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2 HERMANN FLASCHKA AND JOHN MILLSON

1. INTRODUCTION

In this paper we study certain symplectic quotients of n-fold products
of CP™ by the unitary group U(m+1) acting diagonally. After clarify-
ing some basic properties of these quotients—when they are nonempty
and nonsingular—, we construct the action-angle variables, defined on
a dense open subset, of an integrable Hamiltonian system. The system
generalizes the “bending flows” on the polygon space of [KM96], and its
semiclassical quantization reproduces formulas from the representation
theory of U(m+1).

Think of a point of CP™ as the line through a unit vector w € C™*1,
and identify this line with the hermitean projection w ® w* that maps
v e C™! to (v,w)w. Pick n >m+1, and for i = 1,...,n fix numbers
r; > 0; the reason for the restriction n > m + 1 becomes clear in equa-
tion (1.1) below. Let w; € C™*! be unit vectors, and set e; = r;w; @w;.
These hermitean matrices have rank=1 (with eigenvalues r;,0,...,0),
and may be thought of either as weighted points in CP™ or as ele-
ments in an orbit O,, of U(m+1) acting by conjugation. We largely
use the second interpretation. The orbits carry the Kostant-Kirillov
symplectic form, call it w;, which is 2r; times the usual Fubini-Study
form on CP™. The (diagonal) action of U(m+1) on II? , (CP™,w;) is
Hamiltonian, and its momentum map is given by

po(er, ... en) el 4+ ep.

With A = L (7 +---+7,), the symplectic quotient =" (AL)/U(m+1)
turns out to be

(1.1) {(e1,...,en) €1+ + e, = Al}/U(m+1).

We denote this symplectic quotient by M, (r stands for the n-tuple
(7"]_, Cey Tn))

Our goal, as mentioned already, is to construct an integrable Hamil-
tonian system on M,, possessing action-angle coordinates defined al-
most everywhere, and to develop some connections with representation
theory. We now describe the content of our paper in more detail.

The paper [KM96] by Kapovich and Millson provides motivation and
an appealing geometrical setting. They work in the Lie algebra su(2).
That is, they take m = 1 and use ¢; = r;(w; ® w; — 1I). Then ¢;
may be thought of as a vector in R?, of length r;, and M, becomes the
space of closed polygons with prescribed side lengths r;. By analogy,
we continue to refer to an n-tuple e = (ej,...,€,) as an n-gon, to e;
as the i-th edge, and to the partial sums ZZIH e; = A; as the diagonals
of the n-gon (cf. Figure 1 in §6). Each A; is, generically, a Hermitean
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matrix of rank min{i+ 1, m +1}. Thus we may think of an n-gon as a
sequence of Hermitean matrices (the diagonals), each A; formed from
its predecessor A;_; by making a rank-1 perturbation with the nonzero
eigenvalue 7;,1 of the perturbing matrix fixed in advance.

We first give necessary and sufficient conditions on r for the spaces
M, to be nonempty. Following [LM], we find that M, is nonempty if
and only if r satisfies the strong triangle inequalities

mri <rit it 1<i<n

Let C'(n,m+1) C R} be the polyhedral cone defined by these inequal-
ities. If we normalize r by requiring > .7, = m + 1 we find that M,
is nonempty if and only if r is an element of a certain convex poly-
tope known as the hypersimplexr and denoted by A,_i(m + 1), see [Zi]
and [GGMS]. Thus, C(n,m + 1) is the cone on A,_;(m + 1). (The
strong triangle inequalities are, of course, a special case of the Klyachko
inequalities on the eigenvalues of sums of hermitean matrices [Kly98]).

We also explain, very briefly, how to identify the space M, with a
weighted complex analytic quotient of the n-fold product I17 CP™. The
existence of the structure of a complex analytic space on such quotients
is a special case of [HL94] and [Sj95]. Deligne and Mostow in [DM86]
constructed the weighted complex analytic quotients of CP', and the
connection with the symplectic quotient of products of CP* (spatial
polygons) was found independently in [KM96] and [Kly92].

The description of M, concludes with the observation that it is
smooth if and only if r does not lie on certain hyperplane sections
of the cone C(n,m + 1). The subsequent discussion involving our inte-
grable Hamiltonian system will be restricted to this generic case.

In the three-dimensional setting of [KM96], the action variables of
their integrable system are the lengths of the diagonal vectors A;, or
equivalently, the positive eigenvalues of the su(2) matrices represent-
ing those vectors. The corresponding Hamiltonian flows, the “bending
flows”, rotate half of the polygon rigidly about a fixed diagonal at con-
stant speed, while leaving the other half of the polygon fixed. The
analogous action variables in the higher-dimensional setting are still
the eigenvalues of the diagonals. Let A;; be the j-th eigenvalue of the
i-th diagonal. A subset of the );; will be generically functionally in-
dependent, defining a real Lagrangean polarization on an open dense
subset of M,. Generically again, );; has multiplicity one. Let Pj; be
the orthogonal projection on the corresponding eigenline. Then the
Hamiltonian flow of A;; is obtained by conjugating the first 7 edges by
the one-parameter group exp(v/—1¢P;;) and leaving the last n—i edges
fixed. Since “half” the polygon moves by a rigid motion and the “other
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half” remains fixed we still call these flows “bending flows”. Because
PE = P, the bending flows are clearly periodic with period 27. The
commutativity of the flows is made plausible by the geometric picture;
a proof by calculation is also easy.

We then turn to the momentum polyhedron and the angle vari-
ables. A critical role in identifying the image of the momentum map
is played by the Weinstein-Aronszajn formula from perturbation the-
ory; the simple version we need shows that the eigenvalues of A; ;
and A; interlace. As a consequence, one finds that the momentum
polytope is defined by certain Gel'fand-Tsetlin patterns (see §§ 8, 9).
The angle variables also make their appearance at this stage. One sees
from the Weinstein-Aronszajn formula that if u;_; ; is a unit eigenvec-
tor of the diagonal A;_;, corresponding to the eigenvalue \;_;;, and
if Aj = A1 + ripiwip ® wyy, is the next diagonal, then the modu-
lus of the inner product (u;_1j, w;+1) is left constant by all bending
flows. One therefore expects the collection of numbers arg(u;_1,;, wi41)
to lead to the angle variables. This is almost correct. There are arbi-
trary phases in the choices of the unit eigenvectors u; 1 ; and the unit
vectors w;y1, which would affect the arguments of the inner products.
It is therefore necessary to combine these inner products into “four
point functions” (w,z)(z,y)(y, z)(z,w) (the terminology comes from
[BeSch] ) in order to produce an angle that is independent of choices.
Because of this somewhat subtle definition, the computation of Poisson
brackets amongst the actions and the angles is not straightforward.

The occurrence and special form of Gel'fand-Tsetlin patterns in the
description of the momentum polytope for the bending Hamiltonians
is explained by a basic observation of [HK97]. They discovered that
Gel'fand-MacPherson duality [GGMS, p.305], intertwines the bending
Hamiltonians on M, and the Gel’fand-Tsetlin Hamiltonians on a sym-
plectic quotient of the Grassmannian G(m + 1,C") by the maximal
torus of PU(n). Their ideas easily extend to our setting, see §11.

We conclude by relating our system to representation theory. As-
sume that the r; are positive integers, and that > 7 r; is divisible by
m + 1 (so that A in (1.1) is an integer). This quantization of our sys-
tem yields the Pieri formula for decomposing the n-fold tensor product
of symmetric powers Q) S™ of the basic representation of U(m+1) on
C™*L. Indeed, Pieri’s formula is just the Weinstein-Aronszajn formula,
and the decomposition of the tensor product is indexed by lattice points
in the momentum polytope.

The duality of Hausmann and Knutson also has a quantum analogue.
It asserts the equality of the multiplicity of the representation det” of
U(m+1) in the above n-fold tensor product and the multiplicity of the
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weight r of the maximal torus of U(n) in the A-th Cartan power of the
m + 1-st exterior power of the standard representation of U(n). This
quantum duality is a reflection of the rule for associating a semistan-
dard Young tableau to a Gel’fand-Tsetlin pattern (but for the special
patterns described above) [GZ86], see below, §12, Remark 10.

It is our hope that there are analogous results for all symplectic
quotients of products of flag manifolds. For general such products, one
can find integrable systems that reduce to ours in the case of projective
space, but it appears very hard to construct an explicit family of Hamil-
tonians with periodic flows, i.e. action variables. If such a construction
could be carried out and the momentum polytope could be computed,
then by counting lattice points in the momentum polytope one could
find information on decomposing tensor products of irreducible rep-
resentations. Many deep connections are now known between tensor
product decompositions and convex polyhedra; these polytopes, how-
ever, do not seem to arise as images of momentum mappings. One of
the main motivations for our paper is that the special case treated here
of is probably the only case where everything can be worked out with
simple explicit formulas.

2. THE MODULI SPACE OF n-GONS IN H,,11

In this section, we collect the notation used throughout, and in par-
ticular, introduce the moduli space of n-gons with which we will be
concerned.

(1) Let Hypt1 be the vector space of m+1 by m+ 1 Hermitean ma-
trices. We identify it with the Lie algebra u(m+1) by the linear
map ¢ : w(m + 1) — Hpy1 given by z — X = /=1z. This
makes H,,.1 into a Lie algebra, but we shall not need to refer
to the induced bracket (which is [X,Y] = —v/~1 (XY =Y X)).
The symbol [-, -] will continue to denote the matrix commutator
XY -YX.

(2) Hh ={X € Hppr | Tt X = 0}.

(3) We identify the Lie algebra #,,;; with its dual via the bilin-
ear form (X,Y) = TrXY. A U(m+1)-orbit O then carries the
Kostant-Kirillov symplectic form. The Poisson bracket is de-
fined by

@) ) =VETT([9700, Ve x ),
and the Hamiltonian equation generated by f is

(2.2) X = V=1[Vf(X),X].
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With these conventions, HJ and its Poisson bracket may be
identified with Euclidean space R® and its standard bracket,
see §10.
For r > 0, we let O, denote the orbit through diag(r,0,...,0).
It is diffeomorphic to CP™, and the Kostant-Kirillov form is 4r
times the Fubini-Study form on CP™. The elements of O, are
denoted by the letter e (for “edge”, see below), usually with
subscript.
Let w € C™! be a unit vector. Define w ® w* € H,,i1 by
w® w*(v) = (v,w)w. The elements of O, are precisely the
matrices of the form rw ® w*. Given e € O,, the unit vector w;
is determined only up to multiplication by a complex number
of modulus one.
Let r = (r1,79,...,7,) be an n-tuple of positive numbers. We
define a (closed) n-gon with side-lengths r to be an n-tuple e =
(e1,€2,...,¢e,) such that for all 4,1 <i < n we have
(a) e; € O,,,
(b) Y7 ei = AL then A = L " follows from equality
of traces.
We call the matrices e; the edges of the n-gon e and r; the length
of the edge e;. Condition (b) says that the n-gon e is closed
(modulo the center of H,,41).
When r is given A always stands for m+r1 > ri. Sometimes the
notation A, is used to emphasize the dependence of A on r.
Given r, define N, to be the product symplectic manifold I} O, ,.
The diagonal action of U(m+1) on N, is Hamiltonian with mo-
mentum map g given by

ple) =Y e

Given r, let

M, =p H(Al)={e e N, | Y e; = Al}.
=1

This is the space of closed n-gons. The unitary group acts
diagonally on M,.
Finally, we define the moduli space, M,, of n-gons (with side-

lengths r) to be the quotient of M, by the diagonal action of
U(m+1).

Because the stabilizer of the scalar matrix Al is all of U(m+1), we

obtain
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Lemma 2.1. M, s the symplectic quotient of Nr corresponding to the
(one-point) orbit AL € H,,41 under the diagonal action of U(m+1).

3. NONEMPTINESS OF THE MODULI SPACES

In this section we will prove one implication in the following theorem:.

Theorem 3.1. The moduli space M, is nonempty if and only if r
satisfies the system of strong triangle inequalities

mry <y Aro T ATy

Here 7; means that r; has been omitted in the summation.

The full theorem is a consequence of the inequalities of [Kly98], see
also [Bel]. It is proved explicitly in [LM], Theorem 4.7. We will give
an elementary proof here of the necessity of the inequalities.

Definition 3.1. Let X € H) .. We will say X is mazimally singular if
X is conjugate to a diagonal matrix with eigenvalues (r, ==, ..., —1).

We note that the orbit O under U(m+1) of such an X is the projection
onto tracefree matrices of the orbit O, through diag(r,0,...,0).

Lemma 3.1. Suppose X1, X5 € H?RH are distinct, maximally singular,
and satisfy tr(XJZ) = 1. Then tr(X,X,) > —1/m, with equality if and
only if X1 and Xy commute.

Proof. We may write

A A A 1
where ||w;|| =1, j=1,2.
Then
X, Xy =" () @ wi — — 1) (w0 ® )]
r = T -
1449 w1 ’U)l m+1 W9 ’LU2
m+1 9 1 m+1 1
S M _ > .
m [(wi, w2)] m—i—l]_ m m+1
B 1
m+1

Clearly we have equality if and only if (wy,ws) = 0 if and only if X
and Y commute. U

Proposition 3.1. Suppose that M, is nonempty. Then r satisfies the
strong triangle inequalities.
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Proof. Choose e € Mr. Then e; + -+ 4+ ¢, = Al is equivalent to
riX:1+ -+ 1, X, =0, where the matrices

m+1 . 1
X =\ = wi @ wj = 2= )
satisfy the hypotheses of Lemma 3.1. Alternatively,
Tz'Xi:—T1X1—"'—@—"'—Tan-

Multiply each side by X; and take the trace to obtain
1
ri=— Z rir; Tr(X;X;) < p” Z ;.
(#0) ()

Now divide both sides by r; to obtain the result. (l
Definition 3.2.
C(n,m+1) ={r e (R)} | M, #0}.

As mentioned in the introduction, the intersection of C'(n,m + 1)
with the hyperplane  r; = m + 1 is known in the literature as the
hypersimplex.

4. THE SPACE OF n-GON LINKAGES AND THE MODULI SPACES OF
WEIGHTED CONFIGURATIONS ON CP™

In [Sj95] and [HL94] the authors constructed the analytic quotient
of a (not necessarily projective) Kiahler manifold M by the action of a
complex reductive group G. It is assumed that some maximal compact
subgroup K C G acts in a Hamiltonian fashion on M with momentum
map p. In their theory, a point m € M is defined to be semistable if
the closure of the orbit G - m intersects the subset p~'(0) of M. The
set, of semistable points is denoted by M*; it is open in M. A point of
M 1is defined to be nice semistable if the orbit itself intersects the zero
momentum set. Define an equivalence relation, called extended orbit
equivalence, by declaring two points to be related if their orbit closures
intersect. (That this is indeed an equivalence relation follows from
a theorem assetring that each equivalence class of semistable points
contains a unique nice semistable orbit).

The analytic quotient of M by G, denoted M//G, is then defined
to be the quotient of M?® by extended orbit equivalence. Since any
momentum zero point is nice semistable, there is an induced map from
the symplectic quotient ¢ ~*(0)/K to the analytic quotient. The above
authors prove that this map is a homeomorphism. These results were
proved earlier for the case that the quotient is smooth in [Ki].
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When M is a product of (partial) flag manifolds (so in particular
of projective spaces), the authors in [LM] gave a characterization of
semistable points using convex function theory on the associated sym-
metric space. In this section, we review their theory for the case of
weighted configurations of points on CP™. We will need a brief re-
view of the compactification of a symmetric space X of noncompact
type. In what follows, we let G be the connected component of the
identity of the isometry group of X, choose a basepoint o in X, and
let K be the isotropy subgroup of o. For the purpose of understand-
ing the rest of this paper, the reader may specialize X to the case of
X = SL(m+1,C)/ SU(m+1). This may be realized as the set P of pos-
itive definite Hermitean matrices of determinant 1; then the basepoint
is [ and K = SU(m+1).

4.1. The ideal boundary of a symmetric space of noncompact
type. We will briefly summarize the material in [E, §1.7].

Definition 4.1. Two unit-speed geodesics ¢ and 7 are said to be
asymptotes, or be asymptotic, if the Riemannian distance between o (t)
and 7(t) remains bounded for ¢ > 0.

The asymptote relation between unit speed geodesics is an equiva-
lence relation, and the set of equivalence classes will be denoted (antic-
ipating later developments) 05, X. In what follows it will be more con-
venient to replace unit-speed geodesics by their restrictions to [0, co].
These restrictions will be referred to geodesic rays. Then two geodesic
rays will be equivalent if they remain a bounded distance apart. Every
ray has an origin (its value at 0) and an initial direction (the value of its
derivative at 0). The set of rays has a topology, the “cone topology”.
Roughly speaking, two rays are close in the cone topology if their ini-
tial points are close and their initial directions are close. For a precise
statement see [E]. We give 0, X the quotient topology. We let X be
the set which is the disjoint union of X and 0,,X. The set X has a
natural topology, again referred to as the cone topology, in which the
induced topology on X is the natural one and the induced topology
on OxX is the one just described. A sequence of points {x,} in X
converges to the class of a ray o € 0,,X, if the Riemannian distance
from o to z, goes to oo and the sequence of initial directions of the
geodesic segments o(0)x, converges to the initial direction of the ray
o in T,y (X). In particular, if o is a geodesic ray, then lim, o o(?) is
the class of o in 05, X. We note that G acts on X and on 0, X.
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Let S, be the unit sphere in the tangent space T,(X). Define the
“radial projection to infinity” ¢ : S, — 0,,X by

P(u) = tlgglo exp tu.
We then have

Lemma 4.1. The map ¢ is a K-equivariant homeomorphism. In par-
ticular, each equivalence class of rays contains a unique representative
which emanates from o.

Thus the space of ideal points 0,,.X is a sphere, and the space X is
homeomorphic to a closed ball. The main gain in passing from S, to
OxX is that one has a G-action extending the K-action. The G-orbits
are compact in the cone topology and are (partial) flag manifolds. In
order to relate G- &, & € 0,,X, to a flag manifold, it suffices to compute
the parabolic group G¢ which stabilizes . The rule for computing G¢
is given in Proposition 2.17.3 of [E].

Proposition 4.1. Let u € S, be such that ¢p(u) = &. Then
Ge={9eqG: tlim e Mget is finite}.
—00

This proposition translates into a very simple formula for finding the
flag in the case of interest to us, see [E], §2.13.8 and 2.17.27. Let £ and
u be as in the Proposition. So now u € H,,+1 — {0}. Suppose it has
¢ distinct eigenvalues. Arrange them in decreasing order and define a
partial flag F. by letting F;,1 < ¢ < ¢ — 1, be the sum of the first ¢
eigenspaces.

Proposition 4.2. The flag F. just described is the flag associated to
the boundary point £ € 0xX.

We note that CP™ C 0,,X corresponds to the flags F. consisting
of one proper subspace, a line, and that v has exactly two distinct
eigenvalues, the large one with multiplicity 1 and the small one with
multiplicity m. Thus by Proposition 4.2, ¢(u) = L, where L is the
eigenline belonging to the large eigenvalue of w.

4.2. The characterization of semistability via convex function
theory. ;From now on, we take X = SL(m+1,C)/SU(m+1), and
identify it with P as above. That is the special case required in this
paper; the general X is treated in [LM]. We define the space of pro-
jective configurations C to be the n-fold product IITCP™ C II}0.X.
We assume we are give r as above. We will define an open subset C5**
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of C, the set of semistable weighted configurations (thinking of the i-
th point as having weight r;). First, we associate to a configuration
&= (&, ,&,) the atomic measure
n
v= Z Ti0¢;,
1
where ¢, is the atomic measure with a single atom of mass 1 located

at &. Next, we introduce the Busemann function b(z,£), defined on
the product X X 0,,X. If £ = ¢(u), then

b(P,€) = lim (d(P,e™) — d(L,e™)).

The limit exists, and is a convex Lipschitz function of P. In [LM], the
authors define the weighted Busemann function b, to be the integral
over 0,,X with respect to the measure v. Thus
bo(x) = rib(x, &)
1

Of course, since v is supported on CP™, we could just as well define b,
to be the integral over CP™.

There is a particularly simple explicit formula for b( P, §) for £ € CP™.

Lemma 4.2. Let P € P and w € C— {0}. Then
b(P,w @ w) =+/(m+1)/m W (|[P~w]?/||w]?).

It is proved in [LM] that a weighted configuration is semistable if
and only if the weighted Busemann function is bounded below, and
nice semistable if and only if the weighted Busemann function has a
minimum. One can use Lemma 4.2 to relate stability properties and
the strong triangle inequalities.

Remark 1. When the r;’s are positive integers, b, is essentially the
natural logarithm of the function studied by Kempf and Ness, [KN79]
and Ness, [Ne84]. In these papers, P is fixed and the w;’s vary (more
precisely the w;’s are coded into a decomposable tensor which varies).
Thus, the above results are the analogues for general weights of those
of Kempf and Ness.

4.3. The analytic quotient and its relation to the symplectic
quotient. We now indicate how the theory of [LM] allows one to vi-
sualize the relation between the symplectic and analytic quotients as a
passage from S, to the ideal boundary 0, X.

We extend ¢ to a map from n-gons to configurations by ¢(e) = &
where, if e; = r;w; ® w, then & := ¢(w; @ w;). We then have ([LM])
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Lemma 4.3. If e € (H1)" satisfies p(e) = 0, then ¢(e) is a nice
semistable configuration.

We obtain an inclusion ¢ : M, — C:st. We note that Proposition 4.2
gives the explicit formula

v(e) = ([wy], [wa], - - -, [wn]), where e; = rjw; ® w*.
Here we have used [w;] to denote the image of the unit vector w; in
CP™.
The following theorem is then a special case of the general result

relating symplectic quotients and analytic quotients proved in [Ki,
[S795] and [HLY4].

Theorem 4.1. The inclusion v induces a homeomorphism v : M, —
M,. When M, is a smooth manifold, so is My, and v is a diffeomor-
phism.

Thus the moduli space of n-gons M, always has the structure of a
complex analytic space, and when M, is smooth it has the structure
of a complex manifold. In fact, the symplectic structure and the com-
plex structure are compatible, and accordingly when M, is a smooth
manifold, it has the structure of a Kahler manifold.

5. SMOOTHNESS OF THE MODULI SPACES

In this section we give a sufficient condition in terms of r for the
space M, to be smooth. For m = 1, it was shown in [KM96] that M,
will have singularities if, and only if, the index set {1,...,n} can be
partitioned into proper subsets I,.J so that

(51) Zri:er.
icl jeJ
There then exists a polygon (in Euclidean space), with the given side

lengths, that is contained in a line segment, and such polygons are the
singular points of M,. For m > 1, we adapt (5.1) as follows.

Definition 5.1. For 1 < k < m and [ U J a proper partition of
{1,...,n}, set

Hyjpe={reR} kY ri=(m-k+1)> r}
icl JjeJ
The wall corresponding to this hyperplane is the intersection
Wigk=Hr.NC(n,m+1)
(cf. Definition 3.2).
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We will see that if r does not lie on a wall, then M, is smooth. To this
end, we need the higher-dimensional analog of degenerate polygons.

Let r € Wy sk Suppose I = {iy,...,i5p},J = {j1,...,Jq} (so that
p+ ¢ = n), and take I and J to be ordered, iy < iy < ..., j1 < j2 <

. Set r; = (r4,,...,73,), and likewise for J. Choose an orthogonal
decomposition C"*! =V, @V, with dimV;, = m — k+ 1 and dim V, =
k. Let H(V;) denote the Hermitean endomorphisms of V;. We have
inclusions «; : H(V;) = Hum1-

Lemma 5.1. Write py =Y ,;ri,ps=>_,;75,Ar = pr/(m—k+1),A; =
pilk, p=>"ri, and A= p/(m+1) as usual. Then Ay = Ay = A.

Proof. Because r € Wy s, we have kp; = (m — k+1)p,, which implies
A; = A;. Furthermore,

kp=kpr+kp;=(m—k+1)ps+kps=(m+1)py,
whence A= p/(m+1)=p,/k=A,. O

Define a map

trayive © Me, (H(V1)) X My, (H(V2)) = Ne
by
(e, e®) = (ax(e)), . ax(el)),
where in the " entry, ¢ = 1, resp. 2, if £ € I, resp. £ € J. Lemma
5.1 shows that the image of ¢7 sy, v, in fact lies in M., i. e. , consists of
closed polygons.

Definition 5.2. We say that e € J\Z is decomposable if it lies in the
image of the map ¢y sy, v, for some choice of I, J,V},V, as above.

Lemma 5.2. Mr contains a decomposable polygon if, and only if, r
lres on a wall.

We now turn to the smoothness of M,. Let f)r C J\Z be the set of
decomposable polygons. We note that 3, is invariant under U(m+1),
and let ¥, be the image of ¥, in M,.

Theorem 5.1. (i) M, — S, is a smooth manifold. (i) The group
SU(m+1) acts freely on M, — X, hence the quotient M, — ¥, is a
smooth manifold.

Proof. First an observation. If w(t) is a smooth curve in C"™*!  with
|w(®)|| = 1, then Trw(t) ® w(t)* = 1 implies Tr4 (w(t) ® w(t)*) = 0.
Hence the derivative of the momentum map g : Ny — H,,+1 maps into
#,...

We now prove (i). The following fact is standard.
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Lemma 5.3. Let Z(e;) be the centralizer of e; in HY,, . Then

d,u‘e : To(N;) — HY .1 is not onto <> ﬂZ(ei) # {0}.

i=1
Indeed, the differential d,u‘e will be onto if, and only if,
Tel(on) +oeet Ten(orn) = ng—i—l-

Letting + denote orthogonal complement in HY, |, we see that dp|_ is
onto if, and only if,

1.,(0,)"n...nT,, (0,)*" ={0}.

But 7,,(O,,)" = Z(e;), and the lemma follows.

Suppose now that du‘e is not onto. Choose a nonzero X € N, Z(e;).
Suppose that X has ¢ distinct eigenvalues, so that C™*! is the orthogo-
nal sum of the corresponding eigenspaces W;. For each e¢; = ryw; ® wy,
we have Cw; = ker (e; — r;I). Since X and e; commute, w; is also
an eigenvector of X. Hence w; € Wj, for some j;. Now set V} =
Wi+ +Wyq, Vo =Wy Define I = {i | w; € V1},J ={j | w; € Va}.
It follows that e lies in the image of the map ¢r sv,v,. Thus, if e is
not decomposable, then Al is a regular value of u.. This proves part
(i). For (ii), we need to check that if e is not decomposable, then the
stabilizer of e under the action of U(m+1) is trivial. The argument

just given works, because we deal with matrix groups. If kex ! = e,
we write C™*! as sum of eigenspaces of &, and proceed as before. This
completes the proof of Theorem 5.1. U

Corollary 5.1. Ifr does not lie on a wall, then M, is a smooth man-
ifold.

We conclude this section by identifying the critical sidelengths of
closed polygons. We define the space of closed n-gons (with arbitrary
side-lengths) by

CPol(n,m+1) = {e € (Hm1)": Y e = A}

Theorem 5.2. Let s : CPol(n,m + 1) — R" be the side-length map.
The set of critical values of s is the union of the walls.

Proof. We have seen that r lies on a wall if, and only if, A,Iis a critical
value of p: Ny — H,p1. Let

e € M, = CPol(n,m + 1) N N;.
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The result will follow once we prove that Top is onto if, and only if,
T.s is onto.

To show this, consider a curve e(t) = (r(t)wi(t) ® wi(t)*,...) in
CPol(n,m+ 1), with e(0) = e. We have ¢;(0) = f;w; ® wf + X;, where
B; = 7:(0) and, as noted above,

Xi = ri(w; ® w;(0)" + w;(0) ® wy) € HS”“'

Moreover, since e is closed,

n . 1 n n

Now T,s is surjective exactly when for every 8 € R” there exist X; for
which (5.2) holds. The left side of (5.2) runs over all of HJ, ., hence
so must the right side. This happens precisely when T, is surjective.

Indeed, a curve e(t) in NV, has r; = constant, or 8 = 0, and the tangent
map is just Tepu(Xy,..., X,) => 0 X, O

6. BENDING HAMILTONIANS

Kapovich and Millson ([KM96]) studied an integrable Hamiltonian
system on M, in the case su(2), which corresponds to Euclidean space
E3. To describe their system and its rank-one generalization, we fix
some notation. Taking m = 1, we have ¢; = rw; ® wy € Hq,1 =
1,...,n. In §1 we introduced the diagonals Ay = e; and A; = e; +
--+e1,0=1,...,n—2. Note that for a closed polygon, A, | = AL,
which is indicated by a dashed line in Figure 1 (which would be absent
in su(m + 1)).

Ay
A]I\ €2

€1

FIGURE 1. A polygon in u(m + 1)
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It was shown in [KM96] that (for su(2)) the functions fi(e) = || A;]|
Poisson commute. The diagonal A; divides the polygon into two “flaps”,
and the flow generated by f; is 2m-periodic, consisting of a rigid rota-
tion of one flap about the diagonal. In this case, ||A;|| is the positive
eigenvalue of A;. The analogs of “bending Hamiltonians” for m > 1
are again the eigenvalues of the diagonals.

Notation 6.1. The eigenvalues of A; are denoted by A;; in decreasing
order, Aj; > ... > Aj 1.

We note that A, o = Al — e, which has eigenvalues A (multiplicity
m) and A — r,, and those are fixed. Thus only the \;; for 1 < i <
n — 3 are of possible interest. Furthermore, it will be seen in §7 that
off submanifolds of M, of lower dimension, the nontrivial A;; (those
not identically 0 or A) are simple. In that case, they will be smooth
functions of e, which is assumed throughout the present section.

6.1. Bending Flows. We want to calculate the Hamiltonian vector
fields and flows generated by the );;. By analogy with the case of E?,
we call them “bending flows”.

On a product of orbits, the Poisson bracket is the sum of the orbit
brackets, and the next formula is evident from (2.2):

Proposition 6.1. Suppose f : Mt — C s smooth and depends only

on ey, ...,e11. Then the Hamiltonian system generated by f s
(6 1) - V_l[ka(ela"'aei+1)7ek]7 Zf1§k§2+1,
' 7o, ifi+l<k<n,

where Vy, denotes gradient with respect to ey, all other e; being held

fized.

To solve these equations when f = \;;, we need a standard lemma
from perturbation theory.

Lemma 6.1. Let A be an isolated eigenvalue of A € Hypy1, with unit
eigenvector u. Then VA(A) = u ® u*.

Proof. For A’ sufficiently close to A, the eigenvalue A(A’) and (with
proper choice of phase) normalized eigenvector u(A’) vary analyti-
cally in a neighborhood of A u. Take a curve A(t)u(t) = A(t)u(t),
and take the inner product with the unit length u(t) to get A(f) =
(A(t)u(t),u(t)). Differentiate and set ¢ = 0, and use (Au,u(0)) +
(Au(0),u) = A((u, w(0)) + (4(0),u)) = 0, resulting in

A0) = (A(0)u, u) = Tr(A(0)u ® u*),

as was to be shown. O
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We write E;(A) for the spectral projection onto the A; eigenspace
of A; the lemma thus states that VA;(A) = E;(A), and in particular
Vii(e) = Ej(A:).

Proposition 6.2. Fori = 1,....n—3 and 7 = 1,...,m + 1, the
function \;j : e — \j(A;) is smooth wherever that eigenvalue is simple.
It is the Hamiltonian for the system

e_{V—H@@H~~+QMxA Fl<k<i+l,
.

6.2
(6.2) 0, ifi+1<k<n.

The Hamiltonian flow ¢};(e) = e(t) is given by

(Adexp(vV—1tE;(4:)))(er), if 1<k <i+1,

(6.3)  exlt) = {

Proof. To obtain the system (6.2) we wish to apply Proposition 6.1. It
is necessary to relate the partial gradients V;A;; to the full gradient,
VAij = Ej(Ai). According to Lemma 6.1, the former are found by
computing
Ai(t) = (er + -+ ep(t) + - +e;) = éx(t),
but because A;(0) is tangent to O,,, this only determines V\;; up to
a vector normal to the orbit:
Vidij(4i) = Ej(A) + Yy, Yi € N, O,

Then, since [Yk,ek] = 0, we have [Vk)\ij,ek] = [E_,-(Ai),ek], and (62)
follows.
Next, add the equations (6.2) for 1 < k < i+ 1 to find

Ai(t) = V-1E; (A1), Ai(®)).

Since A; commutes with its own spectral projections, we get A;(t) =0
and A;(t) = A;. With constant A;, the solution of (6.2) is immediate.
[

Corollary 6.1. The flows ¢;; have period 2m in t.

Proof. If P is a projection, then P? = P. Consequently, exp(y/—1tP) =
I+ (exp(v/—1t) — 1)P, which has period 2. O

6.2. Involutivity. It is not a priori clear from the formulas for ¢;;
that these flows commute. This is a short calculation; we again work
only with simple eigenvalues of the A;.

Proposition 6.3. {\jj, \;e} =0 for1 <ik<n—-3andl < jl<
m+1.
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Proof. By Proposition 6.1 and the proof of Proposition 6.2,

i+1

{Nij, Mee} () = V=1 ZTr(es (Ay) + Y, Eo(Ar) +Z]>

where Y, Z, are normal to O,,. The ad-invariance of the trace bilinear
form shows that both Y, and Z; are annihilated by e,. This leaves

{Aijs A} (€) = V=1 §Tr< les, E )]EE(Ak)>

VAT BB )
=0. .

Remark. The proof works more generally, if instead of A; and Ay one
has ), e; and ) e;, with I C J. Thus, for example, the eigenvalues
of ea +e3 and e; + - - - + e5 are in involution. On the other hand, if A\, u
are eigenvalues of e; + ey and ey + e3, respectively, then

O (o) = VT T el Bafer + ea) Bylea + )] ).
which need not be zero. See [KMO1] for more information.

7. THE WEINSTEIN-ARONSZAJN FORMULA

The diagonal A; is a rank-one perturbation of A;_;, and because of
this, the eigenvalues \;; and A;_; ; are related in a special way. This
connection is the simplest instance of the Weinstein-Aronszajn formula
[Kato, Ch.4, §6]. We describe the formula and two consequences that
will be used later.

Let A be an (m + 1) x (m + 1) Hermitean matrix with eigenvalues
Ayevoy A1 and let uy, ..., 4,41 be corresponding orthonormal eigen-
vectors. (If an eigenvalue has multiplicity > 1, which is now permitted,
the choice of its eigenvectors is irrelevant). Let w € C™*! be a unit
vector, and let r € R. Set L = A 4+ rw ® w*, and call its eigenvalues

. 1
Vl,...,Vms1. Finally, define «q, ..., a1 € C by w = +1 Q.

J

Proposition 7.1.

det(zI — L
(7.1) mzl_rzi
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Proof. Write R, = (21 — A)~! for the resolvent of A. The left side of
(7.1) is
=det (21— A)7'(zI - A - rw @ w"))
=det(l — R,(rw ® w"))
=det(I —r(R,w) ® w").
Now, det(¢I — r(R,w) ® w*) is the characteristic polynomial of a rank-

one matrix, and so has an m-fold root at ( = 0 and a simple root at
¢ =r(R,w,w). Setting ¢ =1 we get

(7.2) det(I — r(R,w) @ w*) =1 —r(R,w,w).
The lemma now follows by expanding w in (7.2) in the basis u;. O

It is convenient to write (7.1) more explicitly:
m~+1

(z—=11)... (2= Vpg1)
(7:3) ) ey Sl

Corollary 7.1. The |o;|* are rational functions of vi, Ay, 1 < k€ <
m + 1.

| |?

Z—)\j'

j=1

Finally, we show that the eigenvalues of A and L interlace. This will
play a basic role below.

Proposition 7.2. If r > 0, then vy > A\ > Vo > Vg1 > Aa1- If
r <0, we have \; > vy ... instead.

Proof. Suppose r > 0. It suffices to prove the proposition for a dense
set of w, so that we may assume |o;|* > 0 for all j. Let R(z) be the
rational function on the right side of (7.3). Since lim,_,,, R(z) = 1 and
lim,yy, = —oo, R has a zero in (A,00). Likewise, because lim,y, =
+00 and lim,},,, = —oo, R has a zero in (\;j;1,A;). This provides
m +1 zeros of R, which must coincide with the zeros v; of the left side
of (7.3). O

8. A COMPLETE SET OF BENDING FLOWS

The eigenvalues \;;(e) have been shown to Poisson commute, and
to generate 2m-periodic flows. If there were %dim M, of them and if
they were smooth, they would constitute a set of action variables on
M. Smoothness cannot be achieved, but there are %dim M, that are
smooth and functionally independent on a dense open submanifold of
M. This section presents the proof.

We will arrange the eigenvalues of Ay = ey, Ay,..., A,_; in a triangle
with vertex at the bottom. The eigenvalues of Ay are written in row &
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of the triangle, along with some space-filling zeros. For 0 < k < m, the
rank of Ay is at most k + 1, so zero must be at least an (m — k)-fold
eigenvalue of A;. Those zeros are not recorded. When k& > m, there
are m + 1 eigenvalues, potentially nonzero; these are recorded along
with k —m zeros. Figure 2 shows the case m = 2,n = 6. Note that
entries of successive rows are offset to reflect the interlacing property
deduced in Proposition 7.2. This diagram is called a Gel’fand-Tsetlin
pattern, or GTs pattern for short. It is denoted by I'(e). The extra
zeros will be explained §11, see Remark 5.

A A A 0 0 0
dy dy ds 0 0
C1 Co C3 0
by by b3
ay a2
1
Figure 2

Since e € M,, there are additional restrictions on the entries of I'(e).
Row n — 1 must consist of m + 1 A’s (because e; + - - - + ¢, = Al) and
(n — m — 1) zeros. The interlacing property forces the first m entries
of row n — 2 to be A, so in Figure 2, d; = dy = A. Likewise, ¢; = A. It
becomes apparent that the extra zeros remind one that (for example)
the eigenvalues d3 = Ay 3 and c3 = A3 3 must be non-negative.

Moreover,

(8.1) TrA, =Tr(ey + -+ epy1) =711+ 4 Ty,
which is a linear constraint on the rows of I'(e). In Figure 2, that leaves
co, b1, b9, a1 as potentially independent commuting Hamiltonians, and

indeed dimg M, = 8 in this case.
We summarize this discussion.

Definition 8.1. Let m, n,r be fixed. We write P for the convex poly-
tope of GT's patterns satisfying the following conditions.
(1) There are n rows numbered 0, . .., n—1 (starting at the bottom);
(2) Row n — 1 consists of m +1 A’s and n —m — 1 zeros;
(3) The sum of the entries of row k is Y25 7i41.
(4) The interlacing property A;j; > \i_1; > A; j41 holds.

Proposition 8.1. dimP = (n — m — 2)m = 3 dimg M.

Proof. There are two cases: (1) n > 2(m + 1) and (2) n < 2m + 1.
The difference comes from the position of row m, corresponding to the
eigenvalues of A,, =e; + -+ e,11. Generically, this matrix will have
full rank. In case (2), some of its eigenvalues are forced, by interlacing,
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to be A. In case (1), all the automatic A’s have been “exhausted”.
(Figure 2 falls into the latter category). Let us sketch the counting.

Case (1): Unconstrained \;; can appear in rows ¢ = 1,...,n — 3.
Break this index set into three parts: S; = {1,...,m}, Sy = {m +
L....n—m—=2}, S3={n—-—m-—1,...,n—=3}. If n=2(m+1) (as
in Figure 2), then Sy = (). The numbers of unconstrained \;; for the
corresponding Ay are

eln Sy, 1,...,m;
e in Sy, m,....,m;
einS;;m—1,...,1.

Adding, we obtain
1 -1
%—i—(n— (2(m+1))m+%
Case (2): Weset S} ={1,...,n—m =2}, Sy ={n—m—1,...,m},
Sy ={m+1,...,n—3} (if m = 1,2, then S3 = ()). The numbers of
unconstrained \;; are:

= (n—m—2)m.

eInS;, 1,....,n—m—2;
einSy,n—m-—2,....n—m—2;
ein S, n—m-—3,...,1.
Now add. 0

9. CONSTRUCTING A POLYGON WITH GIVEN GTS PATTERN

In the last section, we saw that I'(M;) C P. We now prove the
converse.

Theorem 9.1. (i) I'(M,) = P. (ii) There are §dim M, functionally
independent \;;'s.

Proof. Let S,,4+1 C Hpm41 denote the space of real symmetric matrices,
and let ]\Z(Smﬂ) be the set of polygons in MT with each e; € S,,11.
The obvious inclusion Mr(é’m“) — Mr is the analog of the inclusion
M, (R?) i]\Z(RS) used in [KM96]. We will see later that elements

of §,,41(M;) can be thought of as “unbent” polygons; these will be
important in our proof of the involutivity of the angle variables in the
next section. We now show that

(9.1) P M(Ss1) = P

Since I' : M, — P is continuous (though not differentiable), the im-
age of I' is closed, and it suffices to prove that the image of I" contains
the interior P of P. Thus, choose a GTs pattern v in which all un-
constrained inequalities are strict; we are to find e such that I'(e) = .
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Set Ay = ryw; ® wy, where w; is an arbitrary real unit vector. As-
suming that a real symmetric Ay ; with a given spectrum has been
found, we want wy,; € R™"! so that

(9.2) Ap = Ap1 + 1w ® UJZH

has the required next spectrum.
We carry out the induction step for Case (1), in the terminology of
Proposition 8.1. First, let £ € S;. Thus

k
*
Ay = E riw; ® wy,

j=1
it has spectrum {Ay,..., Az 0,...,0} with Ay > -+ > Ay > 0, and
S A =Y% i We are further given »; with

1/1>)\1>1/2>--->)\k>vk+1>0,
k+1 k+1
and Y v =000 1

Let wuq,...,ug, u be normalized (real) eigenvectors of Aj_; corre-
sponding to Ay, ..., A, 0, and seek wg; in the form
k
Wet1 = Z QU5 + Qu.
j=1

Now solve for oZ,1 < j < k and o in equation (7.3), which takes
the special form

z—vy)...(z —v Zmk b a;]? a?
( 1) (2 = Vkt) =1—7”k+1<z|]| +_>_

(z = A1) ... (2= Ag)zm—htt perii Aj z
Taking traces in equation (9.2), we get
k+1 k+1 k
er = Zl/j = er + i [l wp |7,
j=1 j=1 =1
whence [Jwy1]| = 1.

The same procedure works in the remaining subcases as well; for

k € S, the eigenvalues A\; and v; are simple, while for k € S3, account
must be taken of the multiplicity of A.

O

Remark 2. The proof shows that, if wy,; is not required to be real,
each term «ju; is determined only up to a multiple exp(v/—1 611 ).
Thus, the possible polygons e corresponding to a given pattern v lie
on a torus. The angle coordinates are studied in the next section.
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We conclude by making a choice of functionally independent action
variables.

Definition 9.1. Let Z be the set of pairs (i,j) satisfying 1 < i <
n—1,1 < j < which index eigenvalues \;; such that \;; is not forced
to be 0 or A, with the further property that A; ;11 is not forced to be 0
(this last condition says that in each row we throw away the right-most
j such that \;; is not forced to be 0).

Corollary 9.1. The set Z indexes a functionally independent set of
action variables \;j.

Proof. Indeed, these action variables map onto a polyhedron of dimen-
sion equal to the cardinality of Z. ([

10. ANGLE VARIABLES AND FOUR-POINT FUNCTIONS

In this section, we construct angle variables ¢;; conjugate to the ac-
tion variables \;; discussed thus far. The angles are implicit in Corol-
lary 6.1 and Remark 2; what we now find is a global description.

10.1. Four point functions and polygons. The geometric picture
in [KM96] serves as model. For the moment, think of the sides e; as
vectors in R®. The action variables are the lengths of the diagonals
A; = e; + ...+ e;41 of the polygon. The corresponding conjugate
angle is the oriented dihedral angle between the two triangles spanned,
respectively, by A;_1,€e;11, A; and A;, e¢;12, A;11. By this we mean the
oriented angle between the two normal vectors to the triangles. These
two vectors are elements of the plane orthogonal to A;. We orient this
plane so that a positively oriented basis for the plane followed by A; is
a positively oriented basis for R?.

Remark 3. In an oriented plane Il equipped with a positive definite
inner product u - v we can define the oriented angle Z(u,v) for a pair
of vectors u and v in II as follows. First we say that two unit vectors
make an angle of ninety degrees if u - v = 0 and the basis {u,v} is
positively oriented. We let J be the operation of rotation by ninety
degrees. We make II into a complex vector space by defining v := Juv.
Then the unit circle in C acts simply-transitively on the oriented lines
in IT. We define Z(u,v) = 0 if exp(:0)u is a positive real multiple of v.
If @ = Z(u,v) then we have

u-v
cosf =

[Jull||v]l
sinf = Ju-v

[}l
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For the case at hand, the oriented angle 6; is given by
(Az X €i+1) . (Az X €i+2)
[Ai X expa || [|Ai X eipa|
(Az X 61'_1_1) X (Az X ei+2) . Az
[[Ai X e[| | Ai X epal| || Ad]

Note that ; = 0 when the triangles are coplanar, so that the col-
lection of planar polygons forms a reference cross-section for the angle
variables.

We now transfer (10.1) and (10.2) back to our Lie algebra H3 of
tracefree Hermitean 2 X 2 matrices. Define f : R* — H3 by

o .1 T Ty ++V—1x3
(103) f X = (xbx?;x?)) =X = 92 (ZL'Q —\/—_1373 —I :

Then X X y = v/—1[%,¥], x -y = 2Irxy, and a vector in the z3 = 0
plane corresponds to a real symmetric matrix. (Thus, a planar polygon
is represented by a symmetric matrix, ¢f. Theorem 9.1).

We return to identifying vectors with matrices via (10.3).
Let A > 0 and —A be the eigenvalues of A;, with orthonormal eigen-
vectors u, v, so that A; = AMu ® u* — v ® v*). Write, for notational
simplicity,

(10.1) cosb; =

(10.2) sin 6; =

€ir1 = Twy X ’U)I — (7“1/2)]I, €iy2 = ToW2 X ’U); — (7“2/2)]I
Then the numerator of (10.1) becomes (since I does not contribute)
(10.4) 2Tr (V=1 [A;, riwr @ wilvV—1[4;, raws @ w})),

and the numerator of (10.2) becomes

(10.5) 2|| A || Tr (V=1 Aj[riwr @ wi, raws @ w})).
Definition 10.1. Let a, b, c,d € C™*L. Define the four-point function
by

(a,b)(b,c)(c,d)(d,a)
[l [[[B[[2[]c[|?[| ]|

where (-, -) is the usual Hermitean inner product.

Fy(a,b,c,d) =

Two properties of F} are important:
(1) Fy(a,b,c,d) may be thought of as function on (CP™)*; in par-
ticular, F} is independent of the phases of its arguments.
(2) Fy(a,b,c,d) = Fy(a,d,c,b) (plus other such symmetries).

A longish calculation, using property (2), gives the following.
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Proposition 10.1. Ezpression (10.4) reduces to
16?7 9 ReFy (w1, u, wy, v).
Ezxpression (10.5) reduces to
16X o ImFy (wy, u, wy, v).
The denominator in (10.1) and (10.2) becomes
16A%r 7| Fy (w1, u, wy, v)].
Thus, the oriented dihedral angle is 0 = arg Fy(w, u, ws, v).

This formula, suitably adapted, will be shown to define the conjugate
angles in the more general case as well.

We mention, as an aside, that the argument of the four-point function
has an interesting geometric description.

Theorem 10.1. Let aj,j = 1,...,4 be four points in C™* defining
points p; € CP™. Construct a geodesic quadrilateral m in CP™ with

vertices at the p;. Let o be a two-chain with boundary m and let w be
the Kahler form on CP™.Then

(10.6) arg Fy(ay, ag, az, ay) = —/w.

Proof. Draw a geodesic segment (a diagonal of the quadrilateral) from
p1 to ps. The analogue of (10.6) for triangles was proved in [HM], see
also [Go, Ch. 7]. Now choose o to be the union of two two-chains each
of which has as boundary one of the two triangles created by drawing
the diagonal p;p3. Combining (10.6) for the triangles gives the equation
for the quadrilateral. O

10.2. Construction of angle variables. We will define the angle
variables as in Proposition 10.1, via the four-point function of the w’s
associated with two consecutive edges and eigenvectors of the diagonal
between them. These vectors all involve a choice of phase, and the first
goal will be to remove the ambiguity.

Let M? be the open subset of M, on which the interlacing 1nequal1t1es
Aij > Aic1; > Aij+1 are strict, and let M0 be its inverse image in M
We consider only polygons in M?, so that the (unconstrained) eigen-
values and eigenvectors may be taken to be locally smooth functions
of e.

Let ¢' be one of the \j-flows defined in Proposition 6.2. We will
follow the transformed n-gon ¢t( ). Its (-th edge, row} @ (w})*, and

the normalized \jj-eigenvector, uf;, of the diagonal ¢*(A;), will depend
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on time . They may be taken to be locally smooth on M?, but will
depend on an initial choice, while the n-gon ¢'(e) itself is well defined.

Definition 10.2. Make smooth local choices of w, and w;;. Define
aij: My = C,(i,) € Z, by ay; : e = (wiri(e), us;(e))(ui(e), wira(e));
this depends on the phases of w; 1, w;1o. (We will usually drop the
argument e). Set

Bij = Fy(wiq, Ui, Wit2, Ui,j+1) = Q0 5y
The f3;; are independent of all phase choices. Finally, we define the
angle variables 6,;, (i,7) € Z, by

0i; = arg ;.

Clearly the number of four-point functions f;; is the same as the
number of independent, unconstrained \;;’s, since for every ¢ there
is one more \;; than 3;; and there are no f3;;’s corresponding to the
eigenvalues 0 and A. Thus we obtain the correct formal count of angle
variables. We now prove that the angle variables are well-defined on
M?.

Lemma 10.1.

(1) All |ayj|* are constant under all bending flows ¢y,.
(2) All |ayj|* are nonzero on M.

Proof. The first statement follows from Proposition 7.1 and Corollary
7.1. Indeed,

A=A —ripwip @ wi.
Hence |(w;41,u5)|?, being a rational function of action variables, is a
constant of motion. Likewise,

Aipr = Ai +rippWite @ Wi,

implies that |(w;ta,u;;)|? is a constant of motion.
To prove the second statement we apply the Weinstein-Aronszajn
formula to obtain

m+1

det(2I — A;_4) I( wH_l,uU
10.7 =14mr
(107) det(zI— 4, ”“Z
Hence if |oy;| = |(wiy1,ui5)] = 0, then Aij is not a pole, so the

(z—Ajj) in the denominator of the left-hand side must cancel with one
of the terms in the numerator. Hence one of the interlacing inequalities
between the i-th and (i — 1)-st rows is not strict, contradicting the
assumption that e € M. Similarly, (wj;a,u;;) # 0.
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In the following we will make essential use of

Remark 4. Let g € U(m+1) and consider the conjugated polygon
geg™'. Tts (-th edge is ro(gwe) ® (gw,)*. However, the choice wy(geg™)
made in Definition 10.2 may not coincide with gw,. If they differ, it
is by a multiple of modulus one. The four-point function (;; is not af-
fected by such a factor. In calculations involving 3;;, we may therefore
replace wy(gegt) by gwy, and for the same reason, u;;(geg*) by gu;;.

We will now compute the Poisson brackets of the action variables
with the angle variables.

Lemma 10.2.

1,l=3
{)\il,ei]’}: —l,l:]+1
0,1 #7,5+1

Proof. We will verify, using (6.2), that

ﬂij(e)a l7£.77.7+]-7
Bij(dqle)) = exp(v—11) B;(e), [=j,
exp(—\/—lt) ﬁij(e), [ :]+1
Note from (6.2) that the i-th diagonal A; of e and the (¢ + 2)-nd edge
are fixed under ¢f,. Hence the normalized eigenvectors u;; of A; are
also fixed. Now abbreviate g, = exp(v/—1tE;(4;)), and as explained
in Remark 4, make the replacement
wi1(dy(e)) = wiy1(gieg; ") ~ grwigi(e).
We obtain
Bij(dh(e)) = (gewir1, wij) (wij, wito) (Wi, Wi 1) (Wijt1, GiWit1)
= (Wit1, 95 "ij) (Wij, Wiso) (Wita, Wi j1)(gy i jir, Wit1)-

Since Ej(A;)u;j = 6ju;; the lemma follows by definition of g,. O

Lemma 10.3.
{)\ij; 9“} = O,Z 7é k.

Proof. If i < k then the k-th diagonal, the (k + 1)-st edge, and the
(k + 2)-nd edge are fixed by the bending flow ¢!., and hence 6y is
unchanged.

If i > k, then the k-th diagonal,the (k+1)-st edge and the (k+2)-nd
edge are rigidly moved by the g; under the bending flow ¢fj, and hence
Ok, is unchanged. (Note that Remark 4 is used once more). O

t
K



28 HERMANN FLASCHKA AND JOHN MILLSON

To remove the redundancy in the A;;, we define new action variables
pi; by the formula

J
k=1

As a consequence of the two preceding lemmas we obtain

Proposition 10.2. The action variables {11;;} and the angle variables
{0:;} are conjugate

L,i=k,j=1I
0, otherwise.

{1, Ot} = {

We deduce two corollaries.
Corollary 10.1. The angle variables are functionally independent.

Corollary 10.2. The Hamiltonian flows of the new action variables
{1ij} permute the simultaneous level sets {6;; = cij, (4,7) € I} transi-
tively.

We now begin the proof that
{0i5,01} = 0.

Recall that S,,4; is the space of real symmetric (m + 1) x (m + 1)
matrices. Let o : H,,01 — Hue1 be complex conjugation. Then S,
is the fixed subspace of 0. The following lemma is immediate from
(2.1):

Lemma 10.4. The involution o is anti-Poisson (a Poisson isomor-
phism from H,,1+1 equipped with the Lie Poisson tensor to H,+1 equipped
with the negative of the Lie Poisson tensor).

We obtain

Corollary 10.3. If f and g are constant on Sy, 11, then {f, g} vanishes
on Spmi1-

Proof. Let 7(.,.) be the Lie Poisson bivector considered as a skew-
symmetric bilinear form on the cotangent bundle of #,,,;. For x €
Spmy1 and w,v cotangent vectors at x, the Lemma gives m,(u,v) =
—m,(ou,ov). If w and v are conormal covectors at x then they are in
the —1-eigenspace for o, and therefore 7, (u,v) = 0. But if f and g are
constant on S,,11, then df, and dg, are conormal at x. O

As an immediate consequence we have
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Lemma 10.5. If f and g are constant on M.(S,+1), then {f, g} van-
ishes on My(Spy1)-

Our next goal is to prove that the simultaneous zero level set of the
angle variables is M;(S;,+1). In order to obtain this we will need two
technical lemmas to handle the regions S; and S5 (in the notation of
Proposition 8.1). The first lemma will be used to deal with the region
53.

Lemma 10.6. Let V; = ker(A; — Al),n—m —2<i<n—1. Then
Vo1 D VioaD DV, o={0}.
Moreover (recalling A; = A; 1 + ripiwiy ® w;‘H) we have
Vicio={v e V;: (v,w;11) = 0}.
Proof. Let v € V;_; and ||v|| = 1. Then
A= (A 10,0) = (Aw,v) — 11| (wig 1, 0) .

But A is the largest eigenvalue of A; so (A;v,v) < A. Hence the above
equation can hold if and only if

(Ajv,v) =A (soveV;) and (wiq,v) =0.
U

Corollary 10.4. Let wﬁrl be the orthogonal projection of w;y, on the
A-eigenspace of A;_1. Then

wiﬁ_l =0.
The next lemma will be used to deal with the region S;.
Lemma 10.7. Let U; = ker A;,1 <i < m. Then
U >Uy;D--- DU, ={0}.

Moreover
Ui ={u €U : (u,wi11) = 0}.

Proof. Suppose A;u = 0. Then
0= (Aju,u) = (A 1u,u) + 701 | (Wi, w) [

But A;_; is positive semidefinite and r;,; > 0. Hence u € ker A;_; and
(U, wi—i—l) =0. O

Corollary 10.5. Let w),, be the projection of w;y1 on ker A;. Then
wiyy = 0.

Now we can prove the result we need. Let Z(0©) be the simultaneous
zero level set of the angle variables {6;;}.
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Proposition 10.3.

Proof. The inclusion
M (Spny1) C Z(O)

is obvious (all the edges and diagonals are real, so the eigenvectors are
real, so the (3;; are real). The point is to prove the reverse inclusion.
We will assume n > 2(m + 1) and leave the case n < 2m + 1, which is
similar, to the reader.

Given a polygon e with all 6;; = 0. We wish to show that a sequence
of conjugations of e by elements of U(m+1) will make all sides ey, real
symmetric, or equivalently, all the wy real. The proof is by descending
induction, starting with the last diagonal A,, | =e; +---+ ¢, = Al
which is of course real symmetric. First, conjugate e by g € U(m+1)
(without changing A,, ;) to arrange that A, , is diagonal, hence real.
This moves all the wy to gwy, but in the sequel we do not need to keep
track of those changes. Now we know that A,,_3 has the form

An—3 - An72 —Tpn1Wp 1 ® w;szl)
and we want to show that we can move w,,_; to a real vector. We have
ker(An,g — A]I) = {E]_, ceey €m},
where {€1, ..., €41} is the standard basis for C"*!. Suppose A, 26,11 =
[emt1, b = A — Ty

Write w, ; in the form w, ; = w? | + w} |, where w? | is the
orthogonal projection of w,,_; onto ker(A4, o — AL). Hence there exists
z € C such that wrffl = Z€y,y1. Oince w, 1 is defined only up to a
complex multiple of unit length, we may multiply w,,_; by an element of
St in order to arrange that z be real. Let ¢ = ||jw_,||. Now choose g €
U(m+1) such that ge.q = €541 and gw{}fl = ce,.Then gA, 297! =
An_o (because g€ = €41 and gw,_1 = c€y + 2€6,41). We change
e=(e,...,e,) to geg t = (gergt, ..., geng™t).

Next, we show how to find a conjugation geg ! that keeps A,,_», A,_3
and w,_, real and also makes gw,,_s real. This step exhibits the general

pattern.
By Lemma 10.6,

keI‘(An_g - A]I) == {U S ker(An—2 - A]I) : (U, wn—l) = 0}

= span{€ey,...,€n 1}
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The matrix A,_3 has two new eigenvalues (in addition to A); let their
eigenvectors be 3,41, Un—3,m- There is one angle variable

0n—3,m+1 - arg[(wn—2; un—3,m)(un—3,m; wn—l)
(wnfla un73,m+1) (un73,m+17 wn72)]

We have seen that A,_3 is real symmetric, hence u,_3; can be chosen
to be real for all 1 < j <m + 1. Since w,_; is real, we may normalize
Un—3,m and Up—3,m+1 SO that (wn_l, un—3,m) > 0 and (wn_l, un—3,m+1) >
0. Since, by assumption, #,,_3 ,4+1 = 0, we have

arg(Wn—2, Un—3m+1) = arg(Wy_2, Up—3.4m,)-

Hence by multiplying w,_» by an element in S* we may assume that
(Wn—2, Un—3m+1) and (wy_2, Up_3,,) are real. Now we may write

_ A 1
Wp—2 = Wy_o + Wp_9,

where
w? , € ker((Ay_3 — Al) = span{ey, ..., e 1}
and
wir ., € span{t,—s.m, Un—3,m+1} = SPan{€m, €41 }-
We have arranged for w;_, to be real. Choose g € U(m+1) with
9€m = €, and g€, 11 = €,41 such that

A o
gwn—Q = C€p-1,

L and

with ¢/ = [JwA ,|| as in the preceding step. Now change e to geg~
proceed to w,_s.

We continue in this way until ker(A; — AL) = 0 and we enter the
region Sy. The argument for this region is simpler and is left to the
reader. Note that the vanishing of the angle variables says that all
the coordinates (wg,ux_1,;) in the eigenvector basis of A;_; have a
common phase which can be eliminated by multiplication by an element
of S'; no conjugation is needed, so the preceding edges all remain real
symmetric. However, the zero eigenvalue, which is unavoidable when
we enter region S7, causes new problems, and Lemma 10.7 is required.

Suppose then we have proved that A,, is real (note that A, has rank
m). We want to prove that A,,_; is real. We know that

*
Am - Amfl + T"m+1Wm+1 ® W41

and since ker A, = {0}, we have enough angle variables to prove that
all coordinates of w,,; have a common phase. We clear this phase as
before and move on to A,,_». We have A,,_; = A2 + rpw, @ w},,
and wish to prove that one can make w,, real without destroying reality
of Wy 1, Wyy1. Write w, = wi + w? with A, 7w’ =0 and w;



32 HERMANN FLASCHKA AND JOHN MILLSON

orthogonal to ker 4,, 5 (the latter has dimension 2). By the corollary to
Lemma 10.7, we have w? = 0. Also, we have enough angle variables to
conclude that the coordinates of w:: relative to the eigenvectors of A,,_;
orthogonal to ker A,,_5 have a common phase. Thus, no conjugations
are required to make w,, real, and all preceding edges remain real
symmetric. Now continue. U

We remark that the proof could equally well be done by ascending
induction; in that case, region S; would be the one requiring conjuga-
tions, while an overall scaling would do in S5, S3.

We are now ready to prove

Proposition 10.4.
{92']', 9“} =0.

Proof. Let e € M, be given. By Corollary 10.2, the bending deforma-
tions flows permute the level sets of the 6;;’s transitively. Hence we
may apply a bending ¢ to move e into Z(0). Since ¢ is symplectic and
the Hamiltonian vector fields of the 6;; are invariant under bending, we

have
{05, 0} (€) = {035, 0w } (de).
But by Proposition 10.3

2(0) = My(Spsr).

Hence by Lemma 10.5
{92']', 9“} =0.
O

11. THE DUALITY BETWEEN THE BENDING SYSTEMS AND THE
GEL’FAND-TSETLIN SYSTEMS ON GRASSMANNIANS

In this section we use Gel’fand-MacPherson duality, following [HK97]
for the case of m = 1, to show that the bending system is equivalent
to the Gel'fand-Tsetlin integrable system (as defined in [GS83]) on a
torus quotient of the Grassmannian G(m + 1,C"). This equivalence
will explain the appearance and form of the Gel’fand-Tsetlin patterns
in §8.

Our first goal is to construct a symplectomorphism ® from M, to a
symplectic quotient of G(m + 1,C") by the n-torus T of diagonal ma-
trices in U(n). This is the symplectic version of Gel’fand-MacPherson
duality.

Let M denote the vector space of (m+1) x n complex matrices. We
give M the Hermitean form (, ) defined by (X,Y) = Tr(XY™), and
thus M is a symplectic vector space. The product group U(m+1) x
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U(n) acts isometrically and symplectically on M. Denote the i-th row
(resp. j-th column) of N € M by R; (resp. C;).

Proposition 11.1. The action of U(n) has momentum map
tum) M — My pym) s N — NN,
In particular, the momentum map for the T-action is
pr s N o= ([CH17 -Gl
The momentum map for the U(m+1) action is
Pumss) s M= Hmpr,  HBomer) s N — NN
Note that

(11.1) pomin(N) =Y Ce ;.
i—1

This will provide the connection with polygons.

We construct the desired symplectomorphism by computing the sym-
plectic quotient corresponding to the pr-level r and the piymy1) level
Al in two different orders. If we first quotient with respect to T" with
momentum level r and then with respect to U(m+1) with momentum
level All, we get the space M,. In order to see this, we note that the
(left) action of []} U(m+1) on M (acting on the columns) commutes
with the (right) action of T' (in fact one obtains a dual pair in the sense
of Howe, see [KKS78]). We first compute the symplectic quotient by
T.

Lemma 11.1. The momentum map f(ym+1)» induces an embedding
of the symplectic quotient 3" (v)/T into i H,yr, with image [} O, .

Proof. This follows because it is a general feature of dual pairs, see
[KKS78], that the momentum map for one action embedds the sym-
plectic quotient of the other as an orbit in (the dual of) the Lie algebra
of the first group. This principle, applied to the pair (U(m+1))" x T
implies the lemma. U

Thus we have identified the quotient by T" with the correct product of
rank one orbits in H,,, ;. Clearly, after taking the symplectic quotient
of this product by the diagonal action of U(m+1) (at momentum level
AT), we obtain M,.

Suppose instead we first quotient with respect to U(m+1) and mo-
mentum level AL. We get the Grassmannian G(m+1, C") with a certain
U(n)-invariant symplectic structure.



34 HERMANN FLASCHKA AND JOHN MILLSON

Lemma 11.2. The momentum map fiym) induces an embedding of
the symplectic quotient ,u;/}mﬂ)(/lll)/U(vaI) into H,, with image the
U(n)-orbit O, consisting of those matrices that have eigenvalue A with
multiplicity m + 1 and eigenvalue 0 with multiplicity n —m — 1.

Proof. The argument is the analogous to the previous case, only this
time we use the dual pair U(m+1) x U(n). O

Denote the torus quotient at momentum level r of the Grassmannian
with the Kostant-Kirillov symplectic structure corresponding to A by
M. We have now obtained the desired symplectomorphism & from
Mr to MA.

Of course this symplectomorphism gives a Poisson isomorphism be-
tween the Poisson algebras of smooth functions of M, and M ,. How-
ever, we want to make this more explicit and to localize it. Let M, 4
be the subset of M consisting of matrices NV such that ||C;||* = r; and
N*N = AL Thus we have U(m+1) xT" quotient mappings 71 : M, 4 —
M, (first quotient by 7" then by U(m+1)) and 7y : My 4 — My, (first
quotient by U(m+1) then by 7). We use the mappings m; and w5 to
realize (and localize) the Poisson isomorphism ® from above. Let f be
a function which is smooth on an open subset of M,. Use m; to pull f
back to a U(m+1) x T-saturated open subset of M, 4. Since 7y is a
quotient map and 7} f is invariant under U(m+1), we can first descend
it to to a T-saturated open subset of the Grassmannian, then to the
torus quotient of that open set, which is an open subset of M ,. We
note that ® is determined by the equation

O(m (N)) = m2(N).

We now briefly review the Gel’fand-Tsetlin integrable system - for
the details see [GS83]. We recall we have identified the space #,, of
nxn Hermitean matrices with the (dual of) the Lie algebra of U(n). We
now construct n(n + 1)/2 Poisson commuting functions on #,, which
are smooth on a dense open subset. Let X € H,. Let (3;(X) be the
principal ¢ X ¢ diagonal block. Define v;; on H,, by

%j(X) = )\j(ﬂi(X))a

where A; is the j-th eigenvalue of the block. As usual, we assume that
the eigenvalues of the i-th block are arranged in nonincreasing order. It
is proved in [GS83] that the ;;’s Poisson commute. We note that the
Ynj are Casimirs. The restrictions of the remaining Gel’fand-Tsetlin
Hamiltonians to generic orbits are functionally independent and give
rise to integrable system on such orbits. The eigenvalues of the blocks
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interlace and can be arranged in a “Gel’fand-Tsetlin” pattern (we take
n = 6).

Y61 Y62 Y63 Ye4 Y65 Y66
V51 V52 V53 V54 V55
Y41 Va2 Y43 Va4
V31 V32 V33
V21 V22
Y11
Figure 3

Since we are dealing with a degenerate orbit here (the Grassman-
nian), many of the ;;’s (at the ends of the rows) will be zero (see Re-
mark 5 below, and Figure 2 above). The next proposition, combined
with the earlier sections, shows how to extract a functionally indepen-
dent set of Gel'fand-Tsetlin Hamiltonians and obtain angle variables
for the Gel'fand-Tsetlin system on the Grassmannian.

Proposition 11.2. ®*v;; = \;.

Proof. Let I be the diagonal n by n matrix whose first £ eigenvalues
are equal to 1 and last n — k eigenvalues are equal to 0. We use [ to
“truncate” N, N*N and NN*. Put Ny := NI,. Then

HU(n) (Nk) =LpN* NI
pumer)(My) =NIGLN

The matrix on the first line is §;(N*N), the principal k& by k block
of the n x n matrix N*N, and the matrix on the second line is the
diagonal A,_, = C,C7+CyC5+- - -+CCy. The matrices [, N* NI} and
NI, I, N* have the same nonzero eigenvalues. But the eigenvalues of the
second matrix are the bending Hamiltonians A, and the eigenvalues
of the first matrix are the Gel’fand-Tsetlin Hamiltonians ;. Finally
we observe that

% (2(m(M))) = 73 (m2(M)) = A (Bi(mar)) = Aj(Ai(m (M) = Aij(m1(M)).
O

We conclude this section with three remarks.

Remark 5. Proposition 11.2 explains the appearance of Gel’fand-Tsetlin
patterns in connection with the bending Hamiltonians. The appearance
of the zeroes at the end of the rows in our patterns is explained because
the Gel’fand-Tsetlin system in question is defined on a subset of the
Hermitean matrices of rank at most m + 1. Hence v;; = 0,7 > m + 1.
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Remark 6. The reconstruction process in §9 may be interpreted as
saying that the class of patterns introduced in §8 is precisely the class
corresponding to Hermitean matrices of the form N*/N, where N is as
above.

Remark 7. Fixing the row sums in the patterns in §8 to be partial sums
of the r; corresponds to taking the quotient of the Grassmannian by T'
(at level r).

12. PIERI’S FORMULA AND THE DUALITY AT THE QUANTUM LEVEL

In this section we will assume that the r;’s are (positive) integers.
The orbit O,, then corresponds under geometric quantization to the ir-
reducible representation 8" (V') of U(m+1), where V' denotes the stan-
dard (or vector) representation of U(m+1) on C™*! and 8" (V) the
r;-th symmetric power.

The (classical) duality result of the last section should have a quan-
tum version. We note that the duality connected an integrable system
(bending) on a symplectic quotient of [} O,, by the diagonal action of
U(m+1) and an integrable system (Gel’fand-Tsetlin) on a torus quo-
tient of the Grassmannian G(m+1,C"). Thus, according to geometric
quantization, at the quantum level we would expect a relation between
an n-fold tensor product multiplicity for GL(m+1) and a weight multi-
plicity for a Cartan power of the the m + 1-st exterior power of GL(n).
The bending system provides a (singular) real polarization of the space
M., the symplectic quotient (at level AI) of [], O,,. Thus the number
of lattice points in the momentum polyhedron P for bending should be
equal to the multiplicity of the the 1-dimensional representation (det)”
in @'S™ (V). But on the other hand, the Gel’fand-Tsetlin system is a
real polarization of the torus quotient of the Grassmannian (at level r)
where the Grassmannian is given the symplectic structure which cor-
responds to the orbit of U(n) through the diagonal matrix with m + 1
A’s and n — m — 1 zeroes. Thus the above number of lattice points
should also be the multiplicity of the r-th weight space in C4 /\erl Vv,
the A-th Cartan power of the m + 1-st exterior power of the vector rep-
resentation V' of GL(n). (We recall that if W* is a representation with
highest weight v, then the p-th Cartan power C?W® is the irreducible
representation with highest weight pa)). This equality of multiplicities
predicted is in fact true, and will be proved below.

Remark 8. It is unfortunate that the theory of geometric quantization
using a real polarization is not sufficiently well developed to allow one to
deduce theorems in representation theory from equalities of numbers of
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lattice points in momentum polyhedra. At this time we can only regard
such equalities as predictions of theorems in representation theory.

We first note how the interlacing of the spectra of the perturbed ma-
trix and the unperturbed matrix (see §8)from the Weinstein-Aronszajn
formula predicts Pieri’s formula in representation theory.

12.1. The Weinstein-Aronszajn and Pieri formulas. We recall
Pieri’s formula for tensoring an irreducible polynomial representation

of U(m+1) with a symmetric power of the vector representation, [FH,
§A.1].

Theorem 12.1 (Pieri’s Formula). Let A = (\y,..., Ajui1) be the high-
est weight of the polynomial representation V. (Ay, ..., Apy1) of Ufm+1).
Let k be a positive integer. Then

VL Amp) @ SHV) =@V (v, Vi)
where the sum is taken over all dominant v = (vy,...,v,) satisfying
MN>2M2V2 .. 2 Vg1 2 A >0

and
m+1 m+1
E V; = E v + k.
i=1 i=1

This is of course Proposition 7.2 restricted to integer eigenvalues. If
A € O,, then the spectrum of the rank one perturbation A + k£ w ® w*
satisfies the interlacing and row sum conditions of the Pieri formula.

12.2. Duality at the quantum level. In this subsection we prove the
theorem from representation theory that is predicted by the equality (of
the numbers of lattice points) of the momentum polyhedra for bending
and Gel’fand-Tsetlin. The required facts from representation theory
can be found in [FH] and [Ze].

Theorem 12.2. The multiplicity of the 1-dimensional representation
(det) in @V (r;) is equal to the multiplicity of the weight T in the irre-
ducible representation C /\erl V of U(n). This common multiplicity
15 in fact equal to the number of lattice points in P.

The theorem will be a consequence of the next three lemmas. We
will need

Definition 12.1. Let A be an [-tuple of positive integers and u be a
partition. Then the Kostka number K, is the number of ways to fill
in the Young diagram corresponding to g with Ay 1’s, Ay 2’s, ..., A\; I’s
so that the rows are weakly increasing and the columns are strongly
increasing.
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By applying Pieri’s formula iteratively one gets [FH, (A.9)]:
Lemma 12.1.
STV)S*(V)®---8™(V) =0, K,V (1.
We obtain

Corollary 12.1. The multiplicity of the 1-dimensional representation
(det)* in @7V (r;) is equal to the Kostka number K yqm+1).

Here the symbol A(1™%1) means the partition (A, A, ..., A) (there
are m+ 1 A’s). The corresponding Young diagram has m + 1 rows and
A columuns.

In order to compare K jqm+1), with the multiplicity of the weight r
in the irreducible representation C* A"V of U(n) we recall there is
a basis for an irreducible representation of GL(n) labelled by semistan-
dard Young tableaux. Suppose the highest weight of the representation
is u. We also use p to denote the Young diagram associated to p. A
semaustandard filling of 11 is an assignment of the integers between 1 and
n to the boxes of u such that the rows are weakly increasing and the
columns are strongly increasing. The associated basis is a weight basis,
and the weight of of the basis vector corresponding to a semistandard
tableau is (ki,...,k,), where k; is the number of i’s in the tableau.
Thus we have proved

Lemma 12.2. K, qm+1) is also the multiplicity of the weight r in
CAN™HLY of GL(n).

It still remains to prove that the number of lattice points in P is the
common multiplicity.

To see this we recall that there is an orthonormal basis (the Gel'fand-
Tsetlin basis) for the irreducible representation C* A™*1 V indexed by
Gel’fand-Tsetlin patterns whose top row consists of m + 1 A’s and
n—m — 1 zeroes. Moreover, this basis is a weight basis, and the weight
of a basis vector corresponding to a Gel’fand-Tsetlin pattern is given
by the differences in the row sums starting with the bottom entry in
the pattern. Thus we have

Lemma 12.3. The number of lattice points in P is equal to the dimen-
sion of the r-th weight space in C /\m+1 V.

It follows that the count of lattice points in P gives the correct answer
for both multiplicities. We conclude with a remark.
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Remark 9. One might ask whether there is a direct combinatorial argu-
ment to establish the last lemma above, i.e. that the number of semis-
tandard Young tableaux of weight r is equal to the number of Gel’fand-
Tsetlin patterns of weight r. In fact, there is a one to one weight
preserving correspondence between semistandard Young tableaux and
Gel’'fand-Tsetlin patterns, see [GZ86].

REFERENCES

[Bel]  P.Belkale, Local systems on P*—S for S a finite set, PhD. thesis, University
of Chicago, 1999.

[BeSch] S. Berceanu and M. Schlichenmaier, Coherent states, embeddings, polar
divisors and Cauchy formulas, math.DG/9903105.

[DM86] P. Deligne and G.D. Mostow, Monodromy of hypergeometric functions and
nonlattice integral monodromy, Publ. Math. THES 63 (1986), 5-90

[FH]  W. Fulton and J. Harris, Representation Theory, A First Course, Graduate
Texts in Mathematics, no. 129, Springer-Verlag.

[E] P. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lecture
Notes in Mathematics, University of Chicago Press, 1966.

[GGMS] I. M. Gel'fand, R. M. Goresky, R. D. MacPherson and V. V. Serganova,
Combinatorial geometries, convex polyhedra and Schubert cells, Advances
in Math. 63 (1987), 301-316.

[Go] W. M. Goldman, Complex Hyperbolic Geometry, Oxford Mathematical
Monographs, Clarendon Press, Oxford.

[GZ86] I. Gel'fand and A. Zelevinsky, Multiplicities and proper bases for gl,,, Group
Theoretical Methods in Physic, Proceedings of the Third Yurmala Seminar,
M. A. Markov, V. I. Mank’o, V. V. Dodonov (editors) VNU Science Press,
Utrecht, The Netherlands (1986), 147-159.

[GS83] V. Guillemin and S. Sternberg, The Gel’fand-Cetlin system and quantiza-
tion of the complex flag manifolds, J. Functional Anal. 52 (1983), 106-128.

[HM] Th. Hangan and G. Masala, A geometric interpretation of the shape in-
variant for geodesic triangles in complex projective spaces, Geom. Dedicata
49 (1994), 129-134.

[HK97] J.- C. Hausmann and A. Knutson, Polygons spaces and Grassmannians,
Enseign. Math. 43 (1997), 173-198.

[HL94] P. Heinzner and F. Loose, Reduction of complex Hamiltonian G-spaces,
GAFA vol. 4 no. 3 (1994), 288-297.

[KM96] M. Kapovich and J. Millson, The symplectic geometry of polygons in Eu-
clidean space J. Differential Geom. 44 (1996), 479-513.

[KMO1] M. Kapovich and J. Millson, Quantization of bending deformations of
polygons in E3, hypergeometric integrals and the Gassner representation,
Canad. Math. Bull. 44, (2001), 36-60.

[Kato] T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der
mathematischen Wissenschaften 132, Springer.

[KKS78] D. Kazhdan, B. Kostant and S. Sternberg, Hamiltonian group actions
and dynamical systems of Calogero type, Commun. Pure Appl. Math. 31
(1978), 481-508.



40

[KNT9]

[Ki]

[K1y92]

[K1y98]

[LM]

[Ne84]

[Sj95]

HERMANN FLASCHKA AND JOHN MILLSON

G. Kempf and L. Ness, The length of vectors in representation spaces,
in: Algebraic Geometry, Proceedings, Copenhagen 1978, Springer Lecture
Notes in Mathematics 732 (1979), 233-243.

F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Ge-
ometry, Mathematical Notes 31 (1984), Princeton University Press.

A. Klyachko, Spatial polygons and stable configurations of points on the
projective line, in: A. Tikhomirov and A. Tyurin (Eds.), Algebraic Ge-
ometry and its Applications, Proceedings of the 8th Algebraic Geometry
Conference, Yaroslavl’ 1992, Vieweg, 67-84.

A. Klyachko, Stable bundles, representation theory and Hermitean opera-
tors, Selecta Mathematica 4 (1998), 419-445

B. Leeb and J. Millson, Convex functions on symmetric spaces and geomet-
ric invariant theory for spaces of weighted configurations on flag manifolds,
preprint.

L. Ness, A stratification of the null cone via the moment map, Amer. J.
Math. 106, (1984), 1281-1329

R. Sjamaar Holomorphic slices, symplectic reduction and multiplicities of
representations, Annals of Math. 141, (1995), 87-129.

D. P. Zelobenko, Compact Lie Groups and Their Representations, AMS,
1973.

G. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics 152,
Springer



