; �`; 1 � k; ` �m+ 1.Finally, we show that the eigenvalues of A and L interla
e. This willplay a basi
 role below.Proposition 7.2. If r > 0, then �1 � �1 � �2 � � � � �m+1 � �m+1. Ifr < 0, we have �1 � �1 : : : instead.Proof. Suppose r > 0. It suÆ
es to prove the proposition for a denseset of w, so that we may assume j�jj2 > 0 for all j. Let R(z) be therational fun
tion on the right side of (7.3). Sin
e limz!1R(z) = 1 andlimz#�1 = �1, R has a zero in (�1;1). Likewise, be
ause limz"�j =+1 and limz#�j+1 = �1, R has a zero in (�j+1; �j). This providesm+1 zeros of R, whi
h must 
oin
ide with the zeros �j of the left sideof (7.3). �8. A 
omplete set of bending flowsThe eigenvalues �ij(e) have been shown to Poisson 
ommute, andto generate 2�-periodi
 
ows. If there were 12 dimMr of them and ifthey were smooth, they would 
onstitute a set of a
tion variables onMr. Smoothness 
annot be a
hieved, but there are 12 dimMr that aresmooth and fun
tionally independent on a dense open submanifold ofMr. This se
tion presents the proof.We will arrange the eigenvalues of A0 = e1; A1; : : : ; An�1 in a trianglewith vertex at the bottom. The eigenvalues of Ak are written in row k



20 HERMANN FLASCHKA AND JOHN MILLSONof the triangle, along with some spa
e-�lling zeros. For 0 � k � m, therank of Ak is at most k + 1, so zero must be at least an (m � k)-foldeigenvalue of Ak. Those zeros are not re
orded. When k > m, thereare m + 1 eigenvalues, potentially nonzero; these are re
orded alongwith k � m zeros. Figure 2 shows the 
ase m = 2; n = 6. Note thatentries of su

essive rows are o�set to re
e
t the interla
ing propertydedu
ed in Proposition 7.2. This diagram is 
alled a Gel'fand-Tsetlinpattern, or GTs pattern for short. It is denoted by �(e). The extrazeros will be explained x11, see Remark 5.� � � 0 0 0d1 d2 d3 0 0
1 
2 
3 0b1 b2 b3a1 a2r1Figure 2Sin
e e 2 fMr, there are additional restri
tions on the entries of �(e).Row n� 1 must 
onsist of m+ 1 �'s (be
ause e1 + � � �+ en = �I) and(n �m � 1) zeros. The interla
ing property for
es the �rst m entriesof row n� 2 to be �, so in Figure 2, d1 = d2 = �. Likewise, 
1 = �. Itbe
omes apparent that the extra zeros remind one that (for example)the eigenvalues d3 = �4;3 and 
3 = �3;3 must be non-negative.Moreover,(8.1) TrAk = Tr(e1 + � � �+ ek+1) = r1 + � � �+ rk+1;whi
h is a linear 
onstraint on the rows of �(e). In Figure 2, that leaves
2; b1; b2; a1 as potentially independent 
ommuting Hamiltonians, andindeed dimRMr = 8 in this 
ase.We summarize this dis
ussion.De�nition 8.1. Let m;n; r be �xed. We write P for the 
onvex poly-tope of GTs patterns satisfying the following 
onditions.(1) There are n rows numbered 0; : : : ; n�1 (starting at the bottom);(2) Row n� 1 
onsists of m+ 1 �'s and n�m� 1 zeros;(3) The sum of the entries of row k is Pki=0 ri+1.(4) The interla
ing property �ij � �i�1;j � �i;j+1 holds.Proposition 8.1. dimP = (n�m� 2)m = 12 dimRMr.Proof. There are two 
ases: (1) n � 2(m + 1) and (2) n � 2m + 1.The di�eren
e 
omes from the position of row m, 
orresponding to theeigenvalues of Am = e1 + � � �+ em+1. Generi
ally, this matrix will havefull rank. In 
ase (2), some of its eigenvalues are for
ed, by interla
ing,



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 21to be �. In 
ase (1), all the automati
 �'s have been \exhausted".(Figure 2 falls into the latter 
ategory). Let us sket
h the 
ounting.Case (1): Un
onstrained �ij 
an appear in rows i = 1; : : : ; n � 3.Break this index set into three parts: S1 = f1; : : : ; mg, S2 = fm +1; : : : ; n �m � 2g, S3 = fn �m � 1; : : : ; n � 3g. If n = 2(m + 1) (asin Figure 2), then S2 = ;. The numbers of un
onstrained �ij for the
orresponding Ak are� In S1, 1; : : : ; m;� in S2, m; : : : ;m;� in S3, m� 1; : : : ; 1.Adding, we obtainm(m + 1)2 + (n� (2(m + 1))m+ m(m� 1)2 = (n�m� 2)m:Case (2): We set S1 = f1; : : : ; n �m � 2g, S2 = fn �m � 1; : : : ; mg,S3 = fm + 1; : : : ; n � 3g (if m = 1; 2, then S3 = ;). The numbers ofun
onstrained �ij are:� In S1, 1; : : : ; n�m� 2;� in S2, n�m� 2; : : : ; n�m� 2;� in S3, n�m� 3; : : : ; 1.Now add. �9. Constru
ting a polygon with given GTs patternIn the last se
tion, we saw that �(Mr) � P. We now prove the
onverse.Theorem 9.1. (i) �(Mr) = P. (ii) There are 12 dimMr fun
tionallyindependent �ij's.Proof. Let Sm+1 � Hm+1 denote the spa
e of real symmetri
 matri
es,and let fMr(Sm+1) be the set of polygons in fMr with ea
h ei 2 Sm+1.The obvious in
lusion fMr(Sm+1) ,! fMr is the analog of the in
lusionfMr(R2) ,! fMr(R3) used in [KM96℄. We will see later that elementsof Sm+1(fMr) 
an be thought of as \unbent" polygons; these will beimportant in our proof of the involutivity of the angle variables in thenext se
tion. We now show that(9.1) �fMr(Sm+1) = P:Sin
e � : fMr ! P is 
ontinuous (though not di�erentiable), the im-age of � is 
losed, and it suÆ
es to prove that the image of � 
ontainsthe interior Po of P. Thus, 
hoose a GTs pattern 
 in whi
h all un-
onstrained inequalities are stri
t; we are to �nd e su
h that �(e) = 
.



22 HERMANN FLASCHKA AND JOHN MILLSONSet A0 = r1w1 
 w�1, where w1 is an arbitrary real unit ve
tor. As-suming that a real symmetri
 Ak�1 with a given spe
trum has beenfound, we want wk+1 2 Rm+1 so that(9.2) Ak = Ak�1 + rk+1wk+1 
 w�k+1has the required next spe
trum.We 
arry out the indu
tion step for Case (1), in the terminology ofProposition 8.1. First, let k 2 S1. ThusAk�1 = kXj=1 rjwj 
 w�j ;it has spe
trum f�1; : : : ; �k; 0; : : : ; 0g with �1 > � � � > �k > 0, andPki=1 �i =Pki=1 ri. We are further given �i with�1 > �1 > �2 > � � � > �k > vk+1 > 0;and Pk+1i=1 �i =Pk+1i=1 ri.Let u1; : : : ; uk; u be normalized (real) eigenve
tors of Ak�1 
orre-sponding to �1; : : : ; �k; 0, and seek wk+1 in the formwk+1 = kXj=1 �juj + �u:Now solve for �2j ; 1 � j � k and �2 in equation (7.3), whi
h takesthe spe
ial form(z � �1) : : : (z � �k+1)zm�k(z � �1) : : : (z � �k)zm�k+1 = 1� rk+1� kXj=1 j�jj2z � �j + �2z �:Taking tra
es in equation (9.2), we getk+1Xj=1 rj = k+1Xj=1 �j = kXj=1 rj + rk+1kwk+1k2;when
e kwk+1k = 1.The same pro
edure works in the remaining sub
ases as well; fork 2 S2 the eigenvalues �j and �j are simple, while for k 2 S3, a

ountmust be taken of the multipli
ity of �. �Remark 2. The proof shows that, if wk+1 is not required to be real,ea
h term �juj is determined only up to a multiple exp(p�1 �k+1;j).Thus, the possible polygons e 
orresponding to a given pattern 
 lieon a torus. The angle 
oordinates are studied in the next se
tion.



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 23We 
on
lude by making a 
hoi
e of fun
tionally independent a
tionvariables.De�nition 9.1. Let I be the set of pairs (i; j) satisfying 1 � i �n� 1; 1 � j � i whi
h index eigenvalues �ij su
h that �ij is not for
edto be 0 or �, with the further property that �i;j+1 is not for
ed to be 0(this last 
ondition says that in ea
h row we throw away the right-mostj su
h that �ij is not for
ed to be 0).Corollary 9.1. The set I indexes a fun
tionally independent set ofa
tion variables �ij.Proof. Indeed, these a
tion variables map onto a polyhedron of dimen-sion equal to the 
ardinality of I. �10. Angle Variables and Four-Point Fun
tionsIn this se
tion, we 
onstru
t angle variables �ij 
onjugate to the a
-tion variables �ij dis
ussed thus far. The angles are impli
it in Corol-lary 6.1 and Remark 2; what we now �nd is a global des
ription.10.1. Four point fun
tions and polygons. The geometri
 pi
turein [KM96℄ serves as model. For the moment, think of the sides ej asve
tors in R3 . The a
tion variables are the lengths of the diagonalsAi = e1 + : : : + ei+1 of the polygon. The 
orresponding 
onjugateangle is the oriented dihedral angle between the two triangles spanned,respe
tively, by Ai�1; ei+1; Ai and Ai; ei+2; Ai+1. By this we mean theoriented angle between the two normal ve
tors to the triangles. Thesetwo ve
tors are elements of the plane orthogonal to Ai. We orient thisplane so that a positively oriented basis for the plane followed by Ai isa positively oriented basis for R3 .Remark 3. In an oriented plane � equipped with a positive de�niteinner produ
t u � v we 
an de�ne the oriented angle \(u; v) for a pairof ve
tors u and v in � as follows. First we say that two unit ve
torsmake an angle of ninety degrees if u � v = 0 and the basis fu; vg ispositively oriented. We let J be the operation of rotation by ninetydegrees. We make � into a 
omplex ve
tor spa
e by de�ning {v := Jv.Then the unit 
ir
le in C a
ts simply-transitively on the oriented linesin �. We de�ne \(u; v) = � if exp({�)u is a positive real multiple of v.If � = \(u; v) then we have
os � = u � vkukkvksin � = Ju � vkukkvk



24 HERMANN FLASCHKA AND JOHN MILLSONFor the 
ase at hand, the oriented angle �i is given by
os �i = (Ai � ei+1) � (Ai � ei+2)kAi � ei+1k kAi � ei+2k(10.1) sin �i = (Ai � ei+1)� (Ai � ei+2) � AikAi � ei+1k kAi � ei+2k kAik :(10.2)Note that �i = 0 when the triangles are 
oplanar, so that the 
ol-le
tion of planar polygons forms a referen
e 
ross-se
tion for the anglevariables.We now transfer (10.1) and (10.2) ba
k to our Lie algebra H02 oftra
efree Hermitean 2� 2 matri
es. De�ne f : R3 ! H02 by(10.3) f : x = (x1; x2; x3) 7! x̂ = 12 � x1 x2 +p�1 x3x2 �p�1 x3 �x1 � :Then \x� y = p�1 [x̂; ŷ℄, x � y = 2Trx̂ŷ, and a ve
tor in the x3 = 0plane 
orresponds to a real symmetri
 matrix. (Thus, a planar polygonis represented by a symmetri
 matrix, 
f. Theorem 9.1).We return to identifying ve
tors with matri
es via (10.3).Let � > 0 and �� be the eigenvalues of Ai, with orthonormal eigen-ve
tors u; v, so that Ai = �(u 
 u� � v 
 v�). Write, for notationalsimpli
ity,ei+1 = r1w1 
 w�1 � (r1=2)I; ei+2 = r2w2 
 w�2 � (r2=2)I:Then the numerator of (10.1) be
omes (sin
e I does not 
ontribute)(10.4) 2Tr�p�1 [Ai; r1w1 
 w�1℄p�1 [Ai; r2w2 
 w�2℄�;and the numerator of (10.2) be
omes(10.5) 2kAikTr�p�1Ai[r1w1 
 w�1; r2w2 
 w�2℄�:De�nition 10.1. Let a; b; 
; d 2 C m+1 . De�ne the four-point fun
tionby F4(a; b; 
; d) = (a; b)(b; 
)(
; d)(d; a)kak2kbk2k
k2kdk2where (�; �) is the usual Hermitean inner produ
t.Two properties of F4 are important:(1) F4(a; b; 
; d) may be thought of as fun
tion on (C Pm)4; in par-ti
ular, F4 is independent of the phases of its arguments.(2) F4(a; b; 
; d) = F4(a; d; 
; b) (plus other su
h symmetries).A longish 
al
ulation, using property (2), gives the following.



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 25Proposition 10.1. Expression (10.4) redu
es to16�2r1r2ReF4(w1; u; w2; v):Expression (10.5) redu
es to16�2r1r2ImF4(w1; u; w2; v):The denominator in (10.1) and (10.2) be
omes16�2r1r2jF4(w1; u; w2; v)j:Thus, the oriented dihedral angle is � = argF4(w1; u; w2; v).This formula, suitably adapted, will be shown to de�ne the 
onjugateangles in the more general 
ase as well.We mention, as an aside, that the argument of the four-point fun
tionhas an interesting geometri
 des
ription.Theorem 10.1. Let aj; j = 1; : : : ; 4 be four points in C m+1 de�ningpoints pj 2 C Pm . Constru
t a geodesi
 quadrilateral � in C Pm withverti
es at the pj. Let � be a two-
hain with boundary � and let ! bethe K�ahler form on C Pm .Then(10.6) argF4(a1; a2; a3; a4) = � Z� !:Proof. Draw a geodesi
 segment (a diagonal of the quadrilateral) fromp1 to p3. The analogue of (10.6) for triangles was proved in [HM℄, seealso [Go, Ch. 7℄. Now 
hoose � to be the union of two two-
hains ea
hof whi
h has as boundary one of the two triangles 
reated by drawingthe diagonal p1p3. Combining (10.6) for the triangles gives the equationfor the quadrilateral. �10.2. Constru
tion of angle variables. We will de�ne the anglevariables as in Proposition 10.1, via the four-point fun
tion of the w'sasso
iated with two 
onse
utive edges and eigenve
tors of the diagonalbetween them. These ve
tors all involve a 
hoi
e of phase, and the �rstgoal will be to remove the ambiguity.LetM0r be the open subset ofMr on whi
h the interla
ing inequalities�ij > �i�1;j > �i;j+1 are stri
t, and let fM0r be its inverse image in fMr.We 
onsider only polygons in M0r , so that the (un
onstrained) eigen-values and eigenve
tors may be taken to be lo
ally smooth fun
tionsof e.Let �t be one of the �ik-
ows de�ned in Proposition 6.2. We willfollow the transformed n-gon �t(e). Its `-th edge, r`wt̀ 
 (wt̀)�, andthe normalized �ij-eigenve
tor, utij, of the diagonal �t(Ai), will depend



26 HERMANN FLASCHKA AND JOHN MILLSONon time t. They may be taken to be lo
ally smooth on M0r , but willdepend on an initial 
hoi
e, while the n-gon �t(e) itself is well de�ned.De�nition 10.2. Make smooth lo
al 
hoi
es of w` and uij. De�ne�ij : fM0r ! C ; (i; j) 2 I; by �ij : e 7! (wi+1(e); uij(e))(uij(e); wi+2(e));this depends on the phases of wi+1; wi+2. (We will usually drop theargument e). Set�ij = F4(wi+1; uij; wi+2; ui;j+1) = �ij�i;j+1:The �ij are independent of all phase 
hoi
es. Finally, we de�ne theangle variables �ij; (i; j) 2 I, by�ij = arg �ij:Clearly the number of four-point fun
tions �ij is the same as thenumber of independent, un
onstrained �ij's, sin
e for every i thereis one more �ij than �ij and there are no �ij's 
orresponding to theeigenvalues 0 and �. Thus we obtain the 
orre
t formal 
ount of anglevariables. We now prove that the angle variables are well-de�ned onM0r .Lemma 10.1.(1) All j�ijj2 are 
onstant under all bending 
ows �k`.(2) All j�ijj2 are nonzero on M0r .Proof. The �rst statement follows from Proposition 7.1 and Corollary7.1. Indeed, Ai�1 = Ai � ri+1wi+1 
 w�i+1:Hen
e j(wi+1; uij)j2, being a rational fun
tion of a
tion variables, is a
onstant of motion. Likewise,Ai+1 = Ai + ri+2wi+2 
 w�i+2implies that j(wi+2; uij)j2 is a 
onstant of motion.To prove the se
ond statement we apply the Weinstein-Aronszajnformula to obtain(10.7) det(zI� Ai�1)det(zI� Ai) = 1 + ri+1 m+1Xj=1 j(wi+1; uij)j2z � �ij :Hen
e if j�ijj = j(wi+1; uij)j = 0, then �ij is not a pole, so the(z��ij) in the denominator of the left-hand side must 
an
el with oneof the terms in the numerator. Hen
e one of the interla
ing inequalitiesbetween the i-th and (i � 1)-st rows is not stri
t, 
ontradi
ting theassumption that e 2M0r . Similarly, (wi+2; uij) 6= 0.



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 27�In the following we will make essential use ofRemark 4. Let g 2 U(m+1) and 
onsider the 
onjugated polygongeg�1. Its `-th edge is r`(gw`)
 (gw`)�. However, the 
hoi
e w`(geg�1)made in De�nition 10.2 may not 
oin
ide with gw`. If they di�er, itis by a multiple of modulus one. The four-point fun
tion �ij is not af-fe
ted by su
h a fa
tor. In 
al
ulations involving �ij, we may thereforerepla
e w`(geg�1) by gw`, and for the same reason, uij(geg�1) by guij.We will now 
ompute the Poisson bra
kets of the a
tion variableswith the angle variables.Lemma 10.2. f�il; �ijg = 8><>: 1; l = j�1; l = j + 10; l 6= j; j + 1Proof. We will verify, using (6.2), that�ij(�til(e)) = 8><>: �ij(e); l 6= j; j + 1;exp(p�1 t) �ij(e); l = j;exp(�p�1 t) �ij(e); l = j + 1:Note from (6.2) that the i-th diagonal Ai of e and the (i+ 2)-nd edgeare �xed under �til. Hen
e the normalized eigenve
tors uij of Ai arealso �xed. Now abbreviate gt = exp(p�1 tEl(Ai)), and as explainedin Remark 4, make the repla
ementwi+1(�til(e)) = wi+1(gteg�1t ) gtwi+1(e):We obtain�ij(�til(e)) = (gtwi+1; uij)(uij; wi+2)(wi+2; ui;j+1)(ui;j+1; gtwi+1)= (wi+1; g�1t uij)(uij; wi+2)(wi+2; ui;j+1)(g�1t ui;j+1; wi+1):Sin
e El(Ai)uij = Æjluij the lemma follows by de�nition of gt. �Lemma 10.3. f�ij; �klg = 0; i 6= k:Proof. If i < k then the k-th diagonal, the (k + 1)-st edge, and the(k + 2)-nd edge are �xed by the bending 
ow �tij, and hen
e �kl isun
hanged.If i > k, then the k-th diagonal,the (k+1)-st edge and the (k+2)-ndedge are rigidly moved by the gt under the bending 
ow �tij, and hen
e�kl is un
hanged. (Note that Remark 4 is used on
e more). �



28 HERMANN FLASCHKA AND JOHN MILLSONTo remove the redundan
y in the �ij, we de�ne new a
tion variables�ij by the formula(10.8) �ij = jXk=1 �ik:As a 
onsequen
e of the two pre
eding lemmas we obtainProposition 10.2. The a
tion variables f�ijg and the angle variablesf�ijg are 
onjugate f�ij; �klg = ( 1; i = k; j = l0; otherwise:We dedu
e two 
orollaries.Corollary 10.1. The angle variables are fun
tionally independent.Corollary 10.2. The Hamiltonian 
ows of the new a
tion variablesf�ijg permute the simultaneous level sets f�ij = 
ij; (i; j) 2 Ig transi-tively.We now begin the proof thatf�ij; �klg = 0:Re
all that Sm+1 is the spa
e of real symmetri
 (m + 1) � (m + 1)matri
es. Let � : Hm+1 ! Hm+1 be 
omplex 
onjugation. Then Sm+1is the �xed subspa
e of �. The following lemma is immediate from(2.1):Lemma 10.4. The involution � is anti-Poisson (a Poisson isomor-phism fromHm+1 equipped with the Lie Poisson tensor toHm+1 equippedwith the negative of the Lie Poisson tensor).We obtainCorollary 10.3. If f and g are 
onstant on Sm+1, then ff; gg vanisheson Sm+1.Proof. Let �(:; :) be the Lie Poisson bive
tor 
onsidered as a skew-symmetri
 bilinear form on the 
otangent bundle of Hm+1. For x 2Sm+1 and u; v 
otangent ve
tors at x, the Lemma gives �x(u; v) =��x(�u; �v). If u and v are 
onormal 
ove
tors at x then they are inthe �1-eigenspa
e for �, and therefore �x(u; v) = 0. But if f and g are
onstant on Sm+1, then dfx and dgx are 
onormal at x. �As an immediate 
onsequen
e we have



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 29Lemma 10.5. If f and g are 
onstant on Mr(Sm+1), then ff; gg van-ishes on Mr(Sm+1).Our next goal is to prove that the simultaneous zero level set of theangle variables is Mr(Sm+1). In order to obtain this we will need twote
hni
al lemmas to handle the regions S1 and S3 (in the notation ofProposition 8.1). The �rst lemma will be used to deal with the regionS3.Lemma 10.6. Let Vi = ker(Ai � �I); n�m� 2 � i � n� 1. ThenVn�1 � Vn�2 � � � � � Vn�m�2 = f0g:Moreover (re
alling Ai = Ai�1 + ri+1wi+1 
 w�i+1) we haveVi�1 = fv 2 Vi : (v; wi+1) = 0g:Proof. Let v 2 Vi�1 and kvk = 1. Then� = (Ai�1v; v) = (Aiv; v)� ri+1j(wi+1; v)j2:But � is the largest eigenvalue of Ai so (Aiv; v) � �. Hen
e the aboveequation 
an hold if and only if(Aiv; v) = � (so v 2 Vi) and (wi+1; v) = 0: �Corollary 10.4. Let w�i+1 be the orthogonal proje
tion of wi+1 on the�-eigenspa
e of Ai�1. Then w�i+1 = 0:The next lemma will be used to deal with the region S1.Lemma 10.7. Let Ui = kerAi; 1 � i � m. ThenU1 � U2 � � � � � Um = f0g:Moreover Ui = fu 2 Ui�1 : (u; wi+1) = 0g:Proof. Suppose Aiu = 0. Then0 = (Aiu; u) = (Ai�1u; u) + ri+1j(wi+1; u)j2:But Ai�1 is positive semide�nite and ri+1 > 0. Hen
e u 2 kerAi�1 and(u; wi+1) = 0. �Corollary 10.5. Let w0i+1 be the proje
tion of wi+1 on ker Ai. Thenw0i+1 = 0:Now we 
an prove the result we need. Let Z(�) be the simultaneouszero level set of the angle variables f�ijg.



30 HERMANN FLASCHKA AND JOHN MILLSONProposition 10.3. Z(�) =Mr(Sm+1):Proof. The in
lusion Mr(Sm+1) � Z(�)is obvious (all the edges and diagonals are real, so the eigenve
tors arereal, so the �ij are real). The point is to prove the reverse in
lusion.We will assume n � 2(m+ 1) and leave the 
ase n � 2m+ 1, whi
h issimilar, to the reader.Given a polygon e with all �ij = 0. We wish to show that a sequen
eof 
onjugations of e by elements of U(m+1) will make all sides ek realsymmetri
, or equivalently, all the wk real. The proof is by des
endingindu
tion, starting with the last diagonal An�1 = e1 + � � � + en = �I,whi
h is of 
ourse real symmetri
. First, 
onjugate e by g 2 U(m+1)(without 
hanging An�1) to arrange that An�2 is diagonal, hen
e real.This moves all the wk to gwk, but in the sequel we do not need to keeptra
k of those 
hanges. Now we know that An�3 has the formAn�3 = An�2 � rn�1wn�1 
 w�n�1;and we want to show that we 
an move wn�1 to a real ve
tor. We haveker(An�2 � �I) = f�1; : : : ; �mg;where f�1; : : : ; �m+1g is the standard basis for C m+1 . Suppose An�2�m+1 =��m+1; � = �� rn.Write wn�1 in the form wn�1 = w�n�1 + w?n�1, where w�n�1 is theorthogonal proje
tion of wn�1 onto ker(An�2��I). Hen
e there existsz 2 C su
h that w?n�1 = z�m+1. Sin
e wn�1 is de�ned only up to a
omplex multiple of unit length, we may multiplywn�1 by an element ofS1 in order to arrange that z be real. Let 
 = kw�n�1k. Now 
hoose g 2U(m+1) su
h that g�m+1 = �m+1 and gw�n�1 = 
�m.Then gAn�2g�1 =An�2 (be
ause g�m+1 = �m+1 and gwn�1 = 
�m + z�m+1). We 
hangee = (e1; : : : ; en) to geg�1 = (ge1g�1; : : : ; geng�1).Next, we show how to �nd a 
onjugation geg�1 that keeps An�2; An�3and wn�1 real and also makes gwn�2 real. This step exhibits the generalpattern.By Lemma 10.6,ker(An�3 � �I) = fv 2 ker(An�2 � �I) : (v; wn�1) = 0g= spanf�1; : : : ; �m�1g:



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 31The matrix An�3 has two new eigenvalues (in addition to �); let theireigenve
tors be un�3;m+1; un�3;m. There is one angle variable�n�3;m+1 =arg[(wn�2; un�3;m)(un�3;m; wn�1)(wn�1; un�3;m+1)(un�3;m+1; wn�2)℄We have seen that An�3 is real symmetri
, hen
e un�3;j 
an be 
hosento be real for all 1 � j � m + 1. Sin
e wn�1 is real, we may normalizeun�3;m and un�3;m+1 so that (wn�1; un�3;m) > 0 and (wn�1; un�3;m+1) >0. Sin
e, by assumption, �n�3;m+1 = 0, we havearg(wn�2; un�3;m+1) = arg(wn�2; un�3;m):Hen
e by multiplying wn�2 by an element in S1 we may assume that(wn�2; un�3;m+1) and (wn�2; un�3;m) are real. Now we may writewn�2 = w�n�2 + w?n�2;where w�n�2 2 ker((An�3 � �I) = spanf�1; : : : ; �m�1gand w?n�2 2 spanfun�3;m; un�3;m+1g = spanf�m; �m+1g:We have arranged for w?n�2 to be real. Choose g 2 U(m+1) withg�m = �m and g�m+1 = �m+1 su
h thatgw�n�2 = 
0�m�1;with 
0 = kw�n�2k as in the pre
eding step. Now 
hange e to geg�1 andpro
eed to wn�3.We 
ontinue in this way until ker(Ak � �I) = 0 and we enter theregion S2. The argument for this region is simpler and is left to thereader. Note that the vanishing of the angle variables says that allthe 
oordinates (wk; uk�1;j) in the eigenve
tor basis of Ak�1 have a
ommon phase whi
h 
an be eliminated by multipli
ation by an elementof S1; no 
onjugation is needed, so the pre
eding edges all remain realsymmetri
. However, the zero eigenvalue, whi
h is unavoidable whenwe enter region S1, 
auses new problems, and Lemma 10.7 is required.Suppose then we have proved that Am is real (note that Am has rankm). We want to prove that Am�1 is real. We know thatAm = Am�1 + rm+1wm+1 
 w�m+1;and sin
e kerAm = f0g, we have enough angle variables to prove thatall 
oordinates of wm+1 have a 
ommon phase. We 
lear this phase asbefore and move on to Am�2. We have Am�1 = Am�2 + rmwm 
 w�m,and wish to prove that one 
an make wm real without destroying realityof wn�1; : : : ; wm+1. Write wm = w?m + w0m with Am�1w0m = 0 and w?m



32 HERMANN FLASCHKA AND JOHN MILLSONorthogonal to kerAm�2 (the latter has dimension 2). By the 
orollary toLemma 10.7, we have w0m = 0. Also, we have enough angle variables to
on
lude that the 
oordinates of w?m relative to the eigenve
tors of Am�1orthogonal to kerAm�2 have a 
ommon phase. Thus, no 
onjugationsare required to make wm real, and all pre
eding edges remain realsymmetri
. Now 
ontinue. �We remark that the proof 
ould equally well be done by as
endingindu
tion; in that 
ase, region S1 would be the one requiring 
onjuga-tions, while an overall s
aling would do in S2; S3.We are now ready to proveProposition 10.4. f�ij; �klg = 0:Proof. Let e 2 Mr be given. By Corollary 10.2, the bending deforma-tions 
ows permute the level sets of the �ij's transitively. Hen
e wemay apply a bending � to move e into Z(�). Sin
e � is symple
ti
 andthe Hamiltonian ve
tor �elds of the �ij are invariant under bending, wehave f�ij; �klg(e) = f�ij; �klg(�e):But by Proposition 10.3 Z(�) =Mr(Sm+1):Hen
e by Lemma 10.5 f�ij; �klg = 0: �11. The duality between the bending systems and theGel'fand-Tsetlin systems on GrassmanniansIn this se
tion we use Gel'fand-Ma
Pherson duality, following [HK97℄for the 
ase of m = 1, to show that the bending system is equivalentto the Gel'fand-Tsetlin integrable system (as de�ned in [GS83℄) on atorus quotient of the Grassmannian G(m + 1; C n). This equivalen
ewill explain the appearan
e and form of the Gel'fand-Tsetlin patternsin x8.Our �rst goal is to 
onstru
t a symple
tomorphism � from Mr to asymple
ti
 quotient of G(m+ 1; C n) by the n-torus T of diagonal ma-tri
es in U(n). This is the symple
ti
 version of Gel'fand-Ma
Phersonduality.LetM denote the ve
tor spa
e of (m+1)�n 
omplex matri
es. Wegive M the Hermitean form ( ; ) de�ned by (X; Y ) = Tr(XY �), andthus M is a symple
ti
 ve
tor spa
e. The produ
t group U(m+1) �



WEIGHTED CONFIGURATIONS ON PROJECTIVE SPACE 33U(n) a
ts isometri
ally and symple
ti
ally onM. Denote the i-th row(resp. j-th 
olumn) of N 2 M by Ri (resp. Cj).Proposition 11.1. The a
tion of U(n) has momentum map�U(n) :M!Hn; �U(n) : N 7! N�N:In parti
ular, the momentum map for the T -a
tion is�T : N 7! (kC1k2; : : : ; kCnk2):The momentum map for the U(m+1) a
tion is�U(m+1) :M!Hm+1; �U(m+1) : N 7! NN�:Note that(11.1) �U(m+1)(N) = nXi�1 Ci 
 C�i :This will provide the 
onne
tion with polygons.We 
onstru
t the desired symple
tomorphism by 
omputing the sym-ple
ti
 quotient 
orresponding to the �T -level r and the �U(m+1) level�I in two di�erent orders. If we �rst quotient with respe
t to T withmomentum level r and then with respe
t to U(m+1) with momentumlevel �I, we get the spa
e Mr. In order to see this, we note that the(left) a
tion of Qn1 U(m+1) on M (a
ting on the 
olumns) 
ommuteswith the (right) a
tion of T (in fa
t one obtains a dual pair in the senseof Howe, see [KKS78℄). We �rst 
ompute the symple
ti
 quotient byT .Lemma 11.1. The momentum map �(U(m+1))n indu
es an embeddingof the symple
ti
 quotient ��1T (r)=T into �n1Hm+1, with image Qn1 Ori.Proof. This follows be
ause it is a general feature of dual pairs, see[KKS78℄, that the momentum map for one a
tion embedds the sym-ple
ti
 quotient of the other as an orbit in (the dual of) the Lie algebraof the �rst group. This prin
iple, applied to the pair (U(m+1))n � T ,implies the lemma. �Thus we have identi�ed the quotient by T with the 
orre
t produ
t ofrank one orbits in Hm+1. Clearly, after taking the symple
ti
 quotientof this produ
t by the diagonal a
tion of U(m+1) (at momentum level�I), we obtain Mr.Suppose instead we �rst quotient with respe
t to U(m+1) and mo-mentum level �I. We get the GrassmannianG(m+1; C n) with a 
ertainU(n)-invariant symple
ti
 stru
ture.



34 HERMANN FLASCHKA AND JOHN MILLSONLemma 11.2. The momentum map �U(n) indu
es an embedding ofthe symple
ti
 quotient ��1U(m+1)(�I)=U(m+1) into Hn, with image theU(n)-orbit O� 
onsisting of those matri
es that have eigenvalue � withmultipli
ity m+ 1 and eigenvalue 0 with multipli
ity n�m� 1.Proof. The argument is the analogous to the previous 
ase, only thistime we use the dual pair U(m+1)� U(n). �Denote the torus quotient at momentum level r of the Grassmannianwith the Kostant-Kirillov symple
ti
 stru
ture 
orresponding to � byM�. We have now obtained the desired symple
tomorphism � fromMr to M�.Of 
ourse this symple
tomorphism gives a Poisson isomorphism be-tween the Poisson algebras of smooth fun
tions of Mr and M�. How-ever, we want to make this more expli
it and to lo
alize it. Let Mr;�be the subset ofM 
onsisting of matri
es N su
h that kCjk2 = rj andN�N = �I. Thus we have U(m+1)�T quotient mappings �1 :Mr;� !Mr (�rst quotient by T then by U(m+1)) and �2 :Mr;� !M� (�rstquotient by U(m+1) then by T ). We use the mappings �1 and �2 torealize (and lo
alize) the Poisson isomorphism � from above. Let f bea fun
tion whi
h is smooth on an open subset of Mr. Use �1 to pull fba
k to a U(m+1) � T -saturated open subset of Mr;�. Sin
e �2 is aquotient map and ��1f is invariant under U(m+1), we 
an �rst des
endit to to a T -saturated open subset of the Grassmannian, then to thetorus quotient of that open set, whi
h is an open subset of M�. Wenote that � is determined by the equation�(�1(N)) = �2(N):We now brie
y review the Gel'fand-Tsetlin integrable system - forthe details see [GS83℄. We re
all we have identi�ed the spa
e Hn ofn�n Hermitean matri
es with the (dual of) the Lie algebra of U(n). Wenow 
onstru
t n(n + 1)=2 Poisson 
ommuting fun
tions on Hn whi
hare smooth on a dense open subset. Let X 2 Hn. Let �i(X) be theprin
ipal i� i diagonal blo
k. De�ne 
ij on Hn by
ij(X) = �j(�i(X));where �j is the j-th eigenvalue of the blo
k. As usual, we assume thatthe eigenvalues of the i-th blo
k are arranged in nonin
reasing order. Itis proved in [GS83℄ that the 
ij's Poisson 
ommute. We note that the
nj are Casimirs. The restri
tions of the remaining Gel'fand-TsetlinHamiltonians to generi
 orbits are fun
tionally independent and giverise to integrable system on su
h orbits. The eigenvalues of the blo
ks
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e and 
an be arranged in a \Gel'fand-Tsetlin" pattern (we taken = 6). 
61 
62 
63 
64 
65 
66
51 
52 
53 
54 
55
41 
42 
43 
44
31 
32 
33
21 
22
11Figure 3Sin
e we are dealing with a degenerate orbit here (the Grassman-nian), many of the 
ij's (at the ends of the rows) will be zero (see Re-mark 5 below, and Figure 2 above). The next proposition, 
ombinedwith the earlier se
tions, shows how to extra
t a fun
tionally indepen-dent set of Gel'fand-Tsetlin Hamiltonians and obtain angle variablesfor the Gel'fand-Tsetlin system on the Grassmannian.Proposition 11.2. ��
ij = �ij.Proof. Let Ik be the diagonal n by n matrix whose �rst k eigenvaluesare equal to 1 and last n � k eigenvalues are equal to 0. We use Ik to\trun
ate" N;N�N and NN�. Put Nk := NIk. Then�U(n)(Nk) =IkN�NIk�U(m+1)(Mk) =NIkIkN�:The matrix on the �rst line is �k(N�N), the prin
ipal k by k blo
kof the n � n matrix N�N , and the matrix on the se
ond line is thediagonal Ak�1 = C1C�1+C2C�2+� � �+CkC�k . The matri
es IkN�NIk andNIkIkN� have the same nonzero eigenvalues. But the eigenvalues of these
ond matrix are the bending Hamiltonians �kj, and the eigenvaluesof the �rst matrix are the Gel'fand-Tsetlin Hamiltonians 
kj. Finallywe observe that
ij(�(�1(M))) = 
ij(�2(M)) = �j(�i(�M)) = �j(Ai(�1(M))) = �ij(�1(M)):�We 
on
lude this se
tion with three remarks.Remark 5. Proposition 11.2 explains the appearan
e of Gel'fand-Tsetlinpatterns in 
onne
tion with the bending Hamiltonians. The appearan
eof the zeroes at the end of the rows in our patterns is explained be
ausethe Gel'fand-Tsetlin system in question is de�ned on a subset of theHermitean matri
es of rank at most m + 1. Hen
e 
ij = 0; j > m+ 1.
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onstru
tion pro
ess in x9 may be interpreted assaying that the 
lass of patterns introdu
ed in x8 is pre
isely the 
lass
orresponding to Hermitean matri
es of the form N�N , where N is asabove.Remark 7. Fixing the row sums in the patterns in x8 to be partial sumsof the rj 
orresponds to taking the quotient of the Grassmannian by T(at level r).12. Pieri's formula and the duality at the quantum levelIn this se
tion we will assume that the ri's are (positive) integers.The orbit Ori then 
orresponds under geometri
 quantization to the ir-redu
ible representation Sri(V ) of U(m+1), where V denotes the stan-dard (or ve
tor) representation of U(m+1) on C m+1 and Sri(V ) theri-th symmetri
 power.The (
lassi
al) duality result of the last se
tion should have a quan-tum version. We note that the duality 
onne
ted an integrable system(bending) on a symple
ti
 quotient ofQn1 Ori by the diagonal a
tion ofU(m+1) and an integrable system (Gel'fand-Tsetlin) on a torus quo-tient of the Grassmannian G(m+1; C n). Thus, a

ording to geometri
quantization, at the quantum level we would expe
t a relation betweenan n-fold tensor produ
t multipli
ity for GL(m+1) and a weight multi-pli
ity for a Cartan power of the the m+1-st exterior power of GL(n).The bending system provides a (singular) real polarization of the spa
eMr, the symple
ti
 quotient (at level �I) of QiOr1 . Thus the numberof latti
e points in the momentum polyhedron P for bending should beequal to the multipli
ity of the the 1-dimensional representation (det)�in 
n1Sri(V ). But on the other hand, the Gel'fand-Tsetlin system is areal polarization of the torus quotient of the Grassmannian (at level r)where the Grassmannian is given the symple
ti
 stru
ture whi
h 
or-responds to the orbit of U(n) through the diagonal matrix with m+ 1�'s and n � m � 1 zeroes. Thus the above number of latti
e pointsshould also be the multipli
ity of the r-th weight spa
e in C�Vm+1 V ,the �-th Cartan power of the m+1-st exterior power of the ve
tor rep-resentation V of GL(n). (We re
all that if W � is a representation withhighest weight �, then the p-th Cartan power CpW � is the irredu
iblerepresentation with highest weight p�). This equality of multipli
itiespredi
ted is in fa
t true, and will be proved below.Remark 8. It is unfortunate that the theory of geometri
 quantizationusing a real polarization is not suÆ
iently well developed to allow one todedu
e theorems in representation theory from equalities of numbers of
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e points in momentum polyhedra. At this time we 
an only regardsu
h equalities as predi
tions of theorems in representation theory.We �rst note how the interla
ing of the spe
tra of the perturbed ma-trix and the unperturbed matrix (see x8)from the Weinstein-Aronszajnformula predi
ts Pieri's formula in representation theory.12.1. The Weinstein-Aronszajn and Pieri formulas. We re
allPieri's formula for tensoring an irredu
ible polynomial representationof U(m+1) with a symmetri
 power of the ve
tor representation, [FH,xA.1℄.Theorem 12.1 (Pieri's Formula). Let � = (�1; : : : ; �m+1) be the high-est weight of the polynomial representation V (�1; : : : ; �m+1) of U(m+1).Let k be a positive integer. ThenV (�1; : : : ; �m+1)
 Sk(V ) = �V (�1; : : : ; �m+1)where the sum is taken over all dominant � = (�1; : : : ; �n) satisfying�1 � �1 � �2 � : : : � �m+1 � �m+1 � 0and m+1Xi=1 �i = m+1Xi=1 �i + k:This is of 
ourse Proposition 7.2 restri
ted to integer eigenvalues. IfA 2 O�, then the spe
trum of the rank one perturbation A+ k w
w�satis�es the interla
ing and row sum 
onditions of the Pieri formula.12.2. Duality at the quantum level. In this subse
tion we prove thetheorem from representation theory that is predi
ted by the equality (ofthe numbers of latti
e points) of the momentum polyhedra for bendingand Gel'fand-Tsetlin. The required fa
ts from representation theory
an be found in [FH℄ and [Ze℄.Theorem 12.2. The multipli
ity of the 1-dimensional representation(det)� in 
n1V (rj) is equal to the multipli
ity of the weight r in the irre-du
ible representation C�Vm+1 V of U(n). This 
ommon multipli
ityis in fa
t equal to the number of latti
e points in P.The theorem will be a 
onsequen
e of the next three lemmas. Wewill needDe�nition 12.1. Let � be an l-tuple of positive integers and � be apartition. Then the Kostka number K�� is the number of ways to �llin the Young diagram 
orresponding to � with �1 1's, �2 2's, : : :, �l l'sso that the rows are weakly in
reasing and the 
olumns are stronglyin
reasing.



38 HERMANN FLASCHKA AND JOHN MILLSONBy applying Pieri's formula iteratively one gets [FH, (A.9)℄:Lemma 12.1.Sr1(V )
 Sr2(V )
 � � � 
 Srn(V ) = ��K�rV (�):We obtainCorollary 12.1. The multipli
ity of the 1-dimensional representation(det)� in 
n1V (rj) is equal to the Kostka number K�(1m+1)r.Here the symbol �(1m+1) means the partition (�;�; : : : ; �) (thereare m+1 �'s). The 
orresponding Young diagram has m+1 rows and� 
olumns.In order to 
ompare K�(1m+1)r with the multipli
ity of the weight rin the irredu
ible representation C�Vm+1 V of U(n) we re
all there isa basis for an irredu
ible representation of GL(n) labelled by semistan-dard Young tableaux. Suppose the highest weight of the representationis �. We also use � to denote the Young diagram asso
iated to �. Asemistandard �lling of � is an assignment of the integers between 1 andn to the boxes of � su
h that the rows are weakly in
reasing and the
olumns are strongly in
reasing. The asso
iated basis is a weight basis,and the weight of of the basis ve
tor 
orresponding to a semistandardtableau is (k1; : : : ; kn), where ki is the number of i's in the tableau.Thus we have provedLemma 12.2. K�(1m+1)r is also the multipli
ity of the weight r inC� ^m+1 V of GL(n).It still remains to prove that the number of latti
e points in P is the
ommon multipli
ity.To see this we re
all that there is an orthonormal basis (the Gel'fand-Tsetlin basis) for the irredu
ible representation C� ^m+1 V indexed byGel'fand-Tsetlin patterns whose top row 
onsists of m + 1 �'s andn�m�1 zeroes. Moreover, this basis is a weight basis, and the weightof a basis ve
tor 
orresponding to a Gel'fand-Tsetlin pattern is givenby the di�eren
es in the row sums starting with the bottom entry inthe pattern. Thus we haveLemma 12.3. The number of latti
e points in P is equal to the dimen-sion of the r-th weight spa
e in C�Vm+1 V .It follows that the 
ount of latti
e points inP gives the 
orre
t answerfor both multipli
ities. We 
on
lude with a remark.
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t 
ombinatorial argu-ment to establish the last lemma above, i.e. that the number of semis-tandard Young tableaux of weight r is equal to the number of Gel'fand-Tsetlin patterns of weight r. In fa
t, there is a one to one weightpreserving 
orresponden
e between semistandard Young tableaux andGel'fand-Tsetlin patterns, see [GZ86℄.Referen
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