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Abstract 

Prediction of the secondary structure of a protein from its amino acid sequence 

remains an important task. Not only did the growth of database holding only 

protein sequences outpace that of solved protein structures, but  successful 

predictions can provide a starting point for direct tertiary structure modeling 

[1],[2], and they can also significantly improve sequence analysis and sequence-

structure threading [3],[4] for aiding in structure and function determination. 

Previous works on predicting secondary structures of proteins have yielded the 

best percent accuracy ranging from 63% to 71% [5]. These numbers, however, 

should be taken with caution since performance of a method based on a training 

set may vary when trained on a different training set. In order to improve 

predictions of secondary structure, there are three challenges. The first challenge 

is establishing an appropriate database. The next challenge is to represent the 

protein sequence appropriately. The third challenge is finding an appropriate 

method of classification. So, two of three challenges are related to an appropriate 

database and characteristic features. Here, we report the development of a 

database of non-identical segments of secondary structure elements and fragments 

with missing electron densities (disordered fragments) extracted from Protein 

Data Bank and categorized into groups of equal lengths, from 6 to 40. The 

number of residues corresponding to the above-mentioned categories is: 219,788 

for α-helices, 82,070 for β-sheets, 179,388 for coils, and 74,724 for disorder. The 

total number of fragments in the database is 49,544; 17,794 of which are α-

helices, 10,216 β-sheets, 16,318 coils, and 5,216 disordered regions. Across the 
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whole range of lengths, α-helices were found to be enriched in L, A, E, I, and R, 

β-sheets were enriched in V, I, F, Y, and L, coils were enriched in P, G, N, D, and 

S, while  disordered regions were enriched in S, G, P, H, and D. In addition to the 

amino acid sequence, for each fragment of every structural type, we calculated the 

distance between the residues immediately flanking its termini. The observed 

distances have ranges between 3 and 30Å. We found that for the three secondary 

structure types the average distance between the bookending residues linearly 

increases with sequence length, while distances were more constant for disorder. 

For each length between 6 and 40, we compared amino acid compositions of all 

four structural types and found a strong compositional dependence on length only 

for the β-sheet fragments, while the other three types showed virtually no change 

with length. Using the Kullback-Leibler (KL) distance between amino acid 

compositions, we quantified the differences between the four categories. We 

found that the closest pair in terms of the KL-distance were coil and disorder (dKL 

= 0.06 bits), then α-helix and β-sheet (dKL = 0.14 bits), while all other pairs we 

almost equidistant from one another (dKL ≈ 0.25 bits). With the increasing 

segment length we found a decreasing KL-distance between sheet and coil, sheet 

and disorder, and disorder and helix. Analyzing hierarchical clustering of length 

from 6 to 18 for sheet, coil, disorder, and helix, we found that the group coil had 

the closet proximity among lengths from 6 to 18. The next closest were helix and 

disorder. The sheet has the most difference among its length from 6 to 18. In 

group sheet and coil, fragments of length 17 had the longest distance while 

fragments of length 6 had the longest distance in group disorder and helix.  

 2



Introduction 

 

A. Introduction of subject 

Proteins are macromolecules (heteropolymers) consisting of 20 different 

L−α−amino acids, also referred to as residues. Usually a heteropolymer with less 

about 40 residues is called a peptide. A certain number of residues are necessary 

to perform particular biochemical functions, Protein sizes range up to several 

hundred residues in multi-functional proteins. Very large macromolecules can be 

formed from protein subunits, for example several thousand actin molecules 

assemble into an actin filament. Large protein complexes with RNA are found in 

ribosome particles, which are in fact ‘ribozymes’. 

Proteins are not linear molecules as suggested when we write out a "string" of 

amino acid sequence. Rather, usually this "string" folds into an intricate three-

dimensional structure. It is this three-dimensional structure that allows proteins to 

function. Thus in order to understand the details of protein function, one must 

understand protein structure. Protein structure is broken down into four levels. 

Primary structure refers to the "linear" sequence of amino acids. Secondary 

structure is "local" ordered structure brought about via hydrogen bonding mainly 

within the peptide backbone. The two most common secondary structure 

arrangements are the right-handed α-helix and the β-sheet, which can be 

connected into a larger tertiary structure (or fold) by turns and loops of a variety 

of types. These two secondary structure elements satisfy a strong hydrogen bond 

network within the geometric constraints of the bond angles ω, ϕ and φ . Not all 
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amino acids favor α-helix formation due to rigid constraints of the amino acid 

side chains. Amino acids such as A, D, E, I, L and M favor the formation of α-

helices, whereas, G and P tend to disrupt helicies. This is particularly true for P 

since it is a pyrrolidine based imino acid (HN=) whose structure significantly 

restricts movement about the peptide bond in which it is present, thereby 

interfering with extension of the helix. The disruption of the helix is important as 

it introduces additional folding of the polypeptide backbone allowing the 

formation of globular proteins. Sheets can be formed by parallel or, more 

common, antiparallel arrangement of individual β-sheets.  β -sheets are composed 

of two or more different stretches of at least 5-10 amino acids. Folding and 

alignment of stretches of the polypeptide backbone beside one another form β-

sheets which are stabilized by H-bonding between amide nitrogens and carbonyl 

carbons. However, the H-bonding residues are present in adjacently opposed 

stretches of the polypetide backbone as opposed to a linearly contiguous region of 

the backbone in the α-helix. Tertiary structure is the "global" folding of a single 

polypeptide chain. A major driving force in determining the tertiary structure of 

globular proteins is the hydrophobic effect. The polypeptide chain folds such that 

the side chains of the nonpolar amino acids are "hidden" within the structure and 

the side chains of the polar residues are exposed on the outer surface. Hydrogen 

bonding involving groups from both the peptide backbone and the side chains are 

important in stabilizing tertiary structure. The tertiary structure of some proteins is 

stabilized by disulfide bonds between cysteine residues. Quartenary structure 

involves the association of two or more polypeptide chains into a multi-subunit 
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structure. Quartenary structure is the stable association of multiple polypeptide 

chains resulting in an active unit. Not all proteins exhibit quartenary structure. 

Usually, each polypeptide within a multisubunit protein folds more-or-less 

independently into a stable tertiary structure and the folded subunits then 

associate with each other to form the final structure. Quartenary structures are 

stabilized mainly by noncovalent interactions; all types of noncolvalent 

interactions: hydrogen bonding, van der Walls interactions and ionic bonding are 

involved in the interactions between subunits. In rare instances, disulfide bonds 

between cysteine residues in different polypeptide chains are involved in 

stabilizing quartenary structure. 

Based on the theory that function of protein is determined by its structure which is 

thought be encoded by its primary amino sequence, much effort has been made in 

the area of predicting structures from the amino sequences. One form of 

predicting the protein structure from the amino acid sequence is the secondary 

structure prediction. Instead of predicting the full 3-D coordinates of the structure, 

the task is to predict a sequence of secondary structure based on the amino acid 

sequence alone. Present work uses the set of secondary structure labels whose size 

is three (i.e. Helix, Coil, and Sheet).  

B. Importance of subject 

Prediction of the secondary structure of a protein from its amino acid sequence 

remains an important task. Not only did the growth of databases holding only 

protein sequences outpace that of solved protein structures, but  successful 

secondary structure predictions can provide a starting point for direct tertiary 
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structure modeling [1],[2], and they can also significantly improve sequence 

analysis and sequence-structure threading [3],[4] which aid structure and function 

determination.  

C. Knowledge gap 

Previous works on predicting secondary structures of proteins have achieved 

percentage accuracies ranging from 63% to 71% [5]. These numbers, however, 

should be taken with caution since performance of a method based on a training 

set may vary when trained on a different training set. In order to improve 

predictions of secondary structure, there are three challenges. The first challenge 

is establishing an appropriate database. For example, disordered proteins, existing 

protein structural databases are strongly biased against disorder. As a result, in the 

previous work [25] just 32 proteins with disorder longer then 40 amino acids were 

available. Later, about 110 more disordered proteins were added. The next 

challenge is to represent the protein sequence appropriately. The third challenge is 

finding an appropriate method of classification. So, two of the three challenges 

are related to an appropriate database and characteristic features. 
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Background 

A. Related research 

The effort of predicting protein secondary structure began even before the 

structure of first protein was solved by x-ray crystallography. The size of the 

database collecting those structures is a testament to the fact that there exists 

recurring shapes representing various parts of the protein. The geometries of these 

domains are guided by the composition of the amino acid sequence [26]. Initially 

these recurring shapes were given secondary structure labels by the experts in the 

area. But this method of labeling introduced subjectivity. In 1983, Kabsch et al. 

introduced the DSSP program that consistently assigned secondary structure 

labels to the solved structures. This program bases its method on the hydrogen 

bonding patterns found in the solved structure. According to DSSP, 8 types of 

protein secondary structure elements were classified and denoted by letters: H (α-

helix), E (extended β -strand), G (3/10 helix), I (5-helix), B (isolated β-strand), T 

(turn), S (bend) and “_” (coil). The 8 classes are usually simplified to three states, 

helix (H), sheet (E), and coil (C ) by different reduction methods[6]. Thus, the 

secondary structure prediction can be analyzed as a typical three-state pattern 

recognition or classification problem, where the secondary structure class of a 

given amino acid residue in a protein is predicted based on its sequence features. 

Since the 1970s, many methods have been developed for predicting protein 

secondary structures. Early works usually relied on the single-residue statistics of 

various secondary structural elements, for example, the Chou–Fasman method[7] 

and the Garnier–Osguthorpe–Robson (GOR I) method[8]. Nearly 20 years later, a 
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significant improvement was made in the PHD method[9], which is a three-level 

neural network including some machine learning techniques. After the PHD 

method, many further neural networks and machine learning refinements were 

developed[10],[11],[12, 13]. Several machine learning approaches have 

successfully predicted protein secondary structures, and prediction accuracies 

were further improved. There have been many previous efforts to predict disorder. 

Perhaps the earliest are methods based on regions of low-complexity. Although 

many such regions are structurally disordered, the correlation is far from perfect 

between regions of low sequence complexity and disordered segments (and vice 

versa) [13]. Likely the strongest evidence for this correlation comes from the fact 

that low-complexity regions are rarely seen in protein 3D structures [14]. Methods 

to predict low complexity, like SEG [15] and CAST [16], are thus often used for 

this purpose. Methods using hydrophobicity can also give hints as to disordered 

regions, as they are typically exposed and rarely hydrophobic. Regions without 

regular secondary structure can be predicted by the NORSp (NO Regular 

Structure) server[17] , however as the authors indicate that such regions are not 

necessarily disordered. For examples structures such as the Kringle domain (PDB: 

1KRN) are almost entirely without regular secondary structure in their native state 

but they still have tertiary structure wherein the basic building block are coils.  

 B.   Current understanding         

The fundamental elements of protein secondary structure are α -helices, β- sheets, 

coils, and turns. Some methods have been developed for defining various protein 

secondary structure elements from the atomic coordinates in the Protein Data 
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Bank (PDB), such as DSSP[18], STRIDE[19], and DEFINE[20]. Recently, there 

are many facts showing  that many functionally important protein segments that 

appear to adopt regular structure only upon binding to substrates or other proteins 

[21] [22] ; these segments don’t have rigid second structure, they are referred to 

as floppy, natively disordered, natively unfolded, or loopy[23],[24],[25] .  

The current understanding of disorder is that disordered proteins are flexible to 

allow for more interaction partners and modification sites[21]. It has also been 

thought that disordered proteins exist to provide a simple solution to having large 

intermolecular interfaces in a smaller protein. Usage of smaller proteins would 

also reduce the required cell and genome sizes [26]. It has been demonstrated that 

having several relatively low affinity linear interaction sites allows for a flexible, 

subtle regulation and can accounts for specificity with fewer linear motifs 

types[27]. It has also been noted that protein disorder plays an important role in 

biology and in diseases mediated by protein misfolding and aggregation [28], 

[29], [30]. There is no commonly agreed definition about protein disorder. The 

thermodynamic definition of disorder in a polypeptide chain is the “random coil” 

structural state. The random coil state can best be understood as the structural 

ensemble spanned by a given polypeptide in which all degrees of freedom are 

used within the conformational space. However, even under extremely denaturing 

solution conditions, such as 8M urea, this theoretical state is not observed in 

solvated proteins [31],  [32], [33]. Proteins in solution thus seem to always keep a 

certain amount of residual structure.  
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There is a database of disorder protein and the first tool named PONDR (Predictor 

Of Naturally Disordered Regions, http://www.pondr.com ) designed specifically 

for prediction of protein disorder. 

C. Hypothesis or research question 

Based on the assumption that amino acid sequence determines structure, it was 

proposed that sequence also determines intrinsic disorder as well. Some predictors 

of order and disorder have been developed. There are two aspects of secondary 

structure prediction. In the ab initio or single sequence prediction, the test 

sequence does not exhibit significant similarity to any of the training sequences at 

the sequence level. This is a limiting factor for the prediction accuracy. On the 

other hand, if there are closely related sequences, this generally implies their 

structural similarity, and the predictions are improved by considering an 

appropriate database and a characteristic feature. In this paper, we address the 

problem of establishing a database containing helix (H), sheet (E), coil (C ), and 

disorder (D) sequence segments with lengths from 6 to 40, and analyze their 

amino acid composition and similarity. 

      D. Intended research project 

We intended to construct a database containing helix (H), sheet (E), coil (C ), and 

disorder (D)  sequence segments by using a perl program. Then, we will compute 

the amino acid composition of these four structures with a MATLAB program.  

After that, we will calculated the Kullback-Leibler (KL) [34] distance between 

each pair of distributions in different data sets. Finally, we attempted to cluster 
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length segments of each structural type in order to find optimal groupings and 

improve prediction accuracy of short disorder regions.   
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Methods 

A. Materials and instruments 

Disorder (D) segments with lengths from 6 to 40 residues were extracted from 

DisProt  ((http://divac.ist.temple.edu/disprot/database.php). The helix (H), sheet 

(E), coil (C ) segment  data set was constructed based on DSSP (Kabsch and 

Sander, 1983) secondary structure assignments as described in Linding et al. 2003 

(http://www.cmbi.kun.nl/gv/dssp/). We grouped H (α-helix), G (3/10 helix) into 

H (α-helix); grouped E (extended β -strand), B (isolated β -strand) into E (strand), 

and T (turn), S (bend), I (5-helix), and “_” (coil) into C (coil) giving. This data set 

only contains chains from each PDB_ID according to DisProt database. In each 

length sub-data set we removed all identical segments. All segments of this 

database were internal. 

 B. Statistical analysis 

1. we calculated the Kullback-Leibler (KL) [34] distance between each 

pair of distributions p1 and p2 as  

  

                   
)(
)(log)()2,1(

2

1
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1
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where p1(i) and p2(i) represent relative frequencies of amino acid i in     samples 

S1 and S2.  In all cases, KL distance of s1 to s2 is half KL distance of s1 to s2 

plus half KL distance of s2 to s1. 
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      2.  KL-distance was also used as a test statistic to evaluate the significance of the 

differences between the pairs of underlying sample distributions. Using 

bootstrapping, we tested the null hypothesis that each pair of samples was 

generated from the same distribution. Estimates of P-values were calculated using 

5,000 bootstrap iterations. 

      3.   We calculated the standard deviation of each amino acid composition as 

 

                   
datasize

referencereferenceSd )1(* −
=  

where reference is a percent of the amino acid frequency and datasize  is all the 

residue number of data. 

     4.  We calculated the distance of each fragment between bookending residues as 
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Where x1, y1, and z1 represent the beginning bookending residue coordination in 

PDB, x2, y2, and z2 represent the end bookending residue coordination. 

          5. Hierarchical Clustering 

A hierarchical data clustering algorithm yields a multi-level dendrogram. The 

agglomerative hierarchical clustering (HAC) algorithms operate by maintaining a 

sorted list of inter-cluster distances. Initially, each data instance forms a cluster. 

The clustering algorithm repetitively merges the two clusters with the minimum 

inter-cluster distance. Upon merging two clusters, the clustering algorithm 
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computes the distances between the newly-formed cluster and the remaining 

clusters and maintains the sorted list of inter-cluster distances accordingly. There 

are a number of ways to define the inter-cluster distance: minimum distance 

(single-link), maximum distance (complete-link), average distance (average-link)  

       mean distance.   

      Hierarchical clustering refers to the formation of a recursive clustering of the data 

points: a partition into two clusters, each of which is itself hierarchically  

clustered.  

One way to draw this is some kind of system of nested subsets, maximal in the 

sense that one can’t identify any additional subsets without violating the nesting:  

 
                    |   _________              | 
                    |  |  ______  |    _____   | 
                    |  | |      | |   |     |  | 
                    |  | | x  y | |   |  u  |  | 
                    |  | |______| |   |     |  | 
                    |  |          |   |  v  |  | 
                    |  |    z     |   |_____|  | 
                    |  |__________|            | 
                    |__________________________| 
        
 

Alternatively, one can draw a “dendrogram”, that is, a binary tree with a  

distinguished root, which has all the data items at its leaves:  
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                            /\ 
                           /  \ 
                          /    \                 ________ 
                         /      \               |        | 
                        /\       \     or     __|__      | 
                       /  \       \          |     |    _|_ 
                      /\   \      /\        _|_    |   |   | 
                     /  \   \    /  \      |   |   |   |   | 
                    x    y   z  u    v     x   y   z   u   v 
 

Conventionally, all the leaves are shown at the same level of the drawing. The 

ordering of the leaves is arbitrary, as is their horizontal position. The heights of 

the internal nodes are usually related to the metric information used to form the 

clustering.  

The tree is not a single set of clusters, but rather a multi-level hierarchy, where 

clusters at one level are joined as clusters at the next higher level. This allows you 

to decide what level or scale of clustering is most appropriate in your application. 

We use Matlab hierarchical clustering function and KL-distance matrix to build 

hierarchical tree. The matlab hierarchical clustering function takes the KL-

distance information and links pairs of objects that are close together into binary 

clusters (clusters made up of two objects). The Matlab hierarchical clustering 

function then links these newly formed clusters to other objects to create bigger 

clusters until all the objects in the original data set are linked together in a 

hierarchical tree. 
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Results 
 
1. Comparing sheet, coil, disorder, and helix fragments 

 
Table 1. The data size of four fragments. 

Type Number of fragments Number of residues

Coil 16,318 179,388 

Disorder   5,216   74,724 

Sheet 10,216   82,070 

Helix 17,794 219,788 

 
In this study, we developed a database of non-identical segments of secondary 

structure elements and fragments with missing electron densities (disordered 

fragments) extracted from Protein Data Bank and categorized into groups of equal 

lengths, from 6 to 40. The number of residues corresponding to the above-

mentioned categories was: 219,788 for α-helices, 82,070 for β-sheets, 179,388 for 

coils, and 74,724 for disorder. The total number of fragments in the database is 

49,544; 17,794 of which are α-helices, 10,216 are β-sheets, 16,318 coils, and 

5,216 are disordered regions (Table1). Across the whole range of lengths 

(figure.1), α-helices were found to be enriched in L, A, E, I, and R, β-sheets were 

enriched in V, I, F, Y, and L, coils were enriched in P, G, N, D, and S, while  

disordered regions were enriched in S, G, P, H, and D.  

Figure.2 shows the amino acid compositions of coil compared in fragment length 

from 6 to 18. The cysteine and tryptophan are the most depletion in each fragment 

group, the glycine and proline are the most enriched. With the increase of 
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fragment length, the amino acid leucine and proline exhibit tendency of more 

enriched, the amino acid glycine exhibits tendency of more depletion.  

The amino acid compositions of disorder are compared in fragment length from 6 

to 18 are showed in figure 3. The cysteine and tryptophan are the most depletion 

in each fragment length, the glycine, Serine and glutamic acid are the most 

enriched. With the increase of fragment length, the amino acid leucine and 

isoleusine exhibit tendency of more enriched. The amino acid histidine exhibits 

tendency of more enriched with fragment length increasing from 6 to 9 but shows 

tendency of more depletion from length 10 to 18. 

Figure.4 shows the amino acid compositions of sheet compared in fragment 

length from 6 to 18. All fragments are depleted in cysteine and tryptophan, while 

enriched in valine and leucine. With the increase of fragment length, threonine, 

glutamine, serine, asparagines, proline, aspartic acid, glutamic acid, and lysine 

exhibit tendency of being more prevalent; valine, leucine, isoleucine, and cycteine 

exhibit tendency of being less prevalent.  

Figure.5 shows the amino acid compositions of helix compared in fragment length 

from 6 to 18. Cysteine and tryptophan are the least frequent for each fragment 

length; leucine and alanine are the most frequent. Cysteine and methionine exhibit 

tendency of being more prevalent, while proline, and glutamic acid exhibit 

tendency of being less prevalent with the increase of fragment length.  

The thirteen distributions of various lengthy of four structures can also be 

compared using a more rigorous statistical approach. Because there is little higher 

order Markov dependence in proteins (Nevill-Manning and Witten 1999), all 
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segments from each group can be concatenated to form four distinct samples, Sk 

(k _ 1. . .4). Each sample Sk can be considered a realization of an independent and 

identically distributed random process that emits symbols from an alphabet of 20 

amino-acid codes. To compare the thirteen amino-acid frequency distributions, 

we calculated the Kullback-Leibler (KL) distance between each pair of 

distributions p1 and p2 as described in the method Figure 6 presents the KL-

distances.  The KL –distance suggest that the two most similar sets are coil and 

disorder (dKL = 0.06 bits), then α-helix and β-sheet (dKL = 0.14 bits), while all 

other pairs show equidistant from one another (dKL ≈ 0.25 bits). With the increase 

of segment length, there is a tendency of decreasing KL-distance between sheet 

and coil, sheet and disorder, and disorder and helix. 

2. Comparing distance of each length fragment between bookending residues  

The twenty distances of each length fragment between bookending residues of the 

four structures are also compared. The observed distances of all four structure of 

various length range between 3 and 30Å. In all lengths from 6 to 25 (Figure.7), 

Sheet had the greatest distance, then helix. Coil had a longer distance than 

disorder except in segment length of 14, 15, 20, and 25. With increasing to length 

from 6 to 25, the distance of sheet, helix and coil exhibits tendency to increase. 

But disorder has the shortest distance in length 18. We also compared distance of 

disorder between coil, sheet and helix (Figure. 8), the coil and disorder are the 

closest, then helix and disorder, finally sheet and disorder.   

 

3. Hierarchical clustering of length 6 to 18 for sheet, coil, disorder, and helix. 
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Hierarchical cluster analysis is a statistical method for finding relatively 

homogeneous clusters of cases based on measured characteristics. In the figures 

of hierarchical clustering, the numbers along the horizontal axis represent the 

indices of the objects in the original data set, for example L18 is the set of 

sequences with length of 18. The links between objects are represented as upside 

down U-shaped lines. The height of the U indicates the distance between the 

objects taking into account the length of both vertical lines. 

Figure 9 shows hierarchical clustering of length from 6 to 18 for sheet. The range 

of distances is between 2.4×10-3 to   44 ×10-3. L8, L9, L10, L6, L7, L11, L12, L13, 

and L15 form a closely related cluster with quite close distances between all 

members. The fragments of length 17 are the most further from the nearest 

neighbor. 

Figure 10 shows hierarchical clustering of length from 6 to 18 for coil. The range 

of distances is between 0.5×10-3 to   4.3 ×10-3. Fragments of length 9 and 10 have 

the closest proximity. Sequence of length 7, 8, 11, 13, and 14 have almost the 

same proximity. The fragment of length 17 is the longest distance from its nearest 

neighbor. 

Figure 11 shows hierarchical clustering of length from 6 to 18 for disorder. The 

range of distance is between 4.2×10-3 and   13.9 ×10-3. Fragments of length 9 and 

10 have the closest proximity. Sequence of length 7, 8, 11, 12, 13, 14, 15, 16, 17 

and 18 have almost the same proximity. The fragment of length 6 is the longest 

distance from its nearest neighbor. 
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Figure 12 shows hierarchical clustering of length from 6 to 18 for helix. The 

range of distance is between 0.5×10-3 and   4.5 ×10-3. Fragments of length 13 and  

14 have the closest proximity. Sequence of length 7, 8, 9, 10, 11, 12, 15, 16, 17 

and 18 have almost the same proximity. The fragment of length 6 is the longest 

distance from its nearest neighbor. 

Analyzing the hierarchical clustering of length from 6 to 18 for sheet, coil, 

disorder, and helix, we found that the group coil has the closet proximity among 

its lengths from 6 to 18. The next closest were helix and disorder. The sheet had 

the most difference among its length from 6 to 18. In group sheet and coil, 

fragments of length 17 had the longest distance while the fragments of length 6 

had the longest distance in group disorder and helix. 
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Amino acid compositions of coil, disorder, sheet, and helix
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Figure1: Amino acid composition of various data sets. The composition of each 
amino acid was subtracted from the average composition of the four sets 
described herein; thus, negative peaks indicate depletions compared to the 
average of the four reference sets, and positive peaks represent enrichments. The 
order of the amino acids along the x-axis (as in figure 2) is from the most buried 
(left) to the most exposed (right) in typical globular proteins.  
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Amino acid composition for various length of  coil segments
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Figure 2. Amino acid compositions of coil for fragment lengths from 6 to 18.  

Amino acid compositions for various lengths of disorder segments
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Figure 3. Amino acid compositions of disorder for fragment lengths from 6 to 18.  

Amino acid compositions  for various lengths of sheet segments
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Figure 4. Amino acid compositions of sheet for fragment lengths from 6 to18.  

Amino acid compositions for various lengths of helix segments

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

W C F I Y V L H M A T R G Q S N P D E K

Amino Acid

Va
lu

e

L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18  

Figure 5. Amino acid compositions of helix for fragment lengths from 6 to 18.  
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KL- distance between four length-dependent structures: 
sheet (E), coil(C ), disorder(D), and helix(H)
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Figure 6. KL distance of sheet, coil, disorder, and helix for fragment length from 
6 to 18 
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Average distances between the residues flanking segment termini for 
four structure
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Figure7. Average distance between residues flanking segment termini for 
disorder, coil, sheet, and helix.  

Difference of average distance between disorder and coil, sheet, and helix 
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Figure 8. Difference of average bookending residue distances between disorder 
and coil, sheet and helix for fragment length 6 to 25. 
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Figure9. Hierarchical clustering of length from 6 to 18 for sheet. 

 

 

Figure10. Hierarchical clustering of length from 6 to 18 for coil 

 
Figure11. Hierarchical clustering of length from 6 to 18 for disorder. 

 
Figure12. Hierarchical clustering of length from 6 to 18 for helix. 
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Conclusion  

     Across the whole range of lengths, α-helices were found to be enriched in L, A, E, 

I, and R, β-sheets were enriched in V, I, F, Y, and L, coils were enriched in P, G, 

N, D, and S, while disordered regions were enriched in S, G, P, H, and D. The 

cysteine and tryptophan are the least frequent in all fragments of all four structural 

types. The helix and sheet have more buried amino acid in typical globular 

proteins than coil and disorder, while the coil and disorder have more of exposed 

amino acids. For each length between 6 and 18, we compared amino acid  

      compositions of all four structural types and found a strong compositional 

dependence on length only for the β-sheet fragments, while the other three types 

showed virtually no change with length. Using the Kullback-Leibler (KL) 

distance between amino acid compositions, we quantified the differences between 

the four categories. We found that the closest pair in terms of the KL-distance 

were coil and disorder (dKL = 0.06 bits), then α-helix and β-sheet (dKL = 0.14 

bits), while all other pairs were almost equidistant from one another (dKL ≈ 0.25 

bits). With the increase of segment length we found a decreasing KL-distance 

between sheet and coil, sheet and disorder, and disorder and helix. 

The observed distances between the residues immediately flanking ranged 

between 3 and 30Å. We found that for the three secondary structure types the 

average distance between the bookending residues linearly increases with 

sequence length from 6 to 25, while it is more constant for disorder. Based on 

distances between the residues immediately flanking segment termini, we also 

found the coil and disorders are the closest, then helix and disorder, finally sheet 
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and disorder. Analyzing hierarchical clustering of length from 6 to 18 for sheet, 

coil, disorder, and helix, we found that the group coil has the closet proximity 

among its lengths from 6 to 18. The following were helix and disorder. The sheet 

had the most difference among lengths from 6 to 18. In group sheet and coil, 

Fragments of length 17 had the longest distance while fragments of length 6 had 

the longest distance in group disorder and helix. 
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Discussion 

Recently, it is becoming increasingly clear that many functionally important 

protein segments appear to adopt regular structure only upon binding to substrates 

or other proteins[21]; they are referred to as floppy, natively disordered, natively 

unfolded, or loopy[23],[24],[25]. More than 100 such proteins are found including 

Tau, Prions, Bcl-2, p53, 4E-BP1 and eIF1A [22],[35].  It seems that these disorder 

regions are important for function. They are assumed to become ordered only 

when bound to another molecule (e.g. CREB-CBP complex [36]) or owing to 

changes in the biochemical environment[37] . Because of their flexibility, the 

disorder proteins play an important role in the process of molecular recognition, 

assembly/disassembly, highly-entropy chairs, protein modification. 

Protein disorder can be studied by a variety of experimental methods, such as X-

ray crystallography, NMR, CD-spectroscopy and hydrodynamic measurements 

[38]. For example, one class of ‘natively disordered’ regions was defined as 

regions missing coordination in X-ray diffraction, presumably since the flexibility 

keeps them from crystallizing into well-ordered structures. These regions are 

sometimes associated with regions with ‘compositional bias’ or ‘low sequence 

complexity’ [39], [13], [40]. Another class is characterized by proteins that appear 

unfolded by CD measurements [41]. In vivo studies of disorder are possible with 

NMR spectroscopy on living cells (e.g. anti-sigma factor FlgM [42]). Each one of 

these methods detects different aspects of disorder resulting in several operational 

definitions of protein disorder. 
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Based on the theory that function of protein is determined by its structure which is 

thought be encoded by its primary amino sequence, much effort has been made in 

the area of predicting structures from the amino sequences. The first tool designed 

specifically for prediction of protein disorder was PONDR (Predictor Of 

Naturally Disordered Regions, http://www.pondr.com)[43],[44]. It is based on 

artificial neural networks. An alternative method is GlobPlot 

(http://globplot.embl.de) that instead relies on a novel propensity based disorder 

prediction algorithm [45].       

Here, we report the development of a database of non-identical segments of 

secondary structure elements and fragments with missing electron densities 

(disordered fragments) extracted from Protein Data Bank and categorized into  

groups of equal lengths, from 6 to 40. The number of residues corresponding to 

the above-mentioned categories is: 219,788 for α-helices, 82,070 for β-sheets, 

179,388 for coils, and 74,724 for disorder. The total number of fragments in the 

database is 49,544; 17,794 of which are α-helices, 10,216 β-sheets, 16,318 coils, 

and 5,216 disordered regions. Across the whole range of lengths, α-helices were 

found to be enriched in L, A, E, I, and R, β-sheets were enriched in V, I, F, Y, and 

L, coils were enriched in P, G, N, D, and S, while  disordered regions were 

enriched in S, G, P, H, and D. In addition to the amino acid sequence, for each 

fragment of every structural type, we calculated the distance between the residues 

immediately flanking its termini. The observed distances have ranges between 3 

and 30Å. We found that for the three secondary structure types the average 

distance between the bookending residues linearly increases with sequence length, 
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while distances were more constant for disorder. For each length between 6 and 

25, we compared amino acid compositions of all four structural types and found a 

strong compositional dependence on length only for the β-sheet fragments, while 

the other three types showed virtually no change with length. Using the Kullback-

Leibler (KL) distance between amino acid compositions, we quantified the 

differences between the four categories. We found that the closest pair in terms of 

the KL-distance were coil and disorder (dKL = 0.06 bits), then α-helix and β-sheet 

(dKL = 0.14 bits), while all other pairs we almost equidistant from one another (dKL 

≈ 0.25 bits). With the increasing segment length we found a decreasing KL-

distance between sheet and coil, sheet and disorder, and disorder and helix. 

Analyzing hierarchical clustering of length from 6 to 18 for sheet, coil, disorder, 

and helix, we found that the group coil had the closet proximity among lengths 

from 6 to 18. The next closest were helix and disorder. The sheet has the most 

difference among its length from 6 to 18. In group sheet and coil, fragments of 

length 17 had the longest distance while fragments of length 6 had the longest 

distance in group disorder and helix.  
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