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Abstract

This course was given at ENSET Oran, November 4-9, 2006. It is

an introduction to isometric actions of Lie groups on Lorentz manifolds.

Several examples are presented, followed by general definitions and basic

facts about Lorentz manifolds, simple Lie groups, and proper versus non-

proper actions. The main goal is a dynamical argument for nonproper

isometric actions of simple Lie groups, orignally due to Kowalsky [Kow],

which has been used in many proofs in the subject. The second topic

is totally geodesic lightlike hypersurfaces associated to actions with non-

compact stabilizers. We prove some results towards the theorem of [Kow],

along the lines of [ADZ] and [DMZ], that any simple Lie group with finite

center, acting nonproperly by isometries of a Lorentz manifold, is locally

isomorphic to O(1, n) for some n ≥ 2 or O(2, n), for n ≥ 3.

We will assume the reader has familiarity with multivariable calculus and linear

algebra. Manifolds, Lorentz metrics, Lie groups, and connections will all be

introduced, although in some cases only briefly, and further references will be

given.

Acknowledgements: I thank the referee for his many helpful comments on this

text.

1 First examples of Lorentz manifolds and iso-

metric actions

Consider the symmetric bilinear form on Rn

〈x, y〉 = −x1y1 + x2y2 + · · · + xnyn

given by the matrix

B1,n−1 =




−1

1
. . .

1



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This bilinear form will be referred to as the standard inner product of type

(1, n− 1). Any inner product given by a matrix

B = gtB1,n−1g g ∈ GL(n,R)

is of type (1, n− 1).

The linear automorphisms of Rn preserving B1,n−1 form the group

O(1, n− 1) = {g ∈ GL(n,R) : gtB1,n−1g = B1,n−1}

Definition 1.1 A subspace P ⊂ Rn of dimension k, where Rn is equipped with

an inner product 〈 , 〉 of type (1, n − 1), is called spacelike, Lorentzian, or

degenerate, according as the restriction of 〈 , 〉 to P is positive-definite, type

(1, k − 1), or positive-semidefinite, respectively. Degenerate subspaces are also

known as lightlike subspaces.

Note that, in case P is a degenerate subspace, the dimension of the kernel—the

subspace of all v ∈ P such that 〈v, u〉 = 0 for all u ∈ P—is 1.

Exercise 1.2

• Prove that, for any c ∈ R, the group O(1, n − 1) acts transitively on the

set of vectors v ∈ Rn with 〈v, v〉 = c.

• A plane P ⊂ Rn is degenerate, spacelike, or Lorentzian if P has a basis

u, v with |u ∧ v| zero, positive, or negative, respectively, where

|u ∧ v| = 〈u, u〉〈v, v〉 − 〈u, v〉2

Show that O(1, n − 1) acts transitively on degenerate planes, spacelike

planes, and Lorentzian planes.

1.1 Constant-curvature models

The Lorentz models of constant zero, positive, and negative sectional curva-

ture are Minkowski space, de Sitter space, and anti de-Sitter space, respectively.

These are analogous to the sphere, flat Euclidean space, and hyperbolic space

in Riemannian geometry. The standard basis of Rn will be denoted e1, . . . , en

below.

Minkowski space Minn of dimension n is Rn with the translation-invariant

Lorentz metric given by the standard inner product of type (1, n− 1).
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Definition 1.3 A diffeomorphism of Rn is a smooth map f : Rn → Rn with

a smooth inverse f−1. An isometry of Minn is a diffeomorphism f of Rn

satisfying

〈f∗xu, f∗xv〉 = 〈u, v〉

for all x, u, v ∈ Rn.

Proposition 1.4 The isometries of Minn fixing the origin form the group O(1, n−

1). The full isometry group is the semi-direct product

Isom(Minn) = Rn
⋊O(1, n− 1)

and Minn is a homogeneous space Rn
⋊O(1, n− 1)/O(1, n− 1).

Proof: It is clear that Rn
⋊ O(1, n − 1) ⊆ Isom(Minn). Now suppose that

f ∈ Isom(Minn). By post-composing with a translation, we may assume that f

fixes the origin. Then f∗0 is a linear isometry of T0(Minn), which is isometric

to Rn with the inner product B1,n−1. Therefore, f∗0 coincides with an element

of O(1, n− 1).

The key fact is that f must carry straight lines to straight lines, because these are

the geodesics in Minn. (Geodesics will be defined for general Lorentz manifolds

in section 9 below.) Then f must be linear, so f = f∗0 ∈ O(1, n− 1). ♦

De Sitter space dSn of dimension n is the subset of Rn+1

{x ∈ Rn+1 : xtB1,nx = 1}

with the induced Lorentz metric: the tangent space TxdSn = x⊥, and the

restriction of B1,n to x⊥ is of type (1, n− 1). Indeed, let γ(t) be a curve with

γ(t)tB1,nγ(t) = 〈γ(t), γ(t)〉 = 1

for all t and γ(0) = x. Then

d

dt

∣∣∣∣
0

〈γ(t), γ(t)〉 = 0

= 〈γ′(0), γ(0)〉 + 〈γ(0), γ′(0)〉

= 2〈γ′(0), x〉

Since any v ∈ TxdSn equals γ′(0) for such a curve γ, we conclude that TxdSn =

x⊥.
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Definition 1.5 A map f : dSn → dSn is an isometry if f extends to a smooth

map f̃ with a smooth inverse in a neighborhood of dSn in Rn+1, and

〈f∗xuf∗xv〉 = 〈u, v〉

for all x ∈ dSn and u, v ∈ TxdS
n.

The group O(1, n) acts isometrically and transitively on dSn.

Proposition 1.6 The group of isometries of dSn fixing en+1 is isomorphic to

O(1, n− 1). The full isometry group is

Isom(dSn) ∼= O(1, n)

and dSn is a homogeneous space O(1, n)/O(1, n− 1).

Proof: Let f be an isometry of dSn. By post-composing with an element

of O(1, n), we may assume that f belongs to the stabilizer of p = en+1. The

derivative f∗p is a linear isometry of TpdSn = p⊥ and coincides with an element

of the stabilizer O(1, n)(p) ∼= O(1, n− 1) of p in O(1, n). Then post-composing

with another element of O(1, n), we may assume f∗p is trivial.

Now the key fact is that f must carry each intersection P ∩ dSn, where P is a

linear plane in Rn+1, to P ′∩dSn, for some linear plane P ′ in Rn+1, because these

intersections are the geodesics of dSn. Suppose that γ(t) is such a geodesic with

γ(0) = p and γ′(0) = v ∈ TpdSn. Then the plane P containing γ is spanned by

en+1 and v. Because f∗p is trivial, f preserves the intersection P ∩dSn for every

plane P containing en+1, and it actually preserves each geodesic γ(t) ⊂ P ∩dSn

with its parametrization, provided 〈γ′(0), γ′(0)〉 6= 0. Then f must be trivial in

a neighborhood of en+1.

The argument above shows in fact that the set of x ∈ dSn with f(x) = x and

f∗x = Id is open. But this set is also closed, and dSn is connected, so f is

trivial. ♦

Anti de Sitter space AdSn of dimension n is the subset of Rn+1

{x ∈ Rn+1 : xtB2,n−1x = −1}

where B2,n−1 is a bilinear form of type (2, n− 1):

〈u, v〉 = −u1v1 − u2v2 + u3v3 + · · · + un+1vn+1

4



The tangent space TxAdSn = x⊥ as above, and the restriction of B2,n−1 to it

is of type (1, n− 1).

Isometries of AdSn are defined analogously to those of dSn. The group O(2, n−

1) consists of all linear automorphisms of Rn+1 preserving B2,n−1. It acts

isometrically and transitively on AdSn.

Proposition 1.7 The group of isometries of AdSn fixing e1 is isomorphic to

O(1, n− 1). The full isometry group is

Isom(AdSn) ∼= O(2, n)

and AdSn is a homogeneous space O(2, n− 1)/O(1, n− 1).

The proof of this proposition is similar to the proof for dSn, because again the

geodesics of AdSn ⊂ Rn+1 are intersections with linear planes in Rn+1.

Each of the above examples has constant sectional curvature. The sectional cur-

vature at each point is a rational function on the nondegenerate tangent planes

at that point, and it is invariant by isometries. The fact that the spaces above

are all homogeneous with isotropy O(1, n−1) implies that all Lorentzian tangent

planes have the same sectional curvature. Now because the sectional curvature

is rational and constant on a nonempty open set, it is constant everywhere. The

definition of sectional curvature will be given in section 9 below.

2 Algebraic Lie groups, Lie algebras, and the

adjoint representation

2.1 Definition of linear Lie group and Lie algebra

Definition 2.1 An algebraic Lie group G is a subgroup of GL(n,R) ⊂ Rn2

comprising the common zeroes of a finite set of polynomials on Rn2

.

Example. The group SL(n,R) is defined by the polynomial

det g − 1 =
∑

σ∈Sn

(−1)sgn(σ)g1,σ(1) . . . gn,σ(n) − 1 = 0

where Sn is the group of all permutations of {1, . . . , n}, and sgn(σ) ∈ {1,−1}

is the sign of the permutation σ.
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Example. The group O(1, n) is defined by

gtB1,ng = B1,n

which is equivalent to the vanishing of the following polynomials

−g2
11 + g2

21 + · · · + g2
n+1,1 + 1 = 0

−g2
1i + g2

2i + · · · + g2
n+1,i − 1 = 0 i = 2, . . . , n+ 1

−g1ig1j + g2ig2j + · · · + gn+1,ign+1,j = 0 i 6= j, i, j = 1, . . . , n

Exercise 2.2 Find the polynomial equations defining the group O(p, q), where

O(p, q) = {g ∈ GL(p+ q,R) : gtBp,qg = Bp,q}

Note that matrix multiplication µ : (g, h) 7→ gh is given by polynomials in the

entries of g and h:

(gh)ij =
∑

k

gikhkj

When G is a subgroup of SL(n,R), then inversion ι : g 7→ g−1 is also given by

polynomials in the entries of g, by Cramer’s formula:

(g−1)ij = (−1)i+jdet g(ĵ, î)

where g(ĵ, î) is the (n− 1) × (n− 1) matrix obtained by removing the jth row

and ith column from g.

Now let G be a linear Lie group. The tangent space to the identity T1G is a

subspace of the endomorphisms End(Rn). There is a bracket

[X,Y ] = XY − Y X

making End(Rn) into what is called a Lie algebra.

Proposition 2.3 The derivative of inversion ι is −Id on T1G.

Proof: Let α(t) be a curve in G with α(0) = 1 and α′(0) = X . For all t,

α(t)ι(α(t)) = α(t)α(t)−1 = 1

Differentiation yields

α′(0) + ι∗1(α
′(0)) = 0

which implies ι∗1(X) = −X . ♦
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Proposition 2.4 If G < GL(n,R) is a linear Lie group, then T1G is a sub-Lie

algebra of End(Rn)—in particular, it is closed under bracket.

Proof: Let β(t) in G be such that β(0) = 1, and β′(0) = Y . The conjugate

β(t)−1Xβ(t) ∈ T1G for all t, so

β(t)−1Xβ(t)

is a curve in T1G. The derivative

d

dt

∣∣∣∣
0

β(t)−1Xβ(t) = −Y X +XY

and belongs to T1G. ♦

Now we can define an algebraic Lie algebra.

Definition 2.5 An algebraic Lie algebra g is a subalgebra of End(Rn) with

underlying vector space equal to T1G, for G an algebraic Lie group.

The bracket in an algebraic Lie algebra satisfies the Jacobi identity

[X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X ]] = 0

Example. For G = SL(2,R), the tangent space T1G can be computed by

differentiating an arbitrary curve

γ(t) =

[
a(t) b(t)

c(t) d(t)

]
∈ SL(2,R) γ(0) =

[
1 0

0 1

]

Differentiating

det(γ(t)) = a(t)d(t) − b(t)c(t) = 1

gives, when t = 0,

a′(0) + d′(0) = 0

or tr(γ′(0)) = 0. Thus T1SL(2,R) consists of all traceless 2 × 2 real matrices.

Exercise 2.6 Show that the Lie algebra sl(n,R) of SL(n,R) is the algebra of

all n× n traceless matrices.
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Example. A curve in the algebraic Lie group O(p, q) satisfies for all t

γ(t)tBp,qγ(t) = Bp,q

Assuming that γ(0) = 1, the derivative is

γ′(0)tBp,q +Bp,qγ
′(0)

So T1O(p, q) consists of all (p+ q) × (p+ q) matrices X with

XBp,q +Bp,qX = 0

If p = 0, then Bp,q = Iq, and the equation

Xt +X = 0

defines the algebra o(q), consisting of all skew-symmetric matrices.

2.2 Left-invariant vector fields and one-parameter sub-

groups

Definition 2.7 A one-parameter subgroup in an algebraic Lie group G is a

homomorphism γ : R → G—that is

γ(t+ s) = γ(t)γ(s)

for all s, t ∈ R.

We will show that one-parameter subgroups are solutions of ODEs, and so

always exist and are unique with given initial values. Then we will give an

explicit solution in an algebraic Lie group.

For any X ∈ T1G and g ∈ G, the translate gX ∈ TgG. Then associated to any

X ∈ T1G is a left-invariant vector field satisfying

g(X(h)) = X(gh) ∀ g, h ∈ G

Denote by γX(t) the integral curve for X passing through 1: there is some ǫ > 0,

such that, for each t ∈ (−ǫ, ǫ),

γ′X(t) = X(γX(t)) = γX(t)X
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Now fix t0 ∈ (−ǫ, ǫ). For any t such that t, t0+t ∈ (−ǫ, ǫ), the curve γX(t0)γX(t)

satisfies

(γX(t0)γX(t))′(t) = γX(t0)γ
′
X(t)

= γX(t0)γX(t)X

Thus both γX(t0 + t) and γX(t0)γX(t) satisfy the ODE

γ′(t) = γ(t)X

Both curves have initial value 1, so, by uniqueness of solutions of ODEs, they

must be equal:

γX(t0 + t) = γX(t0)γX(t)

whenever all three are defined. But now γX(t) can be defined for all t ∈ R,

yielding a one-parameter subgroup in G.

Let X ∈ End(Rn), and consider the power series

eX = I +X +
1

2
X2 +

1

3!
X3 + · · ·

If each entry of X is bounded in absolute value by c > 0, then the entries of eX

are bounded by
1

n
(enc − 1) + 1

For s, t ∈ R,

e(t+s)X = etXesX

so etX is a one-parameter subgroup of GL(n,R). Note that e0 = I, so eX is

invertible with inverse e−X . If X ∈ T1G, then

d

dt
etX

∣∣∣∣
s

= X + sX2 +
s2

2
X3 + · · ·

= esXX

so etX is a one-parameter subgroup in G. The map X 7→ etX is called the expo-

nential map. The derivative of the exponential map T1G→ T1G is the identity.

By the inverse function theorem, the exponential map is a diffeomorphism from

a neighborhood of 0 in T1G to a neighborhood of 1 in G. Such a neighborhood

of 1 in G will be called a normal neighborhood of the identity.
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2.3 Adjoint representation

Definition 2.8 The adjoint representation of G on g is

Ad(g)(X) = gXg−1

If G is an algebraic Lie group, then the kernel of Ad is exactly the center Z(G)

of G. For each g ∈ G, the adjoint Ad(g) is a Lie algebra automorphism:

[Ad(g)X,Ad(g)(Y )] = Ad(g)([X,Y ])

for all X,Y ∈ g.

Let etX be a one-parameter subgroup of G and g ∈ G. Then

getXg−1 = eAd(g)(tX)

because both are one-parameter subgroups with initial tangent vector Ad(g)(X).

Definition 2.9 A connected algebraic Lie group G is simple if dim(G) > 1 and

the adjoint representation is irreducible—that is, the only invariant subspaces

are 0 and g. An algebraic Lie group is simple if the connected component of the

identity is simple. An algebraic Lie algebra g is simple if G is simple.

Proposition 2.10 If G is simple, then Z(G) is discrete—that is, every z ∈

Z(G) has a neighborhood U in G with U ∩ Z(G) = {z}.

Proof: Let U be a normal neighborhood of e in G and suppose that z = eX ∈

Z(G) ∩ U . For any g ∈ G sufficiently close to 1,

gzg−1 = eAd(g)X = eX

which implies that Ad(g)(X) = X for all g ∈ G0, the identity component of

G. But then RX would be a nontrivial invariant subspace of g, contradicting

simplicity. Therefore, U ∩ Z(G) = {1}. Now for any z ∈ Z(G), the translate

zU is a neighborhood of z with zU ∩ Z(G) = {z}. ♦

3 Lorentz manifolds and isometries

There are many books providing a good introduction to differentiable manifolds

and pseudo-Riemannian metrics. Among them are [Sp], [dC], and [ON].

A smooth n-dimensional manifold is a topological space that is locally diffeo-

morphic to Rn.
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Definition 3.1 An n-dimensional manifold M is a paracompact Hausdorff topo-

logical space with a collection of charts (ϕ,U), where U is an open subset of M ,

the union of all U covers M , and ϕ is a homeomorphism from U to an open sub-

set of Rn. The charts must satisfy a smooth compatibility condition: if (ϕ,U)

and (ψ, V ) are two charts, then the transition map

ψ ◦ ϕ−1 : ϕ(U) → ψ(V )

is a smooth map on its domain of definition in Rn.

Definition 3.2 Let M be a smooth n-dimensional manifold, and x ∈ M . The

tangent space at x, denoted TxM , is the collection of all (ϕ(x), v) where (ϕ,U)

is a chart with x ∈ U , and v ∈ Rn, subject to the equivalence relation

(ϕ(x), v) ∼= (ψ(x), w) ⇔ (ψ ◦ ϕ−1)∗ϕ(x)(v) = w

The tangent space TxM is a vector space. The sum

(ϕ(x), v) + (ϕ(x), v′) = (ϕ(x), v + v′)

The sum is well-defined, because if (ψ(x), w) ∼= (ϕ(x), v) and (ψ(x), w′) ∼=

(ϕ(x), v′), then

(ψ ◦ ϕ−1)∗ϕ(x)(v + v′) = (ψ ◦ ϕ−1)∗ϕ(x)(v) + (ψ ◦ ϕ−1)∗ϕ(x)(v
′)

= w + w′

Similarly, scalar multiplication

a(ϕ(x), v) = (ϕ(x), av)

is well-defined.

Example. The subset of Rn+1 underlying dSn, the set of x ∈ Rn+1 with

xtB1,nx = 1

is a manifold. A global chart is given by

ϕ(x1, . . . , xn+1) =
1

ex1

√
1 + x2

1

(x2, . . . , xn+1)

The image of this chart is Rn\{0}.

11



Example. An algebraic Lie group G ⊂ GL(n,R) is a manifold. Let U be

a normal neighborhood of the identity, and denote by exp−1 the inverse of the

exponential map. Then for any g ∈ G, the pair (exp−1 ◦g−1, gU) is a chart with

image an open neighborhood of 0 in T1G, which can be identified with RdimG.

If gU ∩ hU 6= ∅, the transition map is

exp−1 ◦h−1 ◦ g ◦ exp

which is a composition of smooth maps, so is smooth.

Exercise 3.3 Show that the subset of Rn+1 underlying AdSn is a smooth man-

ifold.

If M and N are two smooth manifolds, then a map f : M → N is smooth, if,

for every x ∈ M , and every pair of charts (ϕ,U) on M and (ψ, V ) on N with

x ∈ U and f(x) ∈ V , the composition

ψ ◦ f ◦ ϕ−1

is smooth.

Suppose that (ϕ(x), v) and (ψ(x), w) define the same tangent vector in TxM .

Suppose that f is a smooth map from M to N , and (θ, V ) is a chart in N at

f(x). Then

(θ ◦ f ◦ ϕ−1)∗ϕ(x)(v) = (θ ◦ f ◦ ϕ−1)∗ϕ(x) ◦ (ϕ ◦ ψ−1)∗ψ(x)(w)

= (θ ◦ f ◦ ψ−1)∗ψ(x)(w)

so the tangent vector (θ(f(x)), (θ◦f ◦ϕ−1)∗ϕ(x)(v)) is independent of the choice

of (ϕ(x), v). Similarly, it is independent of the choice of θ.

Definition 3.4 For f : M → N a smooth map of manifolds, the derivative of

f at x ∈M is

f∗x : TxM → Tf(x)N

f∗x : (ϕ(x), v) 7→ (θ(f(x)), (θ ◦ f ◦ ϕ−1)∗ϕ(x)(v))

where (θ, V ) is any chart of N with f(x) ∈ V .

Definition 3.5 A Lorentz metric on a smooth manifold M is a smoothly vary-

ing inner product 〈 , 〉x of type (1, n− 1) on each tangent space TxM .
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Definition 3.6 A smooth map f : M → N is an isometry if f has a smooth

inverse, and, for every x ∈M , and u, v ∈ TxM ,

〈u, v〉x = 〈f∗xu, f∗xv〉f(x)

Example. Suppose that ρ : M̃ →M is a covering map. Suppose further that

M̃ is a Lorentz manifold, and that all deck transformations are isometries. Then

M admits the structure of a Lorentz manifold such that ρ is a local isometry—

every x ∈ M has a neighborhood U such that ρ maps ρ−1(U) isometrically to

U . Given x ∈M and u, v ∈ TxM , define

〈u, v〉x = 〈ρ−1
∗x u, ρ

−1
∗x v〉ρ−1(x)

Every Lorentz manifold has special curves called geodesics, that are the ana-

logues of straight lines in Minn and planar sections in dSn and AdSn. Any

isometry of a Lorentz manifold must carry geodesics to geodesics.

4 Lie groups and Lie algebras

Definition 4.1 A Lie group is a group G that is also a manifold such that

multiplication and inversion are smooth.

Denote by Lg left multiplication by g:

Lg : G→ G

Lg : h 7→ gh

and by Rg right multiplication by g.

Given X ∈ T1G, there is a left-invariant vector field X with X(g) = (Lg)∗1(X).

Then X satisfies

X(gh) = (Lg)∗h(X(h))

For a left-invariant vector field X , integral curves γX through 1 satisfy the ODE

γ′X(t) = X(γX(t)) = γX(t)∗1(X)

and they are one-parameter subgroups, as in the case of algebraic Lie groups.

The map X 7→ γX(1) is defined on a neighborhood of 0 in T1G and is called the

exponential map; the element γX(1) is often denoted eX .

The adjoint representation of G on T1G is

Ad(g)(X) = (Rg−1 )∗g(Lg)∗1(X)
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Exercise 4.2 Verify that Ad is a homomorphism G→ GL(g):

Ad(gh) = Ad(g) ◦ Ad(h)

(hint: use that right and left multiplication commute:

Rh−1 ◦ Lg = Lg ◦Rh−1

for all g, h ∈ G.)

The adjoint corresponds under the exponential map to conjugation

getXg−1 = eAd(g)(tX)

because both curves are one-parameter subgroups with the same initial tangent

vector.

Given X,Y ∈ T1G, the bracket can be defined as the bracket [X,Y ] of the

corresponding left-invariant vector fields on G. Recall that the bracket

[X,Y ] =
d

dt

∣∣∣∣
0

Y (γX(t)) −
d

dt

∣∣∣∣
0

X(γY (t))

where γX(t) and γY (t) are integral curves for X,Y , respectively. The bracket

satisfies, for any diffeomorphism f ,

f∗([X,Y ]) = [f∗X, f∗Y ]

where (f∗X)(x) = f∗f−1(x)(X(f−1(x))). If X,Y are left-invariant vector fields

and g ∈ G, then

(Lg)∗([X,Y ]) = [(Lg)∗X, (Lg)∗Y ] = [X,Y ]

so the bracket is again left-invariant. The bracket is bilinear and skew-symmetric.

We leave it to the interested reader to verify that, for G a Lie group, the bracket

on T1G satisfies the Jacobi identity.

Definition 4.3 A Lie algebra g is a (finite-dimensional) vector space with a

skew-symmetric bracket satisfying the Jacobi identity:

[X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X ]] = 0

14



The bracket in a Lie algebra could also be defined as follows, for X,Y ∈ T1G:

[X,Y ] =
d

dt

∣∣∣∣
0

Ad(etX)(Y )

Note that when G is an algebraic Lie group, then [X,Y ] = XY −Y X . To prove

that the definition above in terms of the adjoint is the same as the bracket of

the corresponding left-invariant vector fields, let X,Y ∈ T1G and etX , etY be

the corresponding one-parameter subgroups. Then

d

dt

∣∣∣∣
0

Ad(etX)(Y ) =
d

dt

∣∣∣∣
0

(Re−tX )∗(LetX )∗Y

=
d

dt

∣∣∣∣
0

(Re−tX )∗(Y (etX))

where Y is the left-invariant vector field with Y (1) = Y . Now we have

d

dt

∣∣∣∣
0

(Re−tX )∗(Y (etX)) =
d

dt

∣∣∣∣
0

Y (etX) +

(
d

dt

∣∣∣∣
0

(Re−tX )∗

)
(Y )

= XY +
d

dt

∣∣∣∣
0

d

ds

∣∣∣∣
0

esY e−tX

= XY +
d

ds

∣∣∣∣
0

(LesY )∗(−X)

= XY −
d

ds

∣∣∣∣
0

X(esY )

= XY − Y X

Finally, the adjoint Ad(g) respects brackets because

[(Rg−1)∗(Lg)∗X, (Rg−1)∗(Lg)∗Y ] = (Rg−1)∗(Lg)∗[X,Y ]

so the adjoint representation is by Lie algebra automorphisms.

5 Compact homogeneous examples

Next we will construct two examples of compact homogeneous Lorentz man-

ifolds. Both will be quotients of an algebraic Lie group with a bi-invariant

Lorentz metric. In this case, the geodesics through the identity are the one-

parameter subgroups.
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5.1 Isometry group SL(2,R)

Consider the bilinear form 〈X,Y 〉1 = trXY on sl(2,R). Because the trace is

symmetric, this form is symmetric and Ad(SL(2,R))-invariant. It is of type

(1, 2). Identifying sl(2,R) with T1SL(2,R), we obtain a Lorentz metric µ on

SL(2,R) defined by

〈u, v〉g = 〈g−1u, g−1v〉1

This metric is obviously left-SL(2R)-invariant. The adjoint-invariance of 〈 , 〉1

implies that it is also right-SL(2,R)-invariant. The identity component

Isom0(SL(2,R), µ) ∼= SL(2,R)×Z SL(2,R)

the quotient of SL(2,R) × SL(2,R) by the group generated by (−I2,−I2).

To prove this claim, let f ∈ Isom0(SL(2,R), µ). By post-composing with an

element of SL(2,R)× {1}, we may assume that f(1) = 1. Now

Ad(SL(2,R)) ∼= SL(2,R)/Z(SL(2,R)) ∼= PSL(2,R)

But PSL(2,R) ∼= O0(1, 2)—both are the identity component of the isometry

group of the hyperbolic plane, in the upper half-plane and hyperboloid models,

respectively. So by post-composing with an element of Ad(SL(2,R)), the sta-

bilizer in SL(2,R) ×Z SL(2,R) of 1, we may assume that f∗1 is trivial. Then

f fixes all one-parameter subgroups through 1, which implies that f is trivial

on a neighborhood of 1. This argument shows in fact that the set on which

f(x) = x and f∗x = Id is open in SL(2,R); since it is also closed and SL(2,R)

is connected, we conclude that f is trivial.

Exercise 5.1 Show that SL(2,R) with this Lorentz metric is isometric to AdS3.

Conclude that O0(2, 2) ∼= SL(2,R) ×Z SL(2,R).

Now let Γ be a cocompact lattice in SL(2,R)—a discrete subgroup such that

the quotient

M = SL(2,R)/Γ

is compact. The quotient M is a compact homogeneous Lorentz manifold.

Assuming I2 ∈ Γ, the connected isometry group Isom0(M) ∼= PSL(2,R). From

covering space theory, any f ∈ Isom0(M) can be lifted to f̃ on SL(2,R) such

that f̃γ = γf̃ for all γ ∈ Γ. But the centralizer of Γ ⊂ {1} × SL(2,R) is just

SL(2,R)× {±I2}, by the Borel density theorem (see [Zi1] 3.2.5).
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5.2 Isometry group a warped Heisenberg group

The second example of a homogeneous compact Lorentz manifold will come from

a bi-invariant metric on a solvable Lie group. Consider the Heisenberg group H

of 3 × 3 upper-triangular matrices. The tangent space T1H is the vector space

of 3 × 3 nilpotent upper-triangular matrices. A basis for this vector space is

X =




0 1

0

0


 , Y =




0

0 1

0


 , Z =




0 1

0

0




The bracket in the Lie algebra h spanned by X,Y, Z is

[X,Y ] = XY − Y X = Z

[X,Z] = [Y, Z] = 0

Thus the center z(h) is spanned by Z.

Now let S be the semi-direct product

S = S1
⋉H

eiθ




1 x z

1 y

1


 e−iθ =




1 x cos θ − y sin θ z − 1
2xy cos 2θ + 1

4 (x2 − y2) sin 2θ

1 y cos θ + x sin θ

1




The Lie algebra s is generated by h and another element W with

[W,X ] = Y [W,Y ] = −X [W,Z] = 0

The adjoint representation of S on s is given by

Ad(eiθ)(W + aX + bY + Z) = W + (a cos θ − b sin θ)X + (b cos θ + a sin θ)Y + Z

Ad







1 x

1

1





 (W ) = W − xY −

1

2
x2Z

Ad







1

1 y

1





 (W ) = W + yX −

1

2
y2Z

Ad







1 z

1

1





 (W ) = W
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Now the following inner product on s is Ad(S)-invariant

〈X,X〉 = 〈Y, Y 〉 = 〈W,Z〉 = 1

〈W,W 〉 = 〈Z,Z〉 = 〈X,Y 〉 = 0

span{Z,W} ⊥ span{X,Y }

This inner product is of type (1, 3), and determines a bi-invariant Lorentz metric

on S.

Now let Γ be a cocompact lattice in H—for example, the group of all matrices in

H with integral entries. The quotient M = S/Γ is a compact Lorentz manifold

on which S acts isometrically. The subgroup Z(H) ∩ Γ acts trivially.

Next we will show that Isom0(M) ∼= S/(Z(H) ∩ Γ). Let f ∈ Isom0(M). By

post-composing with an element of S, we may assume that f fixes the coset

of the identity. As in the example above, covering space theory gives a lift f̃

of f fixing the identity and satisfying f̃γ = γf̃ for all γ ∈ Γ; then f̃ fixes all

the points γ ∈ Γ ⊂ S. The exponential map of S is a diffeomorphism when

restricted to T1H ⊂ T1S (see [Kn]), and exp−1(Γ) contains the generators X,Y,

and Z. Then f̃∗1 fixes all the integral matrices in T1H , so f̃∗1 is trivial on

the codimension-one subspace T1H . Because f̃∗1 is an orientation-preserving

linear isometry of T1S, it must also fix the vector W transverse to T1H—that

is, f̃∗1 = Id. Then f̃ is trivial in a neighborhood of 1, and we conclude that f̃

is trivial.

There are generalizations of this example, where h is replaced by hn, the (2n+1)-

dimensional Heisenberg Lie algebra. This Lie algebra is generated by

X1, . . . , Xn, Y1, . . . , Yn, Z

with [Xj , Yj ] = Z for j = 1, . . . , n. In the most general examples, the adjoint

of eiθ ∈ S\H acts by rotation by rjθ, where rj is a rational multiple of 2π, on

span{Xj, Yj}. See [AS1] and [Ze1] for more details.

6 Proper actions

Isometry groups of Riemannian manifolds always act properly, but Lorentzian

isometry groups may not. Nonproperness is the sole dynamical assumption on

the Lorentz-isometric actions in Kowalsky’s theorem.
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6.1 Definition and first consequences

Definition 6.1 A continuous action of a topological group G on a Hausdorff,

locally compact space X is proper, if, for any compact subsets A,B ⊆ X, the

set

GA,B = {g ∈ G : gA ∩B 6= ∅}

is compact in G.

When G is a discrete group, then a proper G-action is usually called properly

discontinuous.

Proposition 6.2 If G acts properly on X, then

• The stabilizer G(x) of any x ∈ X is compact.

• The orbit Gx of any x ∈ X is closed.

• The quotient space G\X is Hausdorff in the quotient topology.

Proof:

• Since any point x ∈ X is a compact subset, compactness of G(x) =

G{x},{x} follows directly from the definition.

• Suppose that gn ∈ G are such that gnx → y ∈ X . Let A be a compact

neighborhood of y in X . For all n sufficiently large, gn ∈ G{x},A. Because

G{x},A is compact, there is a convergent subsequence gn → h. Now by

continuity of the action, gnx→ hx. The limit hx must equal y, so y ∈ Gx.

• Let x, y ∈ X be such that Gx 6= Gy, so they project to distinct points in

the quotient G\X . We must find G-invariant open sets U containing x

and V containing y such that U ∩ V = ∅.

First choose an open neighborhood A of x such that the closure A is

compact. Because G{y},A is compact, the intersection Gy ∩A is compact;

it does not contain x because Gx 6= Gy. Therefore, x has a neighborhood

in A not meeting Gy. Now replace A by a neighborhood of x with compact

closure contained in A\(Gy ∩A).

Next, let B be a neighborhood of y with B compact. Since GA,B is

compact, GA ∩ B is compact; by the choice of A, this intersection does

not contain y. Therefore, y has a neighborhood in B not meeting GA;
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replace B by this neighborhood. Then U = GA and V = GB are disjoint

neighborhoods of Gx and Gy, as desired.

♦

6.2 Counter-examples

Example. The isometry groups of Minn, dSn, and AdSn do not act properly,

because they have noncompact stabilizers. The same is true for the compact

homogeneous examples of Section 5. Note also that an action of a noncompact

group on a compact space is always nonproper.

Example. Consider the action of R∗ on R2\{0} via the group of matrices
[
λ 0

0 λ−1

]
λ ∈ R∗

This action is free, and every orbit is closed. But it is not proper. Indeed, let

K be the unit circle in R2\{0}. Every g ∈ R∗ maps K to an ellipse centered at

the origin, so every gK ∩K contains at least 4 points.

Exercise 6.3 Find two orbits in R2\{0} with no disjoint invariant neighbor-

hoods. Then conclude by a different argument from that above that this action

is not proper.

The following example is due to Scot Adams.

Example. Let

U = {(x, y) ∈ R2 : y > 0, x ≥ 1/y}

U ′ = {(x, y) ∈ R2 : y > 0, x < 1/y}

V = {(x, y) ∈ R2 : y < 0, x ≥ 1/y}

X = {(x, y) ∈ R2 : y = 0}

Define

f : U → V

f : (x, y) 7→ (x− 2/y,−y)

Now define T from U ′ ∪X ∪ V to itself by

T (x, y) =





(x+ 1, y), (x, y) ∈ V ∪X

(x+ 1, y), (x, y) ∈ U ′ and (x+ 1, y) ∈ U ′

f(x+ 1, y), (x, y) ∈ U ′ and (x+ 1, y) ∈ U
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The group 〈T 〉 generated by T acts freely, with closed orbits, and the quotient

(U ′ ∪X ∪V )/〈T 〉 is Hausdorff. The action is not, however, proper, because, for

every positive integer j,

T 2j(0, 1/j) = (0,−1/j)

6.3 Properness of Riemannian isometries

A Riemannian manifold is analogous to a Lorentz manifold, with a smooth

choice of positive-definite, rather than type-(1, n − 1), inner product on each

tangent space. Unlike a Lorentz metric, a Riemannian metric on a manifold M

defines a distance, making M into a proper metric space. A proper metric space

is one in which balls B(x, δ) have compact closure. There results a crucial dif-

ference between Riemannian and Lorentzian isometries: Riemannian isometry

groups act properly.

Proposition 6.4 Suppose G is a closed subgroup of Isom(M), for M a sepa-

rable, σ-finite, proper metric space:

d(x, y) = d(g(x), g(y)) ∀ x, y ∈M, g ∈ G

Then G acts properly on M .

Proof: Let A,B be compact subsets of M . Let

a = sup{d(x, y) : x, y ∈ A}

the diameter of A. Compactness of A implies that a is finite. Let

D(B, a) = {x ∈M : d(x, b) ≤ a for some b ∈ B}

This set is compact. For any g ∈ GA,B , the image gA ⊂ D(B, a).

Suppose that gn is a sequence in GA,B. Let A′ be a countable dense subset

of A. For each a ∈ A′, the sequence gn(a) has a convergent subsequence. By

diagonalization, we may assume that gn has a subsequence for which gn(a)

converges for all a ∈ A′. Denote the limit g(a). For any a, a′ ∈ A′, the distance

d(g(a), g(a′)) = lim d(gn(a), gn(a′)) = d(a, a′)

so gn converges to g uniformly on A′, and g preserves distances in A′.
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Now for any a ∈ A, the sequence gn(a) is Cauchy in D(B, a); let g(a) be the

limit. The sequence gn converges to g uniformly on A. For a, a′ ∈ A,

d(g(a), g(a′)) = lim d(gn(a), gn(a
′)) = d(a, a′)

so g preserves distances on A.

For any r > 0, the set

D(A, r) = {x ∈M : d(x, a) ≤ r for some a ∈ A}

is compact, and is mapped by GA,B into the compact D(B, a + r). We can

repeat the process above to find a subsequence of gn converging uniformly to an

isometry defined on D(A, r). The entire space M is exhausted by a countable

union of compact sets of the form D(A, r). By diagonalization again, we obtain

a subsequence of gn that converges to an isometry g of M , uniformly on all

compact sets. ♦

There is a converse to this theorem for Riemannian manifolds: a group acting

properly and smoothly on a manifold preserves some Riemannian metric. See

[Kos] for the proof of this fact and other material on proper actions.

7 Structure of simple Lie groups

Let G be a connected Lie group and g its Lie algebra. The group G acts by

Lie algebra automorphisms on g via the adjoint representation. There is a Lie

algebra representation, also called the adjoint representation, of g on itself, that

corresponds under the exponential map to Ad.

Definition 7.1 For g a Lie algebra, the adjoint representation ad of g on g is

ad(X)(Y ) = [X,Y ]

The Lie algebra adjoint consists of infinitesimal Lie algebra automorphisms:

[ad(X)(Y ), Z] + [Y, ad(X)(Z)] = ad(X)([Y, Z])

This follows immediately from the Jacobi identity. Recall that the bracket can

be defined in terms of the derivative of the one-parameter subgroup Ad(etX) of

Aut(g):

ad(X)(Y ) =
d

dt

∣∣∣∣
0

Ad(etX)(Y )
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from which follows the relation

Ad(etX) = etad(X)

where the exponential map on the right is in the group Aut(g).

Definition 7.2 A Lie algebra g is simple if dim g > 1 and adg is irreducible—

that is, the only invariant subspaces are 0 and g. A Lie group G is simple if g

is.

Exercise 7.3 Show that definitions 2.9 and 7.2 are equivalent for algebraic Lie

groups and Lie algebras. (Hint: The identity component G0 is Zariski dense in

G.)

Definition 7.4 An element X ∈ g is R-split if ad(X) is diagonalizable over

R. It is nilpotent if ad(X) is nilpotent. An element a ∈ G is R-split if Ad(a)

is diagonalizable over R.

Note that if X is R-split, then Ad(eX) = ead(X) is, too, because the exponential

of a real diagonal matrix is real diagonal.

Example. A Lie algebra may not have any R-split elements. Consider the

Lie algebra o(n) of all n× n skew-symmetric matrices. The inner product

〈X,Y 〉 = trXY

is negative definite and Ad(O(n))-invariant. Suppose there were an R-split

element g ∈ O(n). Then there are nonzero α ∈ R and X ∈ g such that

Ad(g)(X) = αX . But then we have a contradiction:

0 6= 〈X,X〉 = 〈Ad(g)(X),Ad(g)(X)〉 = α2〈X,X〉

Definition 7.5 The R-rank of a connected Lie group G is the dimension of a

maximal abelian subalgebra of g consisting of R-split elements.

Maximal abelian R-split subalgebras of g correspond under the exponential map

to maximal connected, abelian, R-split subgroups of G. If G is an algebraic Lie

group, and X,Y ∈ g are such that XY = Y X , then it is easy to compute that

eXeY = eX+Y
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This formula holds in a general Lie group for any commuting X and Y , as a

consequence of the Campbell-Hausdorff formula (see [Ja] V.5). It follows that if

a is an abelian subalgebra, then the group A generated by all the one-parameter

groups etX , where X ∈ a, is abelian and equals the image ea.

Now suppose thatA is a maximal abelian R-split subalgebra of g. LetA1, . . . , Ak

be a basis for a. There is an eigenspace decomposition for ad(A1)

g =
⊕

α

gα

where α ranges over the eigenvalues of ad(A1). Because A2 commutes with A1,

the endomorphism ad(A2) preserves the eigenspaces for ad(A1), so there is a

refinement of the decomposition above into simultaneous eigenspaces for both

ad(A1) and ad(A2). Continuing in this way, we obtain a decomposition of g

into simultaneous eigenspaces for ad(A1), . . . , ad(Ak). To each such eigenspace

correspond k real eigenvalues α1, . . . , αk, and there is a linear functional α :

a → R such that α(Ai) = αi. Denote by gα the simultaneous eigenspace with

eigenvalues given by α. That is, for A ∈ a and X ∈ gα,

ad(A)(X) = α(A)X

The functional α is called a root and gα is the root space for α.

Here are few basic facts about the root space decomposition.

Proposition 7.6 Let a be a maximal R-split subalgebra of g, and

g =
⊕

α

gα

the root space decomposition.

• If g is simple, then for each A ∈ a, there is a least one nonzero root α

such that α(A) 6= 0.

• For any two roots α and β of g,

[gα, gβ] ⊆ gα+β

(Note that α+β may not be a root of g, in which case this bracket is zero.)

• If g is simple and α is a root, then so is −α; further [gα, g−α] 6= 0.
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Proof:

• If α(A) = 0 for all roots α, then ad(A) is zero on each root space gα.

Because these root spaces exhaust g, it follows that A is in the center of g.

But a simple group cannot have a one-parameter subgroup in its center.

• Let A ∈ a, X ∈ gα, and Y ∈ gβ . Then

ad(A)([X,Y ]) = [ad(A)(X), Y ] + [X, ad(A)(Y )]

= α(A)[X,Y ] + β(A)[X,Y ]

= (α+ β)(A)[X,Y ]

• If −α is not a root, then the sum over all roots β

⊕

β

gα+β

is an ad(g)-invariant subspace properly contained in g, because it does not

meet g0. It is not zero because it contains gα. This circumstance would

contradict simplicity. Similarly, if [gα, g−α] = 0, then the same subspace

would be proper, nonzero, and invariant.

♦

Example. The R-rank of O(1, n) is 1. First, replace B1,n by another form

of type (1, n) with respect to which a maximal R-split subgroup of O(1, n) is

diagonal. Namely, let B be given by

B =




0 1

1
. . .

1

1 0




With respect B, the Lie algebra o(1, n) consists of matrices



λ xt 0

y m −x

0 −yt −λ


 λ ∈ R, x, y ∈ Rn−1, m ∈ o(n− 1)

The elements with x, y,m = 0, as λ ranges over R, form a one-dimensional R-

split subalgebra a. The centralizer of a is a + m, where m ∼= o(n− 1) consists of
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elements with λ, x, y = 0. Consider the eigenspace consisting of elements with

y,m, λ = 0, as x ranges over Rn−1. The adjoint of m on here is the standard

representation of o(n − 1) on Rn−1; all eigenvalues in this representation are

purely imaginary. Therefore, no element of m can be R-split, so a is a maximal

abelian R-split subalgebra.

Exercise 7.7 Compute explicity the Lie algebra o(2, n), and show that the R-

rank of O(2, n) is 2.

8 Kowalsky’s argument

Suppose that G is a simple Lie group acting nonproperly and isometrically on a

Lorentz manifold M . The goal of this section is to show that, for some x ∈M ,

a sum of root spaces in g all generate isotropic flows at x. Because the maximal

dimension of an isotropic subspace of TxM is 1, a codimension-1 subspace of

this sum of root spaces fixes x. The argument is based on the interaction of the

nonproper dynamics of G on M and the dynamics of Ad(G) on g.

Under the nonproperness assumption on the G-action, there are compact subsets

B,C ⊂M such that GB,C is not compact. By continuity of the action G×M →

M , the set GB,C is closed, so it must be unbounded. Let gn ∈ GB,C be an

unbounded sequence. The KAK decomposition (see [Kn]) of G gives that every

element g ∈ G can be written as a product g = kak′, with k, k′ ∈ K and a ∈ A,

where A is a maximal connected, abelian, R-split subgroup of G, and Ad(K) is

a maximal compact subgroup of Ad(G). If Z(G) is finite, then K is a maximal

compact subgroup of G. Write

gn = knank
′
n

Because gn is unbounded andK is compact, the sequence an must be unbounded

in A. By passing to a subsequence, we may assume kn → k and k′n → k′. Recall

that the exponential map of G maps a onto A. Let An = log an ∈ a. With

respect to any norm on the vector space a, the sequence |An| → ∞. Again

passing to a subsequence, we may assume that An/|An| → A for some A in the

unit sphere of a.

Each X ∈ g defines a vector field X† on M by

X†(x) =
d

dt

∣∣∣∣
0

etXx
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Differentiating

getXg−1gx = getXx

yields

Ad(g)(X)†(gx) = g∗x(X
†(x))

Now each x ∈M gives an inner product 〈 , 〉x on g by

〈X,Y 〉x = 〈X†(x), Y †(x)〉

Because G acts isometrically, for any g ∈ G,

〈X,Y 〉gx = 〈X†(gx), Y †(gx)〉

= 〈g∗x(Ad(g−1)(X)†(x)), g∗x(Ad(g−1)(Y )†(x))〉

= 〈Ad(g−1)(X)†(x),Ad(g−1)(Y )†(x)〉

= 〈Ad(g−1)(X),Ad(g−1)(Y )〉x

Now let xn ∈ B be such that gnxn = yn ∈ C. Passing to a subsequence, we

may assume xn → x ∈ B and yn → y ∈ C. For X ∈ gα and Y ∈ gβ,

〈X,Y 〉ank′nxn
= 〈Ad(a−1

n )(X),Ad(a−1
n )(Y )〉k′

n
xn

= e−α(An)−β(An)〈X,Y 〉k′
n
xn

On the other hand,

〈X,Y 〉ank′nxn
= 〈X,Y 〉k−1

n yn

Now

α(An) = |An| · α

(
An
|An|

)

and α(An/|An|) → α(A). The same holds for β. Therefore, if α(A), β(A) > 0,

then

e−α(An)−β(An)〈X,Y 〉k′
n
x → 0

while

〈X,Y 〉k−1

n yn
→ 〈X,Y 〉k−1y

Therefore, the subspace ⊕

α(A)>0

gα

is totally isotropic for 〈 , 〉k−1y.

The conclusions of this argument are summarized in the following proposition.
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Proposition 8.1 Let G be a simple Lie group with finite center acting isomet-

rically and nonproperly on a Lorentz manifold M . Then there is a point x ∈M

and a nontrivial R-split element A ∈ g such that
⊕

α(A)>0

gα

is totally isotropic for 〈, 〉.

The following is the first corollary of proposition 8.1. (This result had been

previously obtained by Zimmer in [Zi2]. He showed that when M is compact,

almost every stabilizer is discrete, which sufficed for his argument.)

Theorem 8.2 ([Kow]) Suppose G is a simple Lie group with finite center acting

nonproperly and isometrically on a Lorentz manifold M . Suppose further that

for all x ∈ M , the stabilizer G(x) is discrete. Then G is locally isomorphic to

SL(2,R)—that is, g ∼= sl(2,R).

Proof: By the assumptions on G and M , the argument above applies, so there

is some x ∈M and an R-split element A ∈ g such that
⊕

α(A)>0

gα

is a totally isotropic subspace for 〈 , 〉x. The additional assumption that G(x) is

discrete implies that the linear map X 7→ X†(x) is injective. Because a maximal

isotropic subspace of TxM is 1-dimensional, the subspace ⊕α(A)>0gα is at most

1-dimensional.

By proposition 7.6, there is some root α such that α(A) > 0. Let Xα be a

generator of gα. Note that β(A) ≤ 0 for any root β 6= α.

Applying Kowalsky’s argument to the inverse sequence g−1
n = (k′n)−1a−1

n k−1
n

gives A′ ∈ a and x′ ∈M such that
⊕

α(A′)>0

gα

is isotropic for 〈 , 〉x′ . But log(a−1
n ) = − log(an), so

A′ = lim
log(a−1

n )

| log(a−1
n )|

= −A

Therefore the sum ⊕

α(A)<0

gα
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is isotropic for 〈 , 〉x′ . Discreteness of G(x′) again implies that this space is

1-dimensional. By proposition 7.6, −α is a root, and obviously −α(A) < 0. Let

X−α be a generator of g−α. Note β(A) ≥ 0 for any β 6= −α. Now β(A) = 0

unless β = ±α.

In order to conclude that g ∼= sl(2,R), it suffices to show that Xα, A, and

X−α generate an Ad(G)-invariant subalgebra isomorphic to sl(2,R). Using the

exponential map, it suffices to show they generate an ad(g)-invariant subalgebra

isomorphic to sl(2,R).

For any nonzero root β, if β(A) = 0, then β ± α cannot be a root. Therefore,

[Xβ, X±α] = 0. Let B = [Xα, X−α]; it is nonzero by 7.6. If β is a root different

from ±α and Xβ ∈ gβ , then the Jacobi identity gives

[B,Xβ] = −[[Xβ, Xα], X−α] − [[X−α, Xβ ], Xα]

The brackets [Xβ, X−α] and[X−α, Xβ] are zero unless β = 0. In this case, the

right hand side is

−[α(Xβ)Xα, X−α] − [α(Xβ)X−α, Xα] = 0

Therefore, β(B) = 0 unless β = ±α. Then all roots vanish on cA−B for some

c ∈ R, which implies, again by proposition 7.6, that B = cA. Now Xα, A,X−α

generate a subalgebra of g that is ad(g)-invariant and isomorphic to sl(2,R), so

g ∼= sl(2,R). ♦

The main theorem of Kowalsky’s thesis says that nonproper isometric actions

of simple groups resemble the constant-curvature models:

Theorem 8.3 Suppose that G is a simple Lie group with finite center acting

nonproperly on a Lorentz manifold M . Then G is locally isomorphic to O(1, n)

for some n ≥ 2 or O(2, n) for some n ≥ 3.

Toward this end, we will prove the following theorem of [ADZ] in the simple

case.

Theorem 8.4 ([ADZ] 1.6) Suppose that a simple group G with finite center

and not locally isomorphic to SL(2,R) acts isometrically on a Lorentz manifold

M of dimension at least 3. Suppose that G has an orbit of Lorentz type in M

with noncompact stabilizer. Then this orbit has constant curvature, and G is

locally isomorphic to O(1, n) or O(2, n) for some n ≥ 3.

The results of [ADZ] actually apply to semisimple groups with finite center and

no local SL(2,R)-factors, and the full conclusions describe the isometry type of
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M in a neighborhood of the nonproper Lorentz orbit. A semisimple Lie algebra

is a direct sum of simple Lie algebras, and a semisimple Lie group is one with

semisimple Lie algebra.

Suppose G is simple with finite center and acts nonproperly on a Lorentz mani-

fold M . By Kowalsky’s argument, associated to a sequence gn → ∞ are a point

x ∈M and an R-split A ∈ g such that
⊕

α(A)>0

gα

is an isotropic subspace for the inner product 〈 , 〉x on g. Note that if etY is a 1-

parameter group in the stabilizer G(x), then Y †(x) = 0, so Y is isotropic. Now a

maximal isotropic subspace of TxM is 1-dimensional, so either the sum of root

spaces above intersects the stabilizer Lie algebra g(x), or it is 1-dimensional.

The same is true for the point x′ associated to the sequence g−1
n . Then either

the argument in the discrete stabilizers case above applies, and g ∼= sl(2,R),

or one of x, x′ has a nonzero root vector in the stabilizer. Thus if G is not

locally isomorphic to SL(2,R), then we may assume there is some nonzero

Y ∈ ⊕α(A)>0gα that is also in g(x).

The one-parameter group generated by such a Y is not precompact because

Ad(Y ) is unipotent. Then G(x) is noncompact. Because G is simple, it acts

faithfully on the orbit Gx, unless x is a fixed point. Then Gx is not Riemannian

type, so it is Lorentzian, degenerate, or a fixed point. In the degenerate case, the

results of [DMZ] give that G has a Lorentzian orbit near x with noncompact

stabilizer; the fixed point case is easy, and is discussed in [DMZ]. Thus the

results of [ADZ] and [DMZ] together give a proof of Kowalsky’s theorem under

the assumption of no local SL(2,R)-factors; the next section gives some idea

about the proofs, which are different from those of [Kow].

9 Totally geodesic lightlike hypersurfaces and

constant curvature

The main tool in [ADZ] is totally geodesic lightlike hypersurfaces, which can

be associated to actions with strong dynamics. These will be defined below. In

the current setting, the noncompact stabilizer of x will imply existence of one

of these hypersurfaces through x.

Given a Lorentz metric on a manifold M , there is a unique torsion-free con-

nection, called the Levi-Civita connnection, on M that is compatible with the
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metric. A connection is a way to differentiate vector fields. Denote by Ξ(M)

the vector space of vector fields on M . A connection is a function of two vector

fields that depends linearly on the first coordinate and as a derivation on the

second:

∇ : Ξ(M) × Ξ(M) → Ξ(M)

∇ : (X,Y ) 7→ ∇XY

∇fX+Y Z = f∇XZ + ∇Y Z

∇X(fY + Z) = X(f)Y + f∇XY + ∇XZ

where f is any function on M . The vector field ∇XY is called the covariant

derivative of Y in the direction of X . A connection is torsion-free if

∇XY −∇YX = [X,Y ]

for any X,Y ∈ Ξ(M). Finally, it is compatible with the metric if

X〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉

for any X,Y, Z ∈ Ξ(M). The vector field ∇XY is determined by 〈∇XY, Z〉 for

Z varying over vector fields that span each tangent space. The sum

X〈Y, Z〉 + Y 〈X,Z〉 − Z〈Y,X〉 = 〈∇XY, Z〉 + 〈∇YX,Z〉

+ 〈Y,∇XZ −∇ZX〉 + 〈X,∇Y Z −∇ZY 〉

Using that the connection is torsion free, we obtain an explicit formula for the

Levi-Civita connection in terms of the metric and the bracket of vector fields:

2〈∇XY, Z〉 = X〈Y, Z〉 + Y 〈X,Z〉 − Z〈Y,X〉

+ 〈[X,Y ], Z〉 − 〈Y, [X,Z]〉 + 〈X, [Y, Z]〉

The geodesics of a connection are the curves γ such that ∇γ′γ′ = 0 along γ.

To define the covariant derivative ∇γ′γ′, extend γ′ to a vector field X in a

neighborhood of the image of the curve γ. The values of ∇XX along γ are

independent of the choice of X ; indeed, if X(γ(t)) = Y (γ(t)) = γ′(t) for all

t ∈ (−ǫ, ǫ), then [X,Y ] vanishes along γ. Also, along γ, we have ∇X(X − Y ) =

∇γ′(X − Y ) = 0. It follows that ∇XX = ∇XY = ∇YX = ∇Y Y along γ.

The equation ∇γ′γ′ = 0 can be expressed as a second-order ODE, so geodesics

with a given initial tangent vector always exist on some time interval (−ǫ, ǫ).

A submanifold N ⊂ M is totally geodesic if, for any vector fields X,Y tangent
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to N , the covariant derivative ∇XY is also tangent to N . This condition is

equivalent to the condition that, for any X ∈ TxN , the geodesic through x with

initial vector X stays in N for some positive time.

Example. In case M = Minn, the covariant derivative is simply ∇XY = XY ;

to prove this, it suffices to verify that it has all the properties of a torsion-free

connection compatible with the metric.

Now let γ(t) be a curve in Minn. The condition for γ to be a geodesic is that

0 = ∇γ′γ′

= γ′γ′

=
d

dt
γ′(γ(t))

= γ′′(t)

Therefore, the geodesics of Minn are straight lines, curves of the form γ(t) =

u+ tv, for u, v ∈ Rn.

Next suppose that N is a submanifold of Minn. The condition for N to be

totally geodesic is that for every x ∈ N and u ∈ TxN , the geodesic of Minn

through x in the direction u is contained in N for some time. Then N locally

contains every line tangent to it, and so N must be an open subset of an affine

subspace of Minn.

The curvature tensor R of a connection is the operator

R(X,Y ) = ∇[X,Y ] + ∇Y∇X −∇X∇Y

It is skew-symmetric, and R(X,Y )x depends only onX(x), Y (x). Given a vector

field Z and a function f , the vector field

R(X,Y )(fZ) = fR(X,Y )Z

so R(X,Y ) is a linear endomorphism of TxM . The tensor 〈R(X,Y )Z, T 〉 has

the following symmetries (see [KN]):

〈R(X,Y )Z, T 〉 + 〈R(Y, Z)X,T 〉+R(Z,X)Y, T 〉 = 0 (Bianchi identity)

〈R(X,Y )Z, T 〉 = −〈R(Y,X)Z, T 〉

〈R(X,Y )Z, T 〉 = −〈R(X,Y )T, Z〉

〈R(X,Y )Z, T 〉 = 〈R(Z, T )X,T 〉
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Given a nondegenerate plane P = span{X,Y } ⊂ TxM , the sectional curvature

along P is

S(X,Y ) =
〈R(X,Y )X,Y 〉

|X ∧ Y |

where |X∧Y | = 〈X,X〉〈Y, Y 〉−〈X,Y 〉2, as above. The sectional curvature only

depends on P , and not on the choice of basis X,Y .

Definition 9.1 A totally geodesic lightlike (tgl) hypersurface in an n-dimensional

Lorentz manifold M is an (n − 1)-dimensional totally geodesic submanifold

N ⊂M such that TxN
⊥ ∩ TxN 6= 0.

If N is a tgl hypersurface, then for each x ∈ N there is an isotropic vector

v ∈ TxN such that TxN = v⊥. If there are many tgl hypersurfaces through

every point of a Lorentz manifold M , then M has constant sectional curvature.

Proposition 9.2 ([Ze3] 3) Suppose that M is a Lorentz manifold of dimen-

sion at least 3 such that, for each x ∈M , there are tgl hypersurfaces H1, . . . , Hn

through x such that v1 ∈ H⊥
1 , . . . , vn ∈ H⊥

n span TxM . Then M has constant

sectional curvature.

Proof: For u ∈ TxM , let Au(v) = R(u, v)u. Because Hi is totally geodesic,

Au(Hi) ⊂ Hi whenever u ∈ Hi. If u,w ∈ Hi = v⊥i , then

〈Au(vi), w〉 = 〈R(u, vi)u,w〉

= 〈R(u,w)u, vi〉

= 0

Therefore, whenever u ∈ v⊥i , then Au(vi) = λvi for some λ. Note 〈vi, vk〉 = 0 if

and only if i = k because the maximal dimension of a totally isotropic subspace

is 1. Choose ei ∈ ∩i6=jHj of unit norm. Let λij be such that Aei
(vj) = λijvj .

Because

〈Aei
(vj), vk〉 = 〈Aei

(vk), vj〉

λij = λik = λi whenever j, k 6= i and j 6= k. Because the vi span TxM , the

sectional curvature of any nondegenerate plane containing ei equals λi. Then

λi = λ for all i.

Next we will show the curvature tensor Rx of M at x equals Rλ, the curvature

tensor of a manifold of constant sectional curvature λ = λ(x). The difference
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Rx−Rλ is again multilinear and has the same symmetries. Now we will assume

λ(x) = 0 and show that Rx is zero.

First note that because each Hi is totally geodesic, the vector

R(ei, ej)ei ∈ ∩i,j 6=kHk = span{ei, ej}

Now, because

〈R(ei, ej)ei, ej〉 = 0 = 〈R(ei, ej)ei, ei〉

the vector R(ei, ej)ei = 0 for all i, j. Then R(ei + ej, ei)(ei + ej) = 0, and

〈R(ei + ej, ek)(ei + ej), ei〉 = 〈R(ei + ej , ei)(ei + ej), ek〉 = 0

Similarly, 〈R(ei + ej , ek)(ei + ej), ej〉 = 0. Since also

〈R(ei + ej , ek)(ei + ej), ek〉 = 〈R(ek, ei + ej)ek, ei + ej〉 = 0

we may conclude that R(ei + ej , ek)(ei + ej) = 0 for all i, j, k, using that it

belongs to ∩l 6=i,j,kHl = span{ei, ej , ek}. Since

R(ei + ej , ek)(ei + ej) = R(ei, ek)ej +R(ej , ek)ei = 0

we get R(ei, ek)ej = −R(ej, ek)ei for all i, j, k. The Bianchi identity gives

0 = 〈R(ei, ej)ek, el〉 + 〈R(ek, ei)ej , el〉 + 〈R(ej , ek)ei, el〉

= 〈−R(ek, ej)ei, el〉 + 〈R(ek, ei)ej , el〉 + 〈R(ej , ek)ei, el〉

= 2〈R(ej, ek)ei, el〉 + 〈R(ek, ei)ej , el〉

= 2〈R(ej, ek)ei, el〉 + 〈−R(ei, ek)ej , el〉

= 2〈R(ej, ek)ei, el〉 + 〈R(ej , ek)ei, el〉

= 3〈R(ej, ek)ei, el〉

so Rx = 0, as desired. Then the original curvature tensor at x was equal to

that of a manifold with constant sectional curvature λ(x). Finally, using the

following result, known as Schur’s lemma, we can conclude that λ(x) = λ(y) for

all y, x ∈M .

Lemma 9.3 (see [KN]) Let M be a Lorentz manifold such that, for each x ∈

M , all nondegenerate planes in TxM have the same sectional curvature. Then

M has constant sectional curvature.

♦
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Proposition 9.4 ([Ze3] 6) Let M be a Lorentz manifold with isometry group

G. Suppose that G(x) is noncompact for some x ∈ M . Then there is a tgl

hypersurface in M through x.

Proof: Denote by µ the metric on M .

Let fn → ∞ in G(x). The graphs Γ(fn) of fn near x are n-dimensional sub-

manifolds of M ×M , and they are totally geodesic with respect to the natural

connection on the product. They are also isotropic with respect to the type

(n, n) pseudo-Riemannian metric µ⊕ (−µ) on M ×M . After passing to a sub-

sequence, the limit Γ of Γ(fn) is an n-dimensional, isotropic, totally geodesic

submanifold near x. It cannot surject onto the first factor near x, for then it

would again be the graph of some isometry near x, contradicting the assumption

that fn does not have any convergent subsequence.

The sequence f−1
n → ∞, and the limit Γ−1 = limΓ(f−1

n ) is obtained from Γ

by switching the first and second coordinates. Since the projection of Γ−1 on

the first factor is not surjective near x, the intersection Γ−1 ∩ ({x} × M) is

positive-dimensional; it is also isotropic in M , so it has dimension exactly 1.

Thus the intersection Γ ∩ (M × {x}) is isotropic, geodesic, and 1-dimensional.

It follows that the projection of Γ on the first factor is lightlike, geodesic, and

(n− 1)-dimensional. ♦

10 Proof of theorem 8.4

Recall that we have a simple Lie group G with a Lorentz orbit in M with

noncompact stabilizer. Let N be the Lorentz orbit, and x ∈ N . Then by the

proposition above, there is a tgl hypersurface H through x. Let 0 6= v ∈ H⊥.

If g ∈ G(x) and g∗xv = w, then w⊥ is tangent to another tgl hypersurface gH

through x.

We will first show that the orbit of v by the isotropy G(x) is infinite, so there

are infinitely-many tgl hypersurfaces through x. First, the orbit N cannot be

contained in H , by the assumption that N is of Lorentz type. Suppose that

the orbit of v by the isotropy G(x) is a finite set {v1, . . . , vk}. Then the orbits

g∗xvi as g ranges over G give finitely-many isotropic vector fields on N that are

permuted by the G-action. By passing to a finite-index subgroup of G, we may

assume that G preserves one of these vector fields. Then G(x) preserves H , and

the orbit of H by G gives a foliation of M near x by tgl hypersurfaces. The

stabilizer of H in G is a codimension-one subgroup. But any simple group with
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a codimension-one subgroup is locally isomorphic to SL(2,R), a contradiction.

Therefore, we may assume that the isotropy orbit of v is infinite. Let E be the

G(x)-irreducible subspace of TxM containing v. The restriction of the metric

to E is of Lorentz type, because E contains infinitely-many isotropic vectors.

But then, by the theorem of [BZ], G(x) contains a subgroup L isomorphic to

the identity component O0(1, k), where dim(E) = k + 1.

The metric on E⊥ is positive-definite, and L acts trivially on it. The translates

g∗x(E) give a G-invariant distribution E along N . This distribution is tangent

to a submanifold if and only if, for any two vector fields X,Y along E , the

bracket [X,Y ] ∈ E . Let X,Y be two such vector fields near x, and denote by

π the projection from TxM to E⊥. For any g ∈ L, we have π[g∗X, g∗Y ] =

g∗π[X,Y ] = π[X,Y ]. Because L acts irreducibly on E, the projection π[X,Y ]

must be trivial.

Therefore, there is a submanifold N ′ tangent to E . This submanifold has con-

sant curvature because each tangent space is spanned by isotropic vectors that

are normal to tgl hypersurfaces. Because N ′ contains x and is G-invariant, it

contains N = Gx; on the other hand TxN ⊆ E is G(x)-invariant, so TxN = E,

and N = N ′. Finally, the irreducibility of G(x) on E means that G is the full

isometry group of N , so G = O(1, n) or O(2, n) for some n ≥ 3.
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