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ABSTRACT: 
 
The technology of 3D reconstruction based on image sequences is an important technology in computer vision field, its application 
in close range photogrammetry area brings a new research area. For the application of 3D reconstruction in close range 
photogrammetry field, precision problems must be fully demonstrated. In this paper, error propagation rules in 3D reconstruction 
process has deduced on the base of matrix analysis method, and a calculation method of covariance matrix has put forward for 
evaluate error of elements in 3D reconstruction result, at the same time, the effects from related factors to 3D reconstruction result 
are analyzed. At last, experiments are introduced to demonstrate the precision that 3D automatic reconstruction could reached in 
general case. 
 
 

1. INTRODUCTION 

For the limitation from the theory of traditional close range 
photogrammetry, approximate value of camera position and 
orientation need to be known to resolve photogrammetry 
problems. This defect can be overcame with the theory of 
multiple view geometry which greatly developed at 90’s in the 
last century. As no initial value of camera position and 
orientation need to be known for the calculation of spatial 
relationship between images, so image data capture becomes 
easy and very convenient, hence it could bring revolution to the 
field of close range photogrammetry. 
 
However, in the research works of multiple view geometry, 
result precision of the reconstruction is seldom discussed, as the 
result from 3D reconstruction is a model up to scale. The first 
problem that applies theory of multiple view geometry to the 
field of photogrammetry is to estimate precision of 3D result. 
There are some related works, e.g: Werner et al (2001) 
discussed the application of automatic reconstruction to close 
range photogrammetry. Forstner analyzed relations and 
differences between photogrammetry and computer vision, and 
also analyzed uncertainty of reconstruction (Förstner , 2002, 
2005); Mayer (2003) discussed problems on reconstruction of 
image triplets. In these works, precision does not discussed. 
 
For the application of computer vision in industrial 
measurement, quite a few works on precision are presented, 
however, industrial application need very high requirement to 
precision, mainly research works on effects of camera intrinsic 
parameters to industrial measurement have been done in earlier 
days (Mcvey 1982, Blostein 1987). 
 
In the process of 3D reconstruction, many calculation models 
are used, it’s much complex if compare with the calculation 
process of photogrammetry, which mainly use one model, i.e. 
collinear equation. It’s difficult to use precision estimation 
method directly from photogrammetry, but the application of 
3D reconstruction in photogrammetry field must resolve the 
problem of precision estimation. In this paper, we present one 
method to estimate precision for the result of 3D reconstruction. 
 

 
2. CALCULATION MODEL OF 3D 

RECONSTRUCTION 

Assume one image sequence is captured with camera in random 
pose, A and B are two adjacent images in the sequence, and 
form one image pair, i.e, A and B satisfy the condition: for 
certain area S in one scene, a random point X in S can be 
projected on image A and B, and get two image point x and x', 
then calculation models in 3D reconstruction process can be 
described with following matrices. 
 
2.1 Calibration Matrix and Projective Matrix 

Calibration matrix K is composed of camera intrinsic 
parameters, it contains five parameters: horizontal focal length 
fx, vertical focal length fy, principal point (u v) and skew s, s 
generally has value 0. 
 
K can be obtained by interactive camera calibration or 
automatic calibration, Kruppa method (Faugeras 1992) and 
ADQ method are two typical automatic calibration methods 
(Triggs 1997, Pollefeys 2004). Interactive calibration generally 
could obtain very high precision close to 1 pixel, while 
automatic calibration can not obtain high precision even with 
the help of calibration board, calibration precision can only 
reach to several pixels (Zhang 1999).  
 
Projective matrix describe the map relationship between a 
random point in one scene and a image point, assume rotation 
matrix between A and B is R, translation vector is t, and camera 
calibration matrix is K, projective matrix can be written as: 
 

 
[ ]tRKPXPx T |]1[ ==   (1) 

 
 
Projective matrix essentially keeps coincident with collinear 
equation, when K, R and t are all unknown variables, it’s hard 
to calculate P matrix, actually P is calculated by decomposing 
fundamental matrix F or essential matrix E when K is known.  
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2.2 Fundamental Matrix and Essential Matrix 

Both fundamental matrix and essential matrix describe the map 
relationships from one point to a line between two images, 
hence describe the spatial relationship between two images. In 
fig.1, point x on image A and line l on image B satisfy equation: 
l = Fx. If matched image point pair (x, x') is known, following 
formula holds:  

 
 

x'TFx = 0                        (2) 
 
 
F is a 3x3 matrix, as one free scale is unknown, so only 8 
elements need to be calculated, i.e. 8 points are required for F 
calculation. Fundamental matrix F contains information of 
calibration matrix K, while essential matrix E has no relation 
with calibration matrix K, E and F has relation: E = KTFK. The 
calculation of elements in F is linear, so the precision 
estimation of fundamental matrix can use linear method. In 
order to simplify the problem, we assume K keeps unchanged in 
the whole image sequence. 
 

 
2.3 The Difference between 3D Reconstruction and 
Photogrammetry 

The main process of 3D reconstruction can be summarized as 
following: 

1) Calculate fundamental matrix using matched image 
pairs; 

2) Estimate projective matrix with epipolar point and 
fundamental matrix; 

3) Using matched image points and projective matrix 
calculate 3D point set X; 

4) Calibrate X with calibration matrix K from projective 
space to Euclidean space; 

5) Optimize the result with bundle adjustment method; 
 
For the traditional theory of photogrammetry, this calculation 
process just need step 5, so approximate value for unknown 
variables should be known, while in this process of 3D 
reconstruction, only matched image points are required to be 
known. 
 
 

3. ERROR PROPAGATION ANALYSIS 

In order to simplify the problem, we take calibration matrix as 
known data, therefore, unknown variables in 3D reconstruction 
process are: F, E, t, R and X. The known data are image point x 
and calibration matrix K. 
 

3.1 Error of Fundamental Matrix F 

3D reconstruction process begins from the fundamental matrix 
calculation of first image pair, as state in section 2.2, 
fundamental matrix can be obtained by formula (2). Formula (2) 
is linear equation for elements in F, it can be written as Af + L = 
0. Where A is a coefficient matrix composed of image point 
coordinates. L is a vector with elements equal to 1. Formula Af 
+ L = 0 can be rewritten as: f = -A-1L, calculate differential on 
both sides of the equation, one get:  
 

LA
dx
dAA

df
dF 11 −−=  

 
For the convenience, in the following text, the differential 
matrix is denoted with a subscript d, so the above equation can 
be written as: 
 
 

 Fd = A-1AdA-1L  (3) 
 
 
Where Fd is the differential matrix of F, and Ad is differential 
matrix of A. As two inverse matrices of A exist, so we can draw 
a conclusion for error propagation from image point to elements 
in F matrix: 
 
For a given image error, more large image coordinates 
corresponding to smaller elements errors in F matrix. 
 
Therefore, in the calculation of F matrix, image points close to 
the image boundary should be selected as much as possible, 
otherwise, if too many points close to the principal point are 
selected, then the result of F would be unstable. As in matrix A, 
quadric items of the image point coordinates exist, while in Ad, 
only simple items exist. Therefore, the error of elements in F 
matrix is very sensitive to the image point coordinates. 
According to this conclusion, wide-angle lens should be used 
instead of common lens to capture data, so the result of F matrix 
would be more robust. 
 
3.2 Error of 3D Point 

As we assume K is known, so F can be replaced with E, E can 
be decomposed by SVD method to get rotation matrix R and 
translation vector t. SVD decomposition of E can be expressed 
as: E = USVT. 
 
Let T express skew symmetric 3×3 matrix which composed of 
vector t, then: 
 
 

E = TR   where T = UWSUT， R = UWVT   (4) 
 
 
While W is a skew matrix, and has two cases of value, W and S 
are all constant matrices, the specific value of W and S is given 
by Hartley and Zisserman (2000). 
 
Obviously, for the existence of two constant matrices, T 
actually is one matrix which diagonal element equal to 0, and t 
can be expressed with T elements as: t = [-T23 T13 -T13]T 
Considering formula (1), projective matrix P can be expressed 
as:  
 

Fig.1. Principal of fundamental matrix 
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 P = K[UWVT | t ]           (5) 
 
 
As x = P[X 1]T, one get:  X = VWTUT (K-1x – t) 
 
Calculate differential coefficient for variables in this equation: 
 
 

)(
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Simplify this equation with above expressions: 
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Where Ud Vd and dt are indirect variables, as E = USVT, E = TR 
and S = diag[1 1 0], so one can get: 
 
 

VESU dd =  TT
dd UESV = and T

dd REdtT == ×][  (8) 
 
 
The existence of S matrix shows that the third column of U and 
V are zero vectors, so the complete expression of Ud and Vd can 
be written as: 
 
 

Ud = EdV + [0 0 Ud3] Vd = ET
dUT + [0 0 Vd3] (9) 

 
 

Where Ud3 and Vd3 are respectively differential part of epipolar 
points on image A and B, so it can be calculated from Kt, as E 
= KTFK, so: 
 
 
 

d
T

d
TT

dd FKKKFKFKKE ++=   (10) 
 
 
In the case that both Ad and Kd are known, from above equation 
(7) (8) (9) and (10), one can summarize dX expression as: 
 
 dX = M1AdM2 + M3KdM4 + M5KT

dM6+ M7 
 
This expression shows error propagation rule from error of 
image point x and calibration matrix K to the last result, i.e. 3D 
point cloud X. As this expression is really complex, here we 
only give analysis to influence from single variable error to the 
last 3D point cloud.  
 
1) Only error of image point exists: 
 
When Kd = 0, one get: 
 

 KFKE d
T

d =  

)( 1 dtdxKRRXUURXVVdX d
TT

d −++= −  
 
From these two equations, we can draw one conclusion: firstly, 
3D point error is relative to spatial position, large error 
corresponding to large distances, this viewpoint keeps 

coincident with common knowledge. Secondly, 3D point error 
is very sensitive to camera intrinsic parameters, this is 
determined by quadric items of K element in equation Ed = 
KTFdK.  
 
One important conclusion is: the longer focal length 
corresponding to bigger reconstruction error. While general 
viewpoint is longer focal length would obtain higher image 
resolution, and hence the precision should be higher. But this 
conclusion negates the general viewpoint. Actually, this 
conclusion keeps coincident with the conclusion about F matrix 
in section 3.1. Therefore, in order to obtain high precision for 
3D reconstruction, in the process of image data capture, one 
should try to capture image data with short distance and short 
focal length. 
 
2) Only errors of calibration matrix exist 
 
In this case Fd = 0, dx = 0, dt = 0, so:  
   

xKKRKdX d
11 −−−=  

 
In this formula, as two items of inverse matrix of K exist, 
calibration matrix error is not sensitive to reconstruction result, 
this conclusion keep coincident with the practical calculation, 
as in this formula, one free unknown scale contains, i.e. result 
of 3D point cloud X is up to scale. If scale is 1:100, than error 
from camera parameters would be enlarged 100 times. 
Therefore, in traditional photogrammetry, when survey scale is 
smaller, final result is very sensitive to camera parameters, so in 
the camera calibration process, the practice requirement should 
take into account, smaller scale map survey need higher 
precision of camera calibration. 
 
 

4. CALCULATION ERROR ANALYSIS 

Above error analysis is based on the model of 3D 
reconstruction, but this analysis just provides a rough 
qualitative result from the theory, for the quantitative result of 
error estimation, one need compute covariance matrix of 
unknown variables. For one image pair, one simple method of 
error estimation is to use analyzed result from section 3. Under 
the assumption that errors of feature points and calibration 
matrix are known, and the error of feature point has unit weight, 
one can get covariance matrix for unknown variables R, t, X by 
following steps: 
 

1) Use Fd = A-1AdA-1L, one can get covariance of F 
relate to covariance of image point;  

2) Use follow formula, one get covariance of E: 

d
T

d
TT

dd FKKKFKFKKE ++=  
3) From E = USVT,  one get covariance of decomposed 

elements of E: 
Ud = EdV + [0 0 Ud3] 
Vd = ET

dUT + [0 0 Vd3] 
Ud3 = -Vd3 = Kdt + Ktd 

4) From Td = EdRT ， R = UWVT, one can get 
covariance of R and t; 

5) Using follow formula, and combine with above 
covariance, one get covariance of X relate to 
covariance of image point x and calibration matrix K:  

)(
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1

1
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T

d
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Rotation matrix R actually has three independent variables, 
while above calculation result in 9 nondependent covariance, so 
one can calculate independent covariance for three angle 
variables. 
 
For one image sequence, traditional bundle adjustment method 
could be used for precision estimation (Koch 2003). However, 
weights for known variables should be determined. We use 
condition adjustment method with unknown variables on the 
base of bundle adjustment, and take feature points, calibration 
matrix as known data, and take R, t and X as unknown data.  
 Rewrite equation x = K[R | t]X into linear format, and establish 
normal equation as:  
 
 

0

0

=

=++

GJ

WJKJQJ
T
b

xb
T
apa δ   (11) 

 
 
Where Ja Jb are respectively Jacobin parts of known variables 
and unknown variables, G and δx are unknown variables, and δx 
contains unknown errors. Qp is covariance matrix of feature 
points and camera intrinsic parameters. As errors of feature 
points and calibration matrix are known, so it’s easy to 
determine Qp. from equation (11), one get: 
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Where Qtt is covariance matrix of unknown variables. 
 

 
 

5. EXPERIMENTS 

In order to give a demonstration to result precision of 3D 
reconstruction, we did some experiments. During the data 
capture process, we follow conclusion in section 3, i.e. we use 
shortest focal length and shortest distance to take the image 
sequence. Fig.2 shows one image pair of one building in Peking 
University. The digital camera we used is Sony DSC-H1, image 
size is 2592x1944, and the camera is calibrated using Toolbox, 
which was developed by Klaus and Wolfgang 
(http://www.vision.caltech.edu/bouguetj/calib_doc/), and the 
calibration result is:  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
82.3372.2796
59.36005.2792

K
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
±±
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=
1

13.659.5
41.7086.5

dK
 

 

Fig.3 shows matched result of feature points on the image pair, 
assume feature point error is 0.5 pixel, using error propagation 
rules that stated in above sections, we get an average value for 
errors of 3D points: 
 

Xd = [-0.228   -0.098   -0.038] 
 

As different 3D point has different error, so this is an 
approximate value, and this error is deduced from original error 
of feature points and calibration matrix, so its unit is pixel, but 
it contains on unknown scale, so it need to multiply one 
geography scale before it’s used to estimate real error. 
 

 
 

 
In order to verify practical precision, we measured the width 
and height of one monument in front of the building, and 
distance between pillars on ground floor are also measured. In  

 
fig.4, distances between pillars marked 0-1, 2-3, 4-5, 6-7 and 8-
9 are respectively: 343.0cm, 343.0cm, 373.5cm, 343.0cm, 
343.0cm. The measurement error is under 1cm. Mounment has  

Fig.4. Marked feature points 

Fig.3. Matched result of feature points 

Fig. 5. 3D point cloud from reconstruction 
 (right is lateral view) 

Fig.2. one image pair of experiment scene 
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width marked 10-11 and height marked 11-12 are respectively 
83.85cm, 168.80cm, the measurement error is under 0.2cm. 
 
 
Fig.5 shows 3D point cloud from reconstruction, as the 
monument is measured with high precision, so we calculate the 
unknown scale using its reconstruction data and measured data, 
the result scale is 1:435.61. Multiply this scale, we get 
reconstruction distances between pillars respectively are: 
330.26cm, 348.40cm, 383.81cm, 349.88cm, 343.12cm (in fig.5, 
dash lines shows the reconstructed distances). Compare the 
reconstructed result and measured result, we find that the 
monument size and distance between pillars in the back of the 
monument have very high precision, which no bigger than 1cm. 
While the error of distance between pillars that have biggest 
distance from viewpoint is the largest, which reach to 13cm, the 
average error is 7.1cm. Fig.3 shows two image matched result, 
one can find that the baseline is small, that means result is 
sensitive to the distances. 
 
Multiply Xd with known scale 1:435.61, we get: 
 

Xd = [-99.319 -42.69 -16.55] 
 
Considering image resolution is 72dpi, convert it into 
geographic size: Xd = [ -34.5 -14.82 -5.75]mm, i.e. X position 
error is about 3.8cm. As it’s difficult for us to measure large 
amount data for verify the difference between deduced errors 
and measured errors, but 5 measured points has error 7.1cm is 
on the same degree as deduced error 3.8cm. This result is very 
well if it’s to be used in visualization process. In fact, in the 
system, such as 3D city models, one model with such as 
precision is really accurate, but in survey industrial, the 
majority of application can be satisfied. 
 

In order to promote precision of 3D reconstruction, one can use 
same method in traditional photogrammetry, and could promote 
precision by increase observe times and length of baselines. 
Therefore, one image sequence is required as shows in fig.6. By 
using this image sequence, we get reconstruction result shows 
in fig.7, under the assumption that all unknown variables have 
equal weights, we use bundle adjustment method to optimize 
the result, finally we found that errors of all distance between 
pillars are no large than 5cm. 

 
5cm distance in 3D space equals 2.89cm coordinates error, 
considering errors of image point, camera intrinsic parameters 
and marked points, this result is an ideal result. 
 
For the limitation of our experiment condition, it’s hard for us 
to verify more high precision, in order to give an estimation 
from the theory for the result precision of 3D reconstruction, 
and under the assumption that camera precision is promote 10 
times, and image point error limit to 0.1 pixel, which 
corresponding to unit weight, then we deduce covariance of 
unknown variables R, t, and X, and estimate the precision of 3D 
result, still multiply with scale 1:435.61, we get the final result 
is 0.83mm. this result completely could satisfy industrial 
requirement. But this is just one estimate result. In the practice, 
more factors should be taken into account for very high 
precision. 

 
 

6. CONCLUSION 

In this paper, we give an clear answer to the precision that 3D 
reconstruction could reached, i.e. without any control points 
and any manual operation, by using one common digital camera, 
one can get result of 3D reconstruction from one image 
sequence, its error would limit to 10cm. If control point still not 
be used, and want to promote reconstruction precision, one need 
to resolve: 1) calibrate camera with very high precision, e.g. 
control error of focal length and principal point no larger than 1 
pixel, and distortion coefficient should also be calibrated; 2) 
robust feature extraction algorithm should be used, which could 
ensure error of image point no large than 0.1 pixel; 3) obtain 
enough images if data capture condition permit, and bundle 
adjustment method should be used to optimize the result. In 
addition, select one digital camera with good capabilities is also 
very important. As a summary, it’s feasible to apply automatic 
3D reconstruction method in close range photogrammetry field, 
but very high precision application (e.g error is around 0.5mm ) 
is still need to be verify and do further research.  
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