
  

 

 

 

 

 

AN APPLICATION FOR DOWNLOADING AND INTEGRATING 

MOLECULAR BIOLOGY DATA 

 

 

 

 

 

 

 

Burr R. Fontaine, MD, MS 

 

 

 

 

 
Submitted to the faculty of the University Graduate School  

in partial fulfillment of the requirements  
for the degree  

Master of Sciences  
in the School of Informatics  

Indiana University  
July 2004 

 



Accepted by the Graduate Faculty, Indiana University, in partial fulfillment 
of the requirements for the degree of Master of Sciences.  

   
   
   
   
   

 ______________________                

 

Tatiana Foroud, Ph.D. 

   
   
   
   

______________________                

 

Snehasis Mukhopadhyay, Ph.D. 

Masters Committee  
   
 

   

______________________                 

 

Narayanan B Perumal, Ph.D. 

July 6, 2004  
   
   
   

 
   
   
   
  

 ii



ACKNOWLEDGEMENTS 

 
First and foremost, the successful completion of this project would not have been 

possible without the assistance and guidance I received from my masters committee: 

Dr. Tatiana Foroud, Dr. Snehasis Mukhopadhyahy, and Dr. Narayanan Perumal. 

    

End-user involvement is critical to ensuring that a software development project 

does a successful job of meeting their needs. Kenneth White, Dan Koller, Nathan 

Pankratz, Dongbing Lai, Lixiang Liu, Subha Krishna, and Leah L. Flury attended 

numerous meetings and contributed a substantial amount of valuable input over the 

course of this project. This project also received outstanding technical support from 

Joseph Urbanski in the department of Medical and Molecular Genetics and Andrew 

Arenson in Centralized Life Sciences Data Services at Indiana University. 

 

This project received grant funding from NIH/NIDS R01-NS37167 and NIH/NIA 

P01-AG18397. This research was also supported in part by the Indiana Genomics 

Initiative (INGEN). The Indiana Genomics Initiative (INGEN) of Indiana University 

is supported in part by Lilly Endowment Inc. 

 iii



ABSTRACT 

 

INTRODUCTION AND BACKGROUND 

Integrating large volumes of data from diverse sources is a formidable challenge for 

many investigators in the field of molecular biology. Developing efficient methods for 

accessing and integrating this data is a major focus of investigation in the field of 

bioinformatics. 

 

In early 2003, the Hereditary Genomics division of the department of Medical and 

Molecular Genetics at IUPUI recognized the need for a software application that would 

automate many of the manual processes that were being used to obtain data for their 

research. The two primary objectives for this project were: 1) an application that would 

provide large-scale, integrated output tables to help answer questions that frequently 

arose in the course of their research, and 2) a graphic user interface (GUI) that would 

minimize or eliminate the need for technical expertise in computer programming or 

database operations on the part of the end-users. 

 

In early 2003, Indiana University (IU), IBM, and the Indiana Genomics Initiative 

(INGEN) introduced a new resource called Centralized Life Sciences Data Services 

(CLSD). CLSD is a centralized data repository that provides programmatic access to 

biological data that is collected and integrated from multiple public, online databases. 

 

 

 



METHODS 

1. an in-depth analysis was conducted to assess the department's data requirements 

and map these requirements to the data available at CLSD 

2. CLSD incorporated new data as necessary 

3. SQL was written to generate tables that would replace the targeted manual 

processes 

4. a DB2 client was installed in Medical and Molecular Genetics to establish remote 

access to CLSD 

5. a graphic user interface (GUI) was designed and implemented in HTML/CGI 

6. a PERL program was written to accept parameters from the web input form, 

submit queries to CLSD, and generate HTML-based output tables 

7. validation, updates, and maintenance procedures were conducted after early 

prototype implementation 

 

RESULTS AND CONCLUSIONS 

This application resulted in a substantial increase in efficiency over the manual methods 

that were previously used for data collection. The application also allows research teams 

to update their data much more frequently. A high level of accuracy in the output tables 

was confirmed by a thorough validation process.  
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INTRODUCTION 

 

INTRODUCTION TO SUBJECT 

A major focus of research in the Hereditary Genomics division of the department of 

Medical and Molecular Genetics at IUPUI is the identification and characterization of 

genes that cause human disease. This research requires large volumes of data from a 

number of online databases at the National Center for Biotechnology Information 

(NCBI), including LocusLink, UniGene, UniSTS, and dbSNP. Data are also obtained 

from Mouse Genome Informatics (MGI) and the Rat Genome Database (RGD).  

 

Collecting and integrating this data manually requires the user to access multiple web 

sites and copy data from numerous web pages into spreadsheets, one element at a time. 

This process is tedious, time-consuming, and prone to human error. Automating these 

processes is a desirable goal because of the repetitive nature of these tasks and the 

volume of data that is required. However, the size and complexity of the sources from 

which the data are drawn make it difficult to automate these processes. This is especially 

difficult when data must be accessed and integrated from multiple sources that have been 

developed independently of each other. Automating access methods for many of these 

databases is also complicated by data models and file formats that are updated and 

revised on a regular basis. 

 

 

 

 



IMPORTANCE OF SUBJECT 

Integrating large volumes of data from diverse sources is a formidable challenge for 

many investigators in the field of molecular biology. The exponential increase of new 

information in this field in recent years has had a profound impact on medicine and 

biology. Managing this information so that its potential value can be fully realized is a 

critical component of the infrastructure that supports medical and biological research, and 

a major focus of investigation in the field of bioinformatics.  

 

There are a large number of online biological databases that are freely available to the 

research community on the Internet, but the web sites for these databases are often 

difficult to navigate because of their size, complexity, and interface design. Web pages 

are a good way to access online databases when looking for specific pieces of 

information, but they are poorly suited for accessing large volumes of data on a regular 

basis. Many online biological databases also make programmatic access available, but a 

high level of technical expertise is frequently necessary to make use of these resources.   

 

Another problem that is frequently encountered by molecular biologists is that data must 

be integrated from multiple sources. Many biological databases have been developed in 

relative isolation, and there are significant differences in the ways that the data is 

represented, organized, and managed. In the absence of close coordination, the 

knowledge domains covered by these databases may also have gaps and redundancies. As 

a result, accessing and integrating information from different databases is often a time-

consuming manual process that is difficult to automate. These are important issues that 

 



must be addressed to realize the full potential of the large volume of data and information 

that is currently being generated in the field of molecular biology.  

 

KNOWLEDGE GAP 

In early 2003, researchers in the Hereditary Genomics division of the department of 

Medical and Molecular Genetics department at IUPUI recognized the need for a software 

application that would automate many of the manual processes that were required to 

obtain the data necessary for their research. The two primary objectives for this project 

were: 1) an application that would provide large-scale, integrated output tables to help 

answer questions that frequently arose in the course of their research, and 2) a graphic 

user interface (GUI) that would minimize or eliminate the need for technical expertise in 

computer programming or database operations on the part of the end-user. 

 

In early stages of this project, it was not clear what technical and programming resources 

would be necessary or how the project would be implemented. After discussing the 

requirements with the School of Informatics, a decision was made to develop this 

application as part a master’s project in Bioinformatics. 

 

 

 

 

 

BACKGROUND 

 



 

RELATED RESEARCH 

Sujansky (2001) and Stein (2003) have described three traditional approaches to the 

integration of heterogeneous biological and medical databases. For databases that are 

available online, the first and most basic approach is URL linking for end-users that are 

using a web browser. NCBI maintains an extensive network of URL links between its 

component databases as well as external resources such as MGI. This approach to 

database integration is relatively simple to implement, but it requires regular maintenance 

and close coordination to keep the URL links up to date whenever data is updated or 

reorganized.  

 

A more sophisticated approach is to create a centralized data repository. This involves 

collecting data from numerous sources and integrating it into a single data warehouse 

under a global data model. The primary advantages of the data warehouse approach are 

local control of the data and internal consistency. However, this approach requires a 

substantial investment in resources to develop and maintain.  

 

Another high-level approach is to access multiple databases with a global query engine, 

which translates user queries into different formats that can be processed by each 

database (Lacroix 2002). The query engine also integrates the results that are obtained 

from multiple sources into a final form that is delivered as output to the end-user. The 

primary advantage of this method is that the data and its organization remain under the 

control of individuals who are experts in their respective knowledge domains. One 

 



disadvantage of this approach is that longer processing times are frequently required 

because of the need to translate queries and integrate query results. Writing the drivers 

that communicate between the central query engine and component databases also 

requires a substantial investment of resources. 

 

Stein (2003) has identified a number of database integration issues which must be 

addressed by all three of these approaches: 1) differences in data structures, 2) naming 

differences, 3) semantic differences, and 4) information which is present but not 

explicitly represented. Structural differences refer to the forms in which data is stored and 

organized, such as flat files, relational tables, or web pages. Relational databases may 

differ in the degree to which the tables have been normalized, and the manner in which 

equivalent data fields are organized into different tables. All of these structural forms 

may differ in the degree to which they allow free text vs. structured data fields to 

represent the same information.  

 

Secondly, databases may have different names for the same data fields. For example, two 

medical facilities may both use social security number for patient identification, but one 

database might call this field PATIENT_ID and another might call it MED_REC_NUM. 

These similarities may be difficult to identify unless careful attention is paid to the 

comparison of data definitions and field values. 

 

A third problem is semantic differences between fields and values that are similar but not 

equivalent. For example, one institution might quantify blood culture growth on a scale 

 



of 0-1-2-3-4+ and another might use no-low-mod-lg growth. This problem is also 

reflected in subtle differences in the conceptual framework that is defined for different 

databases. For example, LocusLink defines a gene as a nucleotide sequence with start and 

stop codons that can be translated into a known or predicted protein product. UniGene 

defines a gene as a series of inter-related mRNA sequences. When these two databases 

are integrated, some of the LocusLink id’s cannot be mapped to a UniGene id because an 

mRNA sequence for that gene has not been observed and reported in at least one tissue or 

organ system. 

 

Finally, databases may be difficult to integrate because of information that is present but 

not explicitly represented. Data that is not explicitly represented may be implicit, 

derivable, or missing. An example of implicit data is the species identifier in a single 

genome database. This field can be omitted within a single-genome context, but it 

becomes critical when that information is integrated with data from other species. An 

example of data that might be derivable but not explicitly represented is the use of 

chromosome vs. contig coordinates, in base pairs (bp), to indicate the physical position of 

a gene on a chromosome. At NCBI, the position of genes is recorded in contig 

coordinates, because contigs are the basic unit by which a genome is sequenced and 

annotated. The position of a gene on a chromosome can be derived by linking to a second 

table, which stores the starting and ending points for the contig on a chromosome. 

Finally, databases may have different definitions for missing values. “NULL” can 

represent negative, missing, an erroneous value, or a value that is known but not 

 



available. All of these considerations must be taken into account when integrating data 

from multiple sources. 

 

A number of alternatives to the three traditional approaches to database integration have 

been proposed (Chicurel 2002). The first of these is a web-based service called the 

Distributed Annotation System1 (DAS), which is an extension of the URL linking 

approach (Stein 2003, Dowell 2001). In this system, a user submits parameters that define 

a chromosome segment to a DAS server. The server then accesses one or more “third-

party” servers and retrieves the desired annotations (e.g. introns, exons, SNP’s, etc.) for 

that chromosome segment.  This data is then integrated and returned to the end-user in 

the form of a table or a graphic display. The DAS data exchange is based on an XML 

standard. The major advantage of DAS is that the annotation data remains under the 

ownership of domain experts at the third-party databases. This arrangement also requires 

relatively little maintenance on the part of the DAS server and database owners to make 

the data available in a form that can be easily accessed and integrated by the DAS server 

and the end-user.  

 

The primary limitation of DAS is that it is can only represent data that can be aligned 

with base-pair coordinates on a linear map of the genome. This framework does not lend 

itself well to representing data like cM positions on a genetic map, three dimensional 

protein structure, or metabolic pathways. However, DAS does allow each annotation to 

include links back to its source database, where additional information of this nature can 

                                                           
1http://biodas.org 
 

 



be accessed. In its present form, DAS servers do not require that annotations be peer 

reviewed, and DAS does not enforce explicit control over semantics or naming 

conventions. The end user assumes responsibility for resolving any inconsistencies or 

ambiguities that result from these differences. Biological ontologies, or controlled 

vocabularies, can be helpful in this regard, but only to the extent that they are accepted 

and enforced by the third party data providers. DAS architecture has been successfully 

implemented by UCSC Genome Bioinformatics, Ensembl, WormBase, and FlyBase. 

 

Two initiatives that are attempting to extend the DAS concept are BioMOBY and 

myGrid. BioMOBY2 exists as a centralized registry of web-based biological resources 

that are defined in terms of the services that they provide (Stein 2003, Wilkinson 2003). 

Conceptually, each resource, or service, in the registry is defined in terms of the data that 

is accepted as input and the new output that is generated. The ultimate objective is to feed 

user input into a series of linked operations that eventually produces the information that 

the user needs. For example, the individual steps in a BioMOBY transaction might 

include: 1) accepting a human gene identifier as input, 2) retrieving the nucleotide 

sequence for that gene, and 3) performing a BLAST search on a mouse genome database 

to identify one or more homolog genes. Each step in this process is executed by the most 

appropriate resource, which is selected on the basis of the information in the BioMOBY 

registry. One of the biggest problems BioMOBY has encountered to date is the lack of a 

uniform syntax and ontology for naming and defining data fields. Another is that similar 

services performed by different resources, such as BLAST algorithms, may differ in 

                                                           
2 http://biomoby.org 
 

 



subtle but important respects that are not reflected in the service registry. Another 

potential concern is that if BioMOBY becomes widely accepted, the number of requests 

submitted to the central server and the volume of data that is transmitted is likely to 

require a substantial investment in hardware, software, and bandwidth. BioMoby is 

currently in the design and prototype stage. 

 

myGrid3 is based on information processing technologies that have been developed for 

grid computing (Stein 2003, Stevens 2003). One important objective of this project is to 

develop a much more precise and detailed description of biological information services 

that are available at each web-based resource. Towards this end, myGrid is based on an 

ontology that is capable of describing the bioinformatics capabilities of each resource in 

considerable detail. The ultimate goal of this project is a system that is capable of 

automated, complex information processing by making appropriate use of multiple, 

online biological resources. myGrid is currently in the design and prototype stage. 

 

Stein (2003) makes a convincing argument that the challenge of integrating biological 

data is as much a sociological problem as it is a technical one. Molecular biology has 

traditionally been a reductionist science, and many existing databases have been 

developed to meet the specific needs of a relatively narrow segment of the research 

community. However, molecular biology is rapidly becoming an integrative science, 

where research depends on large volumes of complex and heterogeneous data drawn 

from multiple sources. As a result, the user base for many databases is becoming much 

                                                           
3 http://www.mygrid.org.uk 
 

 



more diverse, and the ability to integrate data from different sources has become a critical 

requirement for a growing number of end-users. To meet these needs, database owners 

will need to redefine their traditional roles and responsibilities. 

 

CURRENT UNDERSTANDING 

Research in the Medical and Molecular Genetics department at IUPUI currently uses data 

from two primary sources, the National Center for Biotechnology Information (NCBI) 

and Mouse Genome Informatics (MGI) (Benson 2003, Blake 2003, Pruitt 2003, 

Thorisson 2003, Wheeler 2003). At NCBI, data is most frequently accessed from five 

component databases: RefSeq, UniGene, LocusLink, UniSTS, and dbSNP. All of these 

databases are based on flat files except for dbSNP, which is a relational database. NCBI 

web pages for most of these databases can be accessed using Entrez, an integrated search 

engine. NCBI’s databases are also connected by an extensive network of URL crosslinks. 

NCBI’s databases also have URL cross links with MGI, but MGI is not included in the 

Entrez search engine. Data from NCBI and MGI are also available by ftp download, but 

re-creating portions of these databases from ftp files requires substantial time, effort, and 

technical expertise.  

 

In the early stages of this project, a considerable amount of time was spent evaluating the 

relative advantages and disadvantages of implementing a centralized data repository or a 

global query engine for this project. The two options considered for the centralized data 

repository were 1) using PERL or JAVA scripts for automated web page mining of the 

NCBI and MGI web sites, and 2) using the ftp download directories at NCBI and MGI to 

 



mirror relevant portions of those databases in the Medical and Molecular Genetics 

department. PERL and JAVA scripts were also considered for implementing a global 

query engine that would pull data off of the NCBI and MGI web sites on a real-time, as 

needed basis. Storage requirements were a significant concern with the centralized data 

repository, and response times were a significant concern with the global query engine. It 

was also anticipated that any of these options would require a project team of at least 6-8 

persons and 9-12 months for successful implementation. 

 

In May 2003, University Information Technology Services (UITS) at Indiana University 

(IU) introduced a new resource called Centralized Life Sciences Data Services (CLSD) 

that resolved many of these issues. CLSD mirrors portions of NCBI’s databases at IU and 

IUPUI in a mainframe environment that supports integrated access to multiple data 

sources, complex SQL programming, and the rapid downloading of large volumes of data 

to a desktop computer. CLSD also has the potential to incorporate additional data from 

NCBI and other public, online databases as the need arises within the university 

community.  

 

CLSD is a joint collaboration between IU and IBM, with financial support from the 

Indiana Genomics Initiative (INGEN). CLSD was created to facilitate access to online 

biological data for researchers at IU by automating and centralizing processes that are 

now being done manually and replicated in many research departments across the 

university. 

 

 



UITS supports CLSD by providing the hardware and programming that is necessary for 

implementation and maintenance. IBM supports CLSD by providing the database 

software on which the project is based. CLSD is a high-profile project for IBM because it 

is the company’s first major life sciences initiative. CLSD is rapidly becoming a critical 

part of the infrastructure that supports medical and biological research at IU. 

 

CLSD was initially implemented using DiscoveryLink for IBM's DB2 Relational 

Database Management System (RDBMS) version 7. This has since been upgraded and 

renamed Information Integrator for DB2 version 8. Information Integrator is a DB2 add-

on that uses “wrappers” to translate DB2 queries into a format that can be interpreted by 

multiple external data sources. The wrapper also integrates the query results from 

external sources and translates them back into DB2 format. Although Information 

Integrator is capable of acting as a global query engine, at CLSD its primary function is 

to automate the process of transferring data from multiple external sources into an 

integrated, centralized data repository. In the initial stages, the data sources at CLSD that 

were relevant to this project included LocusLink, UniGene, and dbSNP. LocusLink and 

UniGene are downloaded as hierarchical text files, which are parsed and uploaded into a 

relational schema that is unique to CLSD. dbSNP is downloaded as a series of relational 

tables that are parsed and uploaded into the CLSD database with only minor 

modifications to accommodate DB2 requirements, such as date formats. UniGene and 

LocusLink are updated twice weekly. dbSNP is updated on an irregular basis when new 

builds are released by NCBI, usually every one to two months. NCBI does not add data to 

dbSNP in between builds. The code for loading LocusLink was written by programmers 

 



at IBM; the code for UniGene and dbSNP was written by UITS. CLSD exists as a single 

database, but data from each external source is downloaded, parsed, and loaded into it’s 

own schema. CLSD can be accessed remotely using a DB2 client, which can be based on 

PERL/DB2, Java Database Communication (JDBC), or Windows Open Database 

Communication (ODBC). In the early stages of this project, CLSD did not have all of the 

data required by Medical and Molecular Genetics, but UITS indicated a strong 

willingness to provide whatever additional data were necessary for this project. 

 

INTENDED PROJECT PLAN 

1) identify and prioritize the manual processes in the Department of Medical and 

Molecular Genetics that need to be automated 

2) define the context in which these processes take place:  

a. how is research in the department organized? 

b. what types of data are needed at each stage? 

c. what are the most frequent and important questions that are asked when 

using NCBI and other web sites? 

3) translate end-user requirements from web-page based processes into discrete 

queries that can be defined in terms of input parameters and output tables 

4) install a DB2 client in the Medical and Molecular Genetics department that will 

allow remote, real-time access to the CLSD database 

5) write and implement program code that will submit queries to CLSD and return 

data from different sources in the form of integrated tables  

 



6) design and implement a graphic user interface that does not require technical or 

in-depth knowledge of computer programming, database operations, or the 

underlying sources from which the data is drawn 

7) early implementation of a working prototype with basic functionality that can be 

extended over time, in response to user feedback 

8) user and maintenance manuals will be provided for end-users and technical 

support, respectively 

 

METHODS 

 

MATERIALS AND INSTRUMENTS 

Hardware: CLSD runs on the IU Research Supercomputer that is maintained by Research 

and Technical Services at UITS. Access requires two accounts: one for the Research 

Supercomputer and another for CLSD. The Medical and Molecular Genetics department 

used a Sun Ultra 60 computer running UNIX Solaris 8 OS for this project.  

 

Software: MS Access and Excel were used for data modeling in the development stage. 

The end-user interface was implemented as a Web browser using hypertext markup 

language (HTML), common gateway interface (CGI) code, and Apache 1.3.26 web 

server software. The HTML code was written to be compatible with both Netscape and 

MS Internet Explorer. A PERL/DB2 client, version 7, was installed in Medical and 

Molecular Genetics to establish a remote connection with CLSD. Programming in PERL 

 



version 5.8.0 was used to implement an interface between the web browser and the DB2 

client.  

 

PROCEDURES AND INTERVENTIONS 

Definition of end-user requirements: In the early stages of this project, a substantial 

amount of time was devoted to meeting with people in the department to understand how 

research in the department was organized, what types of data were needed by different 

projects at different stages, and how online resources like NCBI were being used. 

 

A major focus of research in the Department of Medical and Molecular Genetics is 

identifying the location and nature of genes and mutations that cause human disease. This 

research is broadly organized into two stages:  1) family linkage studies and 2) linkage 

disequilibrium studies. Family linkage studies are used to do whole genome screens that 

can localize a disease gene to a chromosome segment measuring up to 20 centiMorgans 

(cM) in length. These are conducted by tracking the inheritance of microsatellite 

chromosome markers through affected and unaffected members of families with a 

genetically determined disease. Affected family members will usually have the same 

alleles for microsatellite markers that are located close to a disease gene.  

 

Once a disease gene has been localized to a shorter chromosome segment defined by a 

pair of markers, the next step is to gather as much information as possible about all the 

known genes on that segment. This is usually done by accessing online databases at 

NCBI and other web sites. This information is then used to select a small number of 

 



genes for further study. Selecting genes for further investigation is a critical decision, 

because substantial resources must be committed to evaluating each gene. To make this 

decision, as much relevant data as possible is gathered for each candidate gene. This is a 

time consuming process when done manually, because a typical chromosome segment 

may contain 300 or more genes, and the relevant data for each gene may be distributed 

over multiple web pages. There was a strong consensus in the department that this was 

the most important process that needed to be automated.  

 

Once the above information is gathered and a small number of high-priority candidate 

genes have been identified, linkage disequilibrium studies are used to determine the 

likelihood that one or more of these genes is related to the disease in question. These 

studies use single nucleotide polymorphisms (SNP’s), or point mutations, to identify 

haplotype blocks, which are a series of SNP’s that are located in or adjacent to a target 

gene and inherited as a group in individuals with the disease. The selection of high-

quality SNP’s is a critical decision in the design of a linkage disequilibrium study. 

Collecting as much relevant data as possible for each candidate SNP from one or more 

online databases is another time-consuming, manual process in the department. There 

was a strong consensus in the department that automating this process was the second 

highest priority. 

 

The end-user requirements for data collection at the marker-to-gene selection stage were 

defined as follows: 

Gene ID  abbreviation  symbol (PCDH12) 
short description gene name (protocadherin 12) 

 



long description paragraph describing gene function 
Gene Size  DNA   full length of open reading frame 

mRNA   full length of mRNA transcript  
processed mRNA (exons only) 

protein    number of amino acids 
Gene location  chromosome number 

chromosome coordinates (bp) 
Tissue expression  filter genes expressed in specific organs or tissues 

 
Tissue expression is particularly important because a disease gene is usually expressed in 

the tissue or organ that is affected by the disease. Filtering on tissue expression can 

reduce the number of candidate genes for further investigation by 70% or more. The 

department expressed a strong desire for a GUI that would allow filtering on this field.  

 

The end-user requirements for data collection at the gene-to-SNP selection stage were 

defined as follows: 

SNPs   SNP ID 
 allele ID’s (nucleotide substitution) 
 allele frequencies  

contig and chromosome coordinates 
 function: intron or exon, amino acid substitution, etc. 
 % heterozygosity 
 sample size statistics 
 validation 

Allele frequencies and percent heterozygosity are important because SNP’s that are 

extremely rare are of little value in defining haplotype blocks that are more frequently 

observed in individuals with the disease. Sample size statistics and validation status are of 

interest because many of the SNP’s that are currently available are based on preliminary 

reports, and require further investigation to confirm that they are not artifacts or errors of 

the genome sequencing process. SNP location and function are important because SNP’s 

 



that are located in exons and cause amino acid substitutions are more likely to be related 

to disease expression if and when the disease gene is identified.  

 

End-user requirements for the GUI were also discussed at this stage. The department 

expressed a strong preference for an HTML-based GUI that would require little or no 

training on the part of the end-users. There was also a strong preference for output tables 

that could easily be moved into MS Excel or Access.   

 

Data Model and SQL: The end-user requirements were initially defined in terms of 

information that was being obtained manually from the NCBI web pages. The next stage 

in the development process was to translate these requirements into data elements that 

could be found in, or brought into CLSD, and organized into queries with well-defined 

input and output fields.  

 

Most, but not all, of the data elements listed in the initial user requirements were 

incorporated into the final version of the software. For a number of reasons, some of the 

data elements that were originally requested were difficult to obtain from NCBI and/or 

extract from CLSD. In all of these cases, however, substitutes were found that were 

acceptable to the department. 

 

The data model for the marker-to-gene selection query is shown in Figure 1. A data 

dictionary with field definitions is provided in Appendix A. 

 

 



EPCR.SEQ_STS

PK sts_name

 pos_1
 gi_num

DBSNP.CONTIG_INFO

PK contig_gi

 contig_start
 contig_chr

LOCUSLINK.CONTIG

PK locus_id

 start
 end
 gi_num

UNIGENE.LOCUS

PK locuslink_id

 cluster_id

LOCUSLINK.LOCI

PK locus_id

 symbol
 product
 name_type

UNIGENE.EXPRESS

PK cluster_id

 express

 

Figure 1. Data model for the marker-to-gene selection query. 

 

The output table is generated by a compound query. The first SQL statement retrieves the 

chromosome number and coordinates for the two markers entered by the user:  

select sts_name,  
contig_chr as chr,  
pos1+contig_start-1 as chrpos 
 

from epcr.Seq_STS,  
dbsnp.contiginfo 
 

where (sts_name in ([marker input] , [marker input])) 
       and (gi_num=contig_gi) 
 
order by chrpos; 

The chromosome positions of the markers, along with user input from the tissue filter 

field, are passed on to a second SQL statement, which retrieves the chromosome position, 

gene length, symbol, product name, name type, and tissue expression for all known genes 

on the chromosome segment defined by the two markers: 

select pos.locus_id as locus_id, 
pos.chrpos as chrpos, 
gene_length,  
ll.symbol as symbol,  
ll.product as product,  
ll.name_type as n, 
express as tissue 

 
from (select c.locus_id,  

 



contig_start+start-1 as chrpos,  
end-start as gene_length 
 

  from locuslink.contig as c,  
dbsnp.contiginfo 
 

   where (gi_num=contig_gi) 
 
    and (((contig_start+start - 1 > [chr position 1])  

and (contig_start + start - 1 < [chr position 2])) 
       or ((contig_start + end - 1 > [chr position 1])  

and (contig_start + end - 1 < [chr position 2]))) 
     

and (source = [chr number])) as pos 
 
left outer join locuslink.loci as ll 
on pos.locus_id=ll.locus_id 
 
left outer join unigene.locus as ul 
on pos.locus_id=ul.locuslink_id 
 
left outer join unigene.express as ue 
on ul.cluster_id=ue.cluster_id 
 
where (express like ‘%[tissue filter input]%’) 
order by chrpos; 
 

To support these queries, it was necessary to add the Epcr.Seq_Sts and LocusLink.Contig 

tables to the CLSD database. Epcr.Seq_Sts is a table from the UniSTS database that gives 

contig positions for chromosome markers. The LocusLink.Contig table gives contig 

positions for the beginning and end of each gene. CLSD also modified the 

LocusLink.Loci table to include both official and unofficial (preferred) terms in the gene 

symbol and product name fields. Initially, these fields had included only terms that were 

officially approved by the HUGO Gene Nomenclature Committee, which resulted in a 

significant number of missing values. A Name_Type field was also added to this table to 

indicate whether the nomenclature was official (O) or Preferred (P).  

 

The data model for the gene-to-SNP selection query is shown in Figure 2. A data 

dictionary with field definitions is provided in Appendix B. 

 



 

DBSNP.SNPCONTIGLOCUSID

PK snp_id

 locus_id
 fxn_class
 asn_from
 contig_acc
 contig_ver

DBSNP.SNPFUNCTIONCODE

PK code

 abbrev
 desc

DBSNP.SNPVALIDATIONCODE

PK code

 abbrev
 desc

DBSNP.SNP

PK snp_id

 avg_heterozygosity
 het_se
 validation_status

DBSNP.CONTIGINFO

PK contig_acc
PK contig_ver

 contig_start  

Figure 2. Data model for the gene-to-SNP selection query. 
 

This query requires a locus id input from the end-user, and returns the SNP id, 

chromosome position, average heterozygosity, heterozygosity standard error, functional 

class, and validation status for all SNP’s within 2000 base pairs (bp) upstream or 500 bp 

downstream from the gene boundaries:  

 
select scl.locus_id,   

scl.snp_id,  
fxn_class,  
asn_from + ci.contig_start - 1 as chrpos,  
avg_heterozygosity as avg_hz, 

      het_se,  
snp.validation_status as val 
 

from dbsnp.snpcontiglocusid as scl,  
dbsnp.contiginfo as ci,  
dbsnp.snp as snp 
 

where (locus_id= ? ) 
    and (scl.contig_acc=ci.contig_acc) 
   and (scl.contig_ver=ci.contig_ver) 
  and (scl.snp_id=snp.snp_id) 
 
order by chrpos; 
 

 



Installation of the DB2 client and PERL programming. The data model and SQL were 

developed in a DB2 environment using SSH Secure Shell to establish a direct connection 

with CLSD. The next stage in the development process was to incorporate the SQL into a 

PERL program that could interface with both the DB2/PERL client and an HTML-based 

GUI (Quigley 2002, Meltzer and Michalski 2002, Hanegan 2001). The DB2 client was 

installed and tested using DB2 commands that were executed from the command line in 

SSH Secure Shell. The PERL program and GUI were then developed in parallel, starting 

with a single input field, a simple test query, and a small output table. Functionality was 

added to the PERL code and the GUI in small increments, with error checking after each 

modification. Modifications to the PERL code were tested in two stages, once with input 

parameters supplied via the command line of the SSH shell/DB2 client interface, and a 

second time with input parameters submitted from the GUI. The code was structured so 

that new queries as well as further modifications to the existing queries could easily be 

incorporated at any stage of the development process.  

 

The first section of the PERL program opens a connection to CLSD through the DB2 

client. The rest of the program consists of two subroutines, one for each of the two 

queries available on the GUI input form. The first section in each subroutine assigns 

values from the GUI input form to variables in the PERL program. These values are then 

incorporated into an SQL statement that is submitted to CLSD. The last section of each 

subroutine converts the data retrieved from CLSD into HTML code for an output table 

that is displayed on the web browser. Output tables in the web browser can be moved into 

 



MS Excel using the standard EDIT/COPY and EDIT/PASTE commands for Windows 

applications. 

 

A working prototype with basic functionality for the marker-gene selection table was 

placed online in August 2003, about 3½ months after the initial planning for this project 

was started. Basic functionality for the gene-to-SNP selection query was added a few 

days later. The PERL code for the prototype is given in Appendix C. The HTML code 

and a screen print of the web input form for the prototype are given in Appendices D and 

E, respectively.  

 

PROJECT EVALUATION 

Both formal and informal methods were used for project evaluation. The Department of 

Medical and Molecular Genetics holds weekly lab meetings where the progress of all of 

the projects in the department is reviewed. These meetings were very helpful in eliciting 

feedback and suggestions from the end-users. They were also helpful in keeping the 

department informed of progress, problems, and other developments. When the prototype 

was placed online, the department was advised that identifying and correcting errors in 

the prototype was a normal and important part of the development process, and they were 

encouraged to communicate any questions or problems that came to their attention. 

Feedback obtained from using the prototype was very helpful in guiding subsequent work 

on this project. As a result of the weekly lab meetings and the early prototype 

implementation, the end users in the department were intimately involved in the 

development of this application over the entire course of the project.  

 



 

Formal evaluation consisted of manually crosschecking the data in the output tables 

against data obtained from CLSD and NCBI. When the prototype was placed online, the 

department was cautioned that the application was still under development and had not 

yet been fully validated. End-users in the department submitted a number of output tables 

for manual validation before basing research decisions on the results. These crosschecks 

were a critical part of the evaluation process.  

 

EXPECTED RESULTS 

The primary objective of this project was to automate the process of obtaining online 

biological data for the Medical and Molecular Genetics department. A substantial 

increase in efficiency was anticipated over the manual processes that were previously 

used. An increase in data quality was also anticipated, because human error is inherent in 

repetitive, manual processes, and a thorough validation phase was planned after the 

prototype was placed online. It was also anticipated that automating these processes 

would allow more frequent access to updated data. 

RESULTS 

 

INTRODUCTION 

Overall, the accuracy of the output tables generated by the prototype was very good. A 

number of errors and other problems were identified during the validation process, but 

most of these were minor. In all cases, the errors were corrected or an alternative solution 

 



was implemented to correct the problem. Overall, the end-users expressed a high level of 

satisfaction with the GUI, the output tables and the validation process.  

 

IMPORTANT HIGHLIGHTS 

A substantial number of improvements and other modifications were implemented after 

the prototype was placed online. Most of these fell into two general categories: 1) those 

implemented as a result of user feedback, and 2) those implemented as a result of manual 

cross-checking of the data in the output tables against data obtained from CLSD and the 

NCBI web site.  

 

A number of additional modifications were necessary because of maintenance, updates, 

and other changes at CLSD and NCBI. The SNP database at NCBI is updated every 1-2 

months; these updates frequently include changes to the data model. NCBI also 

implements new whole-genome builds on a less frequent basis. CLSD upgraded their 

DB2 software from version 7 to version 8 in November 2003. 

 

 

SPECIFIC FINDINGS 

This section is divided into four parts: 1) manual validation of the marker-to-gene output 

tables, 2) manual validation of the gene-to-SNP output tables, 3) modifications based on 

user feedback, and 4) maintenance and updates. 

 

Manual validation of marker-to-gene output tables. 

 



1) The spheroid body myopathy project has localized a gene for this disease to a segment 

on chromosome 5 bordered by markers D5S2057 and D5S436. The prototype was used to 

generate an output table using these markers and the term “muscle” in the tissue 

expression field. The data in the prototype table was compared with a spreadsheet that 

was created manually using data collected from the NCBI web site in May 2003, as part 

of the initial planning for this project. 

 

The browser correctly identified all of the 67 genes on this chromosome segment that 

were expressed in muscle tissue. There were no errors in the locus ID, gene symbol, or 

product name fields. The chromosome start position for each of the genes was off by one 

base pair. This error occurred because the origin for the chromosome and contig 

coordinate systems is base pair number 1, not 0. This error was corrected by making a 

minor modification in the SQL and PERL code. 

 

Six genes were present in the August prototype output that were not on the May 2003 

spreadsheet: 

 
 
LOCUS ID GENE SYMBOL
6879  TAF7 
55374  PRO1580 
348944 not available 
340061 LOC340061 
51128  LOC51128 
3308  HSP04 
 

 



The prototype output table was consistent with the data in CLSD and NCBI as of August 

2003. These genes appear to have been added to NCBI’s database between May and 

August of 2003.  

 

Another locus ID had different nomenclature in the prototype output than May 2003 

spreadsheet: 

LOCUS ID DATE SYMBOL  DESC
9879  5-03 KIAA0801 RNA helicase 
9879  8-03 DDX46 DEAD Asp-Glu-Ala-Asp box peptide 46 

 
The nomenclature in the prototype output table was consistent with the data in CLSD and 

the NCBI web site as of August 2003. The symbol and description reported in May 2003 

were listed on the NCBI web site as alternate nomenclature in Aug 2003. This 

discrepancy appears to be due to a revision in the nomenclature for this gene sometime 

between May and August 2003. 

 

Another locus ID, 84105, was present on the May 2003 spreadsheet, but not the prototype 

output table generated in August, because the tissue expression field included 

leiomyosarcoma, but not muscle. The Medical Genetics department did not consider this 

gene to be a good candidate for further investigation because tumors frequently express 

many genes that are not active in normal tissue. However, this discrepancy did raise the 

possibility that in some cases, searching on a single term in the tissue expression field 

might not be sufficient. This problem is discussed in greater detail in the next example. 

 

 



2) The osteoporosis project is investigating a gene for this disease that has been localized 

to chromosome 15 between markers D15S1507 and D15S131. The prototype was used to 

generate an output table using these markers and the term “bone” in the tissue expression 

field. The data in the prototype table was compared with data obtained directly from 

NCBI and CLSD. 

 

The browser correctly identified 23 genes on this chromosome segment that were 

expressed in bone. All of the data in the prototype table for these genes were correct. 

Four additional genes were found on the NCBI web site that were not in the prototype 

output because tissue expression was reported using a term other than bone: 

 SYMBOL TISSUE EXPRESSION
DPP8  osteosarcoma, myeloma, Ewing’s sarcoma 

 FLJ10036 Ewings sarcoma 
 MADH6 osteosarcoma 
 FLJ11506 trabecular meshwork, osteosarcoma 
    
Three of these genes were expressed only in tumors and considered low priority by the 

osteoporosis project. The remaining gene, FLJ1156, was a more serious concern because 

its expression had been reported in trabecular meshwork, or normal bone tissue. The 

terms in this field are a free-text vocabulary, which is selected by the investigators that 

report the tissue expression in the scientific literature. These terms are not converted to a 

controlled vocabulary when the data is entered into the UniGene database at NCBI.  

 

As a result of these findings, the end-users in the department were advised that in some 

cases, searching on a single term in the tissue expression field is not sufficient. After 

further discussions within the department, a link to the Medical Subject Headings 

 



(MeSH) database at the National Library of Medicine (NLM) was added to the prototype 

input form to help identify additional search terms that might be relevant. MeSH is a 

standardized, hierarchical medical vocabulary that can be used to identify synonyms. It 

can also help the user identify additional search terms that are more specific or general. 

For example, if a search is conducted on “bone”, MeSH will return a number of related 

medical terms, including osteoblasts, osteoclasts, and osteocytes. A second prototype 

query using the same chromosome markers and the tissue expression term “osteo” would 

have detected three of the four genes that were missed in the output table that was 

generated using only the term “bone”. A detailed discussion of this issue and instructions 

for using the MeSH browser were included in the user manual (Appendix F). 

 

One missing URL link was found on the NCBI web site while reviewing this table. The 

prototype reported one additional gene, Locus ID 338946, on this chromosome segment 

with expression in bone, but there was no link to UniGene on the LocusLink web page 

for this gene. However, when the UniGene ID for this gene was retrieved from CLSD 

and entered into the standard UniGene URL, NCBI returned a web page with tissue 

expression data that was consistent with the CLSD and the prototype output table.  

 

3) The osteoporosis project is investigating another gene for this disease that has been 

localized to a segment on chromosome 14 between markers D14S588 and D14S592. The 

prototype was used to generate an output table using these markers with the term “bone” 

in the tissue expression field. The data in the prototype table was compared with data 

 



obtained directly from NCBI and CLSD. The browser correctly identified all but one of 

the 18 genes on this chromosome segment that were expressed in bone. 

 

NCBI and CLSD both confirmed that MNAT1 lies within the marker interval and is 

expressed in bone, but this gene was not included on the browser output because the gene 

straddles the boundary of the chromosome segment defined by the two markers. The SQL 

was initially written to select genes where the gene start point was located between the 

two chromosome markers. MNAT1 straddles the lower boundary of this chromosome 

segment: the endpoint of the gene is included in the marker interval but the starting point 

is not. This problem was corrected by modifying the PERL and SQL code to select genes 

where any portion of the gene segment falls between the two chromosome markers. No 

other new problems were identified in reviewing this table.  

 

4) The Parkinson’s disease project is investigating another gene for this disease that has 

been localized to a segment between markers D2S396 and D2S338 on chromosome 2. 

Browser output was generated using these markers along with the term “brain” in the 

tissue expression field. The data in the prototype table was compared with data obtained 

directly from NCBI and CLSD. 

 

The browser correctly identified 28 of 37 genes on this segment that are expressed in 

brain tissue. Nine genes on this chromosome segment were missed because tissue 

expression was reported using a term more specific than “brain”: 

SYMBOL  TISSUE EXPRESSION
LOC93349  hypothalamus and medulla 

 



LOC348761  medulla and glioblastoma 
MGC35154  medulla 
LOC344562  medulla 
CHRND  neuroblastoma 
LOC339766  astrocytoma 
B3GNT7  neuroblastoma 
DKFZp762E1312 neuroblastoma 
LOC150933  nervous tumor 

 
Of these nine genes, five were reported only in tumors and were considered to be low 

priority by the Parkinson’s disease project. The other four genes were reported in 

hypothalamus and/or medulla. Due to the complexity of brain anatomy, a MeSH search 

did not readily suggest that these might have been useful terms for repeating the marker-

genetable query.  

 

One error was also found on the NCBI web site while validating this table. The 

LocusLink web page for TIGD1 links to the same UniGene web page as EIF4EL3, so the 

reported tissue expression for these two genes is identical. The data on the browser output 

for both TIGD1 and EIF4EL3 was consistent with the data on NCBI and CLSD. 

 

Marker-to-gene table validation summary. The validation process identified a number of 

minor errors in the PERL and SQL code that were easily corrected. The most significant 

problem with this table was genes that were not included in the output tables because 

their tissue and organ expression was reported under alternative or non-standard terms in 

the NCBI and CLSD databases. This problem seems to be most significant for tissues and 

organs with complex anatomy and physiology. Of the 152 “target” genes on these four 

chromosome segments, the browser correctly identified 136 using standard search terms, 

for an accuracy rate of 89%. An additional 4 genes could have been detected by repeating 

 



the search with additional tissue expression terms obtained from MeSH, which raises the 

accuracy to 92%. Of the remaining 11 genes that were not retrieved by commonly used 

terms for tissues and organ systems, 7 were expressed only in tumors and were not 

considered good candidates for further investigation by research projects in the 

department. The number of potentially significant genes that were missing from the 

output tables was therefore 5/152, or 3%.  

 

Unfortunately, this error rate still presents a significant problem if the tissue expression 

for a “target” disease gene is reported unusual or non-standard terms that are not included 

in the MeSH vocabulary. However, the consensus in the department was that the error 

rate for this application was an acceptable tradeoff for the substantial increase in 

efficiency that was achieved by automating this process.  

 

Manual validation of gene-to-SNP output tables. 

1) The osteoporosis project is conducting linkage disequilibrium studies on the  

frizzled-related gene, FRZB, on chromosome 2. The locus ID for this gene, 2487, was 

used to generate an output table that was compared with data obtained directly from 

NCBI and CLSD. 

 

The browser correctly identified all of 67 the SNP’s listed for this gene in the CLSD 

database. The data in the locus ID, SNP ID, functional class, average heterozygosity, 

heterozygosity standard error, and validation status fields were all consistent with the 

data in the CLSD database. The chromosome positions for the SNP’s were initially off by 

 



one base pair. This error was corrected in a similar manner to that described for the 

marker-to-gene output table.  

 

There were some significant discrepancies between the data in the output table and the 

NCBI web site. At the time the prototype was implemented, CLSD was using data based 

on build 114 of the SNP database (dbSNP). The data on the NCBI web site at that time 

reflected build 116. New dbSNP builds frequently include changes in the data model, 

which requires a significant amount of programming for CLSD to incorporate. CLSD 

was eventually able to automate some of the work that is required to incorporate dbSNP 

updates, but in the early stages of this project they did not have the resources to 

incorporate all of these updates manually.  

 

For locus ID 2487, CLSD and the prototype output table captured 68 of the 87 SNP’s 

(78%) that were listed on the NCBI web site for build 116. A review of the new SNP’s 

revealed that most of these were poorly characterized with respect to validation status. 

Furthermore, most of the new SNP’s had no reported values for average heterozygosity. 

For this reason, the department felt that most of these SNP’s would not have been good 

candidates for further investigation, even if they had been reported in the output table. 

However, of the SNP’s that were present in both builds, about 35%, had a revised 

validation status. In most cases, the validation status was improved or upgraded between 

the two builds. This was considered to be important information for selecting SNP’s for 

linkage disequilibrium experiments. For this reason, the users in the department were 

 



advised to submit all SNP output tables for cross-validation before making any important 

decisions based on the results, until the data in CLSD had been updated. 

 

2) The Parkinsons Disease project requested a review of a gene-to-SNP table generated 

with locus ID 81618. This gene lies on chromosome 2 and codes for integral membrane 

protein 2 (ITM2C).  

 

This table correctly reported all of the SNP’s listed for this gene in the CLSD database. 

The data in the locus ID, SNP ID, functional class, average heterozygosity, 

heterozygosity standard error, and validation status fields were all consistent with the 

data in the CLSD database. For this gene, CLSD and the prototype output table captured 

55 of the 62 SNP’s (88%) that were listed on the NCBI web site for build 116. No new 

problems were identified when validating this table.  

 

On October 29, 2003, the PERL code was modified to use dbSNP tables from build 117, 

which had been incorporated by CLSD several days prior. CLSD has since been able to 

automate most of the processes necessary to update dbSNP, so that new dbSNP data can 

be incorporated into CLSD within 2-3 days after it is released from NCBI. Once the new 

build is available from CLSD, the SQL and PERL code on our web server can generally 

be updated to take advantage of the new data within another 2-3 days.  

 

Gene-to-SNP table validation summary. The validation process identified one minor error 

in the SNP positions that that was corrected by modifying the PERL and SQL code. In 

 



the early stages of prototype implementation, there was a significant delay between the 

release of new dbSNP builds and the incorporation of the new data into the CLSD 

database. CLSD has since automated most of these processes, so that new dbSNP data is 

now available within a matter of days. These issues are discussed in greater detail in the 

maintenance and updates section. 

 

Modifications based on user feedback.  

The following modifications in the marker-to-gene selection query were implemented 

based on feedback from users in the department: 

1. The marker and tissue expression fields were modified to be case insensitive. 

Input was accepted as upper, lower, and title case letters. For the tissue 

expression field, the PERL code searches the CLSD database for terms in upper, 

lower, and title case, regardless of the input. 

2. The tissue expression field was made optional by modifying the PERL code to 

accept null values.  

3. HTML links to the STS and LocusLink home pages at NCBI were added to the 

GUI input form, to simplify the process of looking up marker and gene ID’s. 

 

The following modifications to the gene-to-SNP selection query were also implemented: 

1. Heterozygosity standard error and validation status fields were added to the 

output table. Measures of SNP quality were included in the user requirements but 

not available in the first version of the prototype because the user requirements 

had not yet been reconciled with the data available at NCBI and CLSD. 

 



Specifically, some of the measures available on the NCBI web pages were not 

explicitly represented in dbSNP. When SQL was added to derive these values the 

queries took much longer to run. Alternate measures were subsequently identified 

that were acceptable to the department. 

2. A lookup table for the validation status codes was added to the GUI input form. 

3. The descriptors for the function class code table on the GUI input form were 

improved, based on additional information obtained from NCBI. 

4. The data values displayed in the heterozygosity and heterozygosity standard error 

fields were changed from scientific notation to decimal format. 

5. An HTML link to the SNP home page at NCBI was added to the GUI input form, 

to simplify the process of looking up SNP ID’s. 

 

Two additional modifications were implemented based on recommendations from UITS: 

1. Password protection was added to the web input form, because the data in CLSD 

is not licensed for use outside the university.  

2. New departmental accounts for exclusive use by the browser were created at 

CLSD and the Research SP. Student and staff passwords in the PERL code were 

felt to represent a higher risk if the security of the web server was ever 

compromised. Another reason for having a departmental account is that the 

username and password in the PERL program does not have to be changed when 

students or staff leave the department or the university. 

 

 



User feedback and modification summary. A significant number of enhancements and 

modifications were implemented based on user feedback after the prototype was placed 

online. It would have been difficult to anticipate the need for many of these 

improvements without the involvement of the end-users.  

 

Maintenance and updates.  

The first few months after the prototype was placed online, a significant amount of 

maintenance was necessary to keep up with changes at CLSD and NCBI. On October 13, 

2003, CLSD upgraded DB2 from version 7 to version 8. This upgrade required the 

installation of a new DB2 client in our department. There were a number of technical 

problems affecting both CLSD and the DB2 client that took several weeks to resolve. 

User access was uninterrupted over most of this time because the browser remained 

connected to a version 7 DB2 client in the department and the old version of CLSD, 

which UITS continued to support. During this time, CLSD also incorporated dbSNP 

build 116 into CLSD running on DB2 version 8. We were unable to take immediate 

advantage of this because the installation of our version 8 DB2 client had not yet been 

completed. CLSD subsequently implemented dbSNP build 117 on October 22. The 

browser was successfully transitioned to DB2 version 8 and dbSNP build 117 on October 

29.  

 

A number of modifications were made to the PERL code at this time. The DB2 connect 

statement was redirected to CLSD2, the new name given to CLSD running on DB2 

version 8. The prefixes on all of the dbSNP table names were changed from dbsnp114 to 

 



dbsnp117. The gene-to-SNP query was also modified because NCBI eliminated the 

validation status table and moved the validation status code to another table. NCBI also 

modified the validation status codes and descriptors. This did not change the data model, 

so it did not affect the PERL/SQL code, but it did require updating the reference table on 

the web input form. 

 

In October, we also became aware of a problem with relational integrity when the web 

input form stopped working for some, but not all, input values. On further investigation, 

it was found that a number of genes in the LocusLink.Contig table had contig id numbers 

with no corresponding values in the dbSNP114.contiginfo table. This problem was traced 

to a new genome build that NCBI released in October. Whenever a new genome build is 

created, a number of chromosome contigs are revised or consolidated, and given new id 

numbers. CLSD updates the data in LocusLink twice weekly, so the new contig id 

numbers were reflected immediately in this database at CLSD. However, these contig id 

numbers were not yet reflected in the dbSNP database at CLSD. CLSD implemented a 

short-term solution for this problem by putting the older LocusLink tables that were 

compatible with dbSNP114 back online so they could be used on an interim basis. These 

were no longer needed once the browser was updated to dbSNP build 117 on October 29. 

CLSD has since automated most of the processes for incorporating new dbSNP builds, so 

this can now be done within 2-3 days. In addition, CLSD and Medical Genetics now 

subscribe to email lists from both dbSNP and NCBI. These provide advance notice 

whenever a new dbSNP or genome build is planned, so that appropriate updates for 

CLSD and the CLSD browser can be implemented as quickly as possible.  

 



 

Another new problem that emerged with dbSNP build 117 was the response time for the 

gene-to-SNP query. This was running at 2-3 minutes on build 114 and increased to 12-15 

minutes with build 117. The response time for the marker-to-gene table was unchanged. 

This problem was apparently related to the design of build 117. NCBI released dbSNP 

build 118 about the same time that build 117 was incorporated into the CLSD. Build 118 

included a substantial increase in the size of the database, which we suspected was due to 

indexing. dbSNP build 118 was incorporated into CLSD about one week after its release 

by NCBI; this reduced the response time for the gene-to-SNP query to 2-3 seconds.  

 

Maintenance and updates summary. For the first 2-3 months after the prototype was 

placed online, a considerable amount of time and effort was necessary to keep up with 

changes at both CLSD and NCBI. Valuable experience was gained during this period. It 

will never be possible to anticipate all of the issues raised by changes at NCBI and 

CLSD, but at the present time, many of the issues related to these processes have been 

addressed at least once, and good solutions are in place or evolving to meet these needs. 

It is anticipated that maintenance and upgrades will continue to become more efficient as 

further experience is gained. A maintenance manual which summarizes this experience to 

date is included in Appendix G. 

 

VALIDATION SUMMARY 

The final form for the PERL program, HTML code, and the web input form are given in 

Appendices H, I, and J, respectively. A high level of accuracy was achieved in the final 

 



version of this application. The biggest problem encountered during the validation of the 

marker-to-gene table output was the lack of a controlled vocabulary for the tissue 

expression field in the UniGene database. Although this problem was not eliminated, an 

acceptable solution for the department was found. The primary problem that was 

identified while validating the gene-to-SNP output tables was the delay in incorporating 

new dbSNP builds from NCBI into the database at CLSD. The time currently required to 

incorporate new dbSNP builds has been reduced to 2-3 days by CLSD and another 2-3 

days in the genetics department. Maintenance will continue to become easier and more 

efficient as more experience is gained with the issues involved. Early implementation of a 

working prototype and end-user involvement was very helpful in guiding further 

development of this project. This approach requires good, two-way communication with 

end-users who understand that further development and validation is necessary before the 

application becomes fully functional. The end-users expressed a high level of satisfaction 

with the development process and the final version of this application.  

 

CONCLUSION 

 

Improved methods for accessing and integrating large volumes of biological data from 

multiple, complex sources is a critical need for research in molecular biology and a 

formidable challenge for the field of bioinformatics. This project demonstrates that it is 

possible to develop software tools that allow integrated access to large, complex data 

sources that require only minimal technical expertise or training on the part of the end-

users. However, significant involvement by the end-users in the development process is 

 



necessary to ensure that these applications will meet their needs. The successful 

development these tools also requires a substantial amount of time and effort for 

successful implementation. The success of this project was heavily dependent on the 

availability of a centralized data repository. Large, integrated resources like these require 

a substantial investment of resources and close coordination between the relevant 

databases, software vendors, and the organizations where the data will ultimately be used. 

Automating and increasing the efficiency of database integration and improved methods 

for accessing these resources remains an active area of research and development in the 

fields of molecular biology and bioinformatics. 

DISCUSSION 

 

LIMITATIONS OF THE STUDY 

The primary limitation of this project is the number and flexibility of the queries that are 

currently available. This project required a substantial investment of time and effort in an 

evaluation of the department’s data requirements and the development of an 

infrastructure that would support programmatic access to a centralized data repository. 

This infrastructure is scalable; once it is in place, it is relatively easy to add new queries 

and extend the functionality of the queries that are already available.  

 

RECOMMENDATIONS FOR FUTURE DEVELOPMENT 

A number of enhancements and improvements for continued development of this 

application are planned or in progress. These include: 

 



1) multiple tissue filter fields with Boolean AND/OR options for the marker-to-   

gene table 

2) homologue tables to identify similar genes in multiple species, including 

humans, mice, and rats 

3) a marker table to aid in the selection of chromosome markers for human 

pedigree studies 

4) further work to increase the efficiency of maintenance, updates, and upgrades 

5) transition of primary responsibility for the application to a permanent, full-time 

staff member in the Medical and Molecular Genetics department. 
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APPENDIX A: DATA FIELD DEFINITIONS FOR THE MARKER-TO-GENE 
SELECTION QUERY 
 
EPCR.SEQ_STS 
sts_name  unique id for marker in NCBI UniSTS database (e.g. D14S588) 
gi_num unique id for the contig that the marker is located on, in NCBI 

RefSeq database 
pos_1   starting position for marker, in contig coordinates (bp) 
 
DBSNP.CONTIG_INFO 
contig_gi  unique contig id 
contig_chr  contig chromosome 
contig_start  starting position for contig, in chromosome coordinates (bp) 
 
LOCUSLINK.CONTIG 
locus_id  unique id for gene in NCBI LocusLink database 
start   start position for gene, in contig coordinates (bp) 
end   end position for gene, in contig coordinates (bp) 
gi_num unique id for the contig that the gene is located on, in NCBI 

RefSeq database 
 
LOCUSLINK.LOCI 
locus_id  unique id for gene in NCBI LocusLink database 
symbol   abbreviation for gene (e.g. PCDH12) 
product  short description of gene product (e.g. protocadherin 12) 
name_type indicates whether gene symbol and product are official 

nomenclature approved by HUGO (O), or unofficial but preferred 
(P); this field is not represented as a distinct field in NCBI 
LocusLink, but is derived by CLSD from the LocusLink flat file 

 
UNIGENE.LOCUS 
locuslink_id  unique id for gene in NCBI locuslink database 
cluster_id  unique id for EST/mRNA cluster in NCBI UniGene database 
 
UNIGENE.EXPRESS 
cluster_id  unique id for EST/mRNA cluster in NCBI UniGene database 
express free-text field that lists all tissues and organs in which expression 

has been reported  

 

 



APPENDIX B: DATA FIELD DEFINITIONS FOR THE GENE TO-SNP SELECTION 
QUERY 
 
DBSNP.SNP 
snp_id unique id for SNP in NCBI dbSNP database  
avg_heterozygosity average heterozygosity, expressed in percent, to two decimal 

places 
het_se heterozygosity standard error, expressed in percent, to three 

decimal places 
validation_status code with value from 0 to 15 that describes what combination of 

methods was used for validation 
 
DBSNP.CONTIGLOCUSID 
snp_id unique SNP id 
locus_id unique id for gene in NCBI LocusLink database 
fxn_class code with value between 1 and 9 which describes location of  SNP 

in reference to gene, exon, or intron boundaries; also indicates 
whether the SNP results in an amino acid substitution in the gene 
product 

asn_from starting point for the gene on the contig, in bp 
contig_acc contig accession number, part of compound id for this table 
contig_ver contig version number, part of the compound id for this table; 
 if a contig is revised between genome builds, the version  number 

increases by one, but the accession number is unchanged 
 
DBSNP.CONTIGINFO 
contig_acc part of compound id for this table; see above 
contig_ver  part of compound id for this table; see above 
contig_start starting point for the contig on the chromosome, in bp; this value is 

used, together with asn_from, to calculate the starting position for 
the gene on the chromosome 

 
DBSNP.SNPVALIDATIONCODE 
[lookup table for validation status codes used in dbsnp.snp] 
code validation status code 
abbrev short description 
desc long description 
 
DBSNP.SNPFUNCTIONCODE 
[lookup table for function class codes used in dbsnp.contiglocusid] 
code function class code 
abbrev short description 
desc long description 
 
 

 



APPENDIX C: PERL CODE FOR PROTOTYPE 
 
#!/usr/local/bin/perl -w 
# snp2.pl 
# use snp.pl as template 
# this program generates genetable with markers and tissue submitted 
from browser 
# generates snptable from with input=sgene and gene=locus_id submitted 
from browser 
 
use strict; 
 
use DBI; 
use DBD::DB2::Constants; 
use DBD::DB2; 
use CGI qw(:standard); 
use CGI::Carp qw(fatalsToBrowser); 
 
my $q=new CGI; 
 
my $dbh = DBI->connect("dbi:DB2:clsd", "username", "password") 
       or die "Couldn't connect to database: " . DBI->errstr; 
 
my $input = $q ->param("input"); 
my $code = $q->param("code"); 
 
if ($input eq "marker") { 
   markergenetable(); 
} elsif ($input eq "sgene") { 
   snptable(); 
} 
 
############################# GENETABLE SUBROUTINE ############## 
  
sub markergenetable { 
my $marker1 = $q->param("marker1"); 
my $marker2 = $q->param("marker2"); 
 
my $tissue = $q ->param("tissue"); 
my ($tissue1, $tissue2, $tissue3); 
if ($tissue ne "") { 
  $tissue1 = lc $tissue; 
  $tissue2 = uc $tissue; 
  $tissue3 = $tissue; 
  $tissue3 =~ s/(\w+)/\u\L$1/g; 
} else { 
  die "Cannot run query without tissue field term"; 
} 
 
my $stmt = "select STS_NAME, contig_chr as chr, pos1+contig_start as 
chrpos 
   from epcr.Seq_STS, dbsnp114.contiginfo 
   where (sts_name in (? , ?)) 
      and (GB_ACC_NUM=contig_acc) 
   order by chrpos"; 
 

 



my $sth = $dbh->prepare($stmt) 
       or die "Can't prepare SQL statement: ", $dbh->errstr(), "\n"; 
 
$sth->execute($marker1,$marker2) 
       or die "Can't execute SQL statement: ", $sth->errstr(), "\n"; 
 
my @row1  = $sth->fetchrow_array; 
my ($mkr1,$chr1,$chrpos1) = ($row1[0],$row1[1],$row1[2]); 
#print "chr: $chr\n\n"; 
#print "chrpos1: $chrpos1\n\n"; 
 
my @row2 = $sth->fetchrow_array; 
my ($mkr2,$chr2,$chrpos2) = ($row2[0],$row2[1],$row2[2]); 
 
$sth->finish(); 
 
my $stmt2 = "select pos.locus_id as locus_id, 
                      pos.chrpos as chrpos, 
                      gene_length, ll.symbol as symbol,  
                      ll.product as product,  
                      express as tissue, 
                      ll.name_type as n 
 
from (select c.locus_id, contig_start+start as chrpos, end-start as 
gene_length 
from locuslink.contig as c, dbsnp114.contiginfo 
where (gi_num=contig_gi) 
and (contig_start+start > ? ) 
and (contig_start+start < ? ) 
and (source = ? )) as pos 
 
left outer join locuslink.loci as ll 
on pos.locus_id=ll.locus_id 
 
left outer join unigene.locus as ul 
on pos.locus_id=ul.locuslink_id 
 
left outer join unigene.express as ue 
on ul.cluster_id=ue.cluster_id 
 
where (express like '%$tissue1%') 
   or (express like '%$tissue2%')  
   or (express like '%$tissue3%') 
 
order by chrpos"; 
 
my $sth2 =  $dbh->prepare($stmt2) 
       or die "Can't prepare SQL statement: ", $dbh->errstr(), "\n"; 
 
$sth2->execute($chrpos1,$chrpos2,$chr1) 
       or die "Can't execute SQL statement: ", $sth->errstr(), "\n"; 
 
print header(); 
 
#print "Chromosome interval lower limit: $chrpos1\n<br>";  
#print "Chromosome interval upper limit: $chrpos2\n<br>"; 
#print "Chromosome: $chr1\n<br>"; 

 



 
print <<HTML; 
      <html><head><title>Query Results</title></head> 
       <body> 
        <table border="1" cellspacing="0"> 
         <tr> 
          <td><b>MARKER</b></td> 
          <td><b>CHR</b></td> 
          <td><b>CHRPOS</b></td> 
         </tr> 
HTML 
 
  print qq(<tr>\n); 
  print qq(<td>$mkr1</td>\n); 
  print qq(<td>$chr1</td>\n); 
  print qq(<td>$chrpos1</td>\n); 
  print qq(</tr>); 
 
  print qq(<tr>\n); 
  print qq(<td>$mkr2</td>\n); 
  print qq(<td>$chr2</td>\n); 
  print qq(<td>$chrpos2</td>\n); 
  print qq(</tr>); 
  print qq(<P>); 
 
print <<HTML; 
      <html><head><title>Query Results</title></head> 
       <body> 
        <table border="1" cellspacing="0"> 
         <tr> 
          <td><b>LOCUS_ID</b></td> 
          <td><b>CHRPOS</b></td> 
          <td><b>SYMBOL</b></td> 
          <td><b>PRODUCT</b></td> 
          <td><b>N</b></td> 
          <td><b>GENE_LENGTH</b></td> 
          <td><b>TISSUE</b></td> 
         </tr> 
HTML 
 
while(my $data = $sth2->fetchrow_hashref){ 
  print qq(<tr>\n); 
  print qq(<td>$data->{LOCUS_ID}</td>\n); 
  print qq(<td>$data->{CHRPOS}</td>\n); 
  print qq(<td>$data->{SYMBOL}</td>\n); 
  print qq(<td>$data->{PRODUCT}</td>\n); 
  print qq(<td>$data->{N}</td>\n); 
  print qq(<td>$data->{GENE_LENGTH}</td>\n); 
  print qq(<td>$data->{TISSUE}</td>\n); 
  print qq(</tr>); 
} 
 
$sth2->finish(); 
} 
 
########################## SNPTABLE SUBROUTINE #################### 
sub snptable { 

 



 
my $gene = $q->param("gene"); 
 
#my $stmt = "select locus_id, snp_id, fxn_class  
#from dbsnp114.snpcontiglocusid 
#where locus_id= ? "; 
 
my $stmt = "select scl.locus_id, scl.snp_id, fxn_class, 
asn_from+ci.contig_start as chrpos, avg_heterozygosity as avg_hz 
from dbsnp114.snpcontiglocusid as scl, dbsnp114.contiginfo as ci, 
dbsnp114.snp as snp 
where (locus_id= ? ) 
   and (scl.contig_acc=ci.contig_acc) 
   and (scl.contig_ver=ci.contig_ver) 
   and (scl.snp_id=snp.snp_id) 
order by chrpos"; 
 
my $sth = $dbh->prepare($stmt) 
       or die "Can't prepare SQL statement: ", $dbh->errstr(), "\n"; 
 
$sth->execute($gene) 
       or die "Can't execute SQL statement: ", $sth->errstr(), "\n"; 
 
print header (); 
#print "gene1: $gene1\n"; 
 
print <<HTML; 
      <html><head><title>Query Results</title></head> 
       <body> 
        <table border="1" cellspacing="0"> 
         <tr> 
          <td><b>LOCUS_ID</b></td> 
          <td><b>SNP_ID</b></td> 
          <td><b>CHRPOS</b></td> 
          <td><b>FXN_CLASS</b></td> 
          <td><b>AVG_HZ</b></td> 
         </tr> 
HTML 
 
while(my $data = $sth->fetchrow_hashref){ 
  print qq(<tr>\n); 
  print qq(<td>$data->{LOCUS_ID}</td>\n); 
  print qq(<td>$data->{SNP_ID}</td>\n); 
  print qq(<td>$data->{CHRPOS}</td>\n); 
  print qq(<td>$data->{FXN_CLASS}</td>\n); 
  print qq(<td>$data->{AVG_HZ}</td>\n); 
  print qq(</tr>); 
} 
 
$sth->finish(); 
 
} 
 
$dbh->disconnect;

 



 APPENDIX D: HTML CODE FOR PROTOTYPE WEB INPUT FORM 
 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
<HTML><HEAD><TITLE>cgi-test</TITLE> 
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1"> 
<META content="MSHTML 5.50.4934.1600" name=GENERATOR></HEAD> 
<BODY> 
<FORM action=http://www.medgen.iupui.edu/cgi-bin/binf/guidev/snp2.pl 
method=post><BR> 
<H2>ONLINE BIOLOGICAL DATA RETRIEVAL  
<P>MEDICAL AND MOLECULAR GENETICS</H2> 
<HR> 
<H2>INPUT TYPE</H2> 
<P> 
<H3><INPUT type=radio CHECKED value=marker name=input> Markers (Gene 
table)  
<P></H3> 
<UL> 
  <P><INPUT name=marker1> Marker 1</P>  
  <P><INPUT name=marker2> Marker 2</P> 
  <P><INPUT name=tissue> Filter on tissue expression 
(required)</P></UL> 
<H3><INPUT type=radio value=sgene name=input> Single Gene (SNP table)  
<P></H3> 
<UL><INPUT name=gene> Locus ID  
  <P></P></UL> 
<P><INPUT type=submit value=SUBMIT><INPUT type=reset value=RESET>  
<P></FORM></P> 
<HR> 
 
<H2>OUTPUT TABLES AND FIELDS</H2> 
<P> 
<H3>Gene Table: Output Fields  
<P></H3> 
<UL> 
  <TABLE cellSpacing=0 border=1> 
    <TBODY> 
    <TR> 
      <TD><B>LOCUS_ID</B></TD> 
      <TD><B>Unique NCBI identifier</B></TD></TR> 
    <TR> 
      <TD><B>CHRPOS</B></TD> 
      <TD><B>Chromosome position (bp)</B></TD></TR> 
    <TR> 
      <TD><B>SYMBOL</B></TD> 
      <TD><B>Abbreviation</B></TD></TR> 
    <TR> 
      <TD><B>PRODUCT</B></TD> 
      <TD><B>Short description</B></TD></TR> 
    <TR> 
      <TD><B>N</B></TD> 
      <TD><B>Nomenclature: O (Official) or P (Preferred, but not  
      official)</B></TD></TR> 
    <TR> 
      <TD><B>GENE_LENGTH</B></TD> 
      <TD><B>Includes introns, exons, and poly-A tail</B></TD></TR> 

 



    <TR> 
      <TD><B>TISSUE</B></TD> 
      <TD><B>Reported tissue 
expression</B></TD></TR></TBODY></TABLE></UL> 
<H3>SNP Table: Output Fields  
<P></H3> 
<UL> 
  <TABLE cellSpacing=0 border=1> 
    <TBODY> 
    <TR> 
      <TD><B>LOCUS_ID</B></TD> 
      <TD><B>Unique NCBI identifier</B></TD></TR> 
    <TR> 
      <TD><B>SNP_ID</B></TD> 
      <TD><B>Unique SNP identifier</B></TD></TR> 
    <TR> 
      <TD><B>CHRPOS</B></TD> 
      <TD><B>Chromosome position (bp)</B></TD></TR> 
    <TR> 
      <TD><B>FXN_CLASS</B></TD> 
      <TD><B>Functional class</B></TD></TR> 
    <TR> 
      <TD><B>AVG_HZ</B></TD> 
      <TD><B>Average heterozygosity</B></TD></TR></TBODY></TABLE></UL> 
<H3>SNP Table: Function Class Codes 
<P></H3> 
<UL> 
  <TABLE cellSpacing=0 border=1> 
    <TBODY> 
    <TR> 
      <TD><B>FXN_CLASS</B></TD> 
      <TD><B>ABBREV</B></TD> 
      <TD><B>DESC</B></TD></TR> 
    <TR> 
      <TD><B>1</B></TD> 
      <TD><B>locus</B></TD> 
      <TD><B>mrna_acc and protein_acc both null</B></TD></TR> 
    <TR> 
      <TD><B>2</B></TD> 
      <TD><B>coding</B></TD> 
      <TD><B>coding</B></TD></TR> 
    <TR> 
      <TD><B>3</B></TD> 
      <TD><B>synonymous change</B></TD> 
      <TD><B>synonymous change</B></TD></TR> 
    <TR> 
      <TD><B>4</B></TD> 
      <TD><B>nonsynonymous change</B></TD> 
      <TD><B>nonsynonymous change</B></TD></TR> 
    <TR> 
      <TD><B>5</B></TD> 
      <TD><B>UTR</B></TD> 
      <TD><B>untranslated region</B></TD></TR> 
    <TR> 
      <TD><B>6</B></TD> 
      <TD><B>intron</B></TD> 
      <TD><B>intron</B></TD></TR> 

 



    <TR> 
      <TD><B>7</B></TD> 
      <TD><B>splice-site</B></TD> 
      <TD><B>splice-site</B></TD></TR> 
    <TR> 
      <TD><B>8</B></TD> 
      <TD><B>contig reference</B></TD> 
      <TD><B>contig reference</B></TD></TR> 
    <TR> 
      <TD><B>9</B></TD> 
      <TD><B>synonymy unknown</B></TD> 

<TD><B>coding: synonymy 
unknown</B></TD></TR></TBODY></TABLE></UL> 

<P></H3></P></BODY></HTML>

 



 APPENDIX E: SCREEN PRINT OF PROTOYPE WEB INPUT FORM  

ONLINE BIOLOGICAL DATA RETRIEVAL  

MEDICAL AND MOLECULAR GENETICS 
 

INPUT TYPE 

Markers (Gene table)  

Marker 1 

Marker 2 

Filter on tissue expression (required) 

Single Gene (SNP table)  

Locus ID  

SUBMIT RESET
 

 

OUTPUT TABLES AND FIELDS 
Gene Table: Output Fields  

LOCUS_ID Unique NCBI identifier 
CHRPOS Chromosome position (bp) 
SYMBOL Abbreviation 
PRODUCT Short description 
N Nomenclature: O (Official) or P (Preferred, but not official) 
GENE_LENGTH Includes introns, exons, and poly-A tail 
TISSUE Reported tissue expression 

 

 

 

 

 

 

 



SNP Table: Output Fields  
LOCUS_ID Unique NCBI identifier 
SNP_ID Unique SNP identifier 
CHRPOS Chromosome position (bp)
FXN_CLASS Functional class 
AVG_HZ Average heterozygosity 

 

SNP Table: Function Class Codes  
FXN_CLASS ABBREV DESC 
1 locus mrna_acc and protein_acc both null 
2 coding coding 
3 synonymous change synonymous change 
4 nonsynonymous change nonsynonymous change 
5 UTR untranslated region 
6 intron intron 
7 splice-site splice-site 
8 contig reference contig reference 
9 synonymy unknown coding: synonymy unknown 

 
 

 



APPENDIX F: USER MANUAL 

 

THE WEB INPUT FORM 

The URL for the CLSD browser is: http://www.medgen.iupui.edu/binf/cgiproto.html

Access to the web input form is password protected because the data in CLSD is not 

licensed for use outside IU: 

 username: clsdbrw 

 password: ****** 

[Note: the password is masked in this document but not the actual user 

manual]. 

 

THE MARKER TO GENE TABLE QUERY 

The marker to gene table query requires two chromosome markers and an optional tissue 

filter field. The query returns a table which summarizes data for all the known genes on 

the chromosome segment defined by the two markers. Occasionally a query may not 

work because the marker has more than one name. There is a link to the UniSTS home 

page at NCBI if you need help with this.  

 

Another problem you may encounter when using this query is the tissue expression field 

in the UniGene database at NCBI uses a non-standardized vocabulary. So if you generate 

a table and filter the output on a term like “bone”, you may miss a few genes because 

their tissue expression is reported under a term like “osteocytes”. This tends to be more of 

a problem with tissues and organs that have complex anatomy and physiology, like the 

central nervous system. 

 

http://www.medgen.iupui.edu/binf/cgiproto.html


 

The link to Medical Subject Headings Browser (MeSH) at the National Library of 

Medicine (NLM) can help alert you to the need for repeating the query on more than one 

tissue expression term. For example, if you enter the term “muscle”, you will get an 

output page that gives a number of related terms, including skeletal muscle, smooth 

muscle, and myocardium.  

 

Another way to address this problem is to run your query using standard terminology like 

“bone” or “brain” for the tissue expression filter, and then scan the tissue expression field 

in the output table for unusual or less frequently used terms like “trabecular meshwork” 

or “medulla” that may not be included in the MeSH vocabulary. 

 

The first output table gives chromosome positions for the two markers. Occasionally you 

may see more than one position reported for the same marker. The table we use to get 

marker positions is actually a primer table, so if more than one primer is available for a 

marker, the marker will be listed more than once. In most cases, the chromosome 

positions for these primers will be very close to each other. The SQL for this query sorts 

the first table by chromosome position, and then uses the first and last position to 

generate the gene table.  

 

The table that we use to get chromosome positions also includes some markers with non-

unique primers. If one of these markers is entered, the gene table will give inaccurate 

results, because the chromosome positions for the non-unique primers can vary widely. If 

 



you are using a marker which has at least one unique primer and one or more non-unique 

primers, the best solution is to use the UniSTS database and the map viewer at NCBI to 

select an adjacent chromosome marker that can be used as a proxy.  

 

Most of the fields in the output table for this query are self-explanatory. An “O” in the 

nomenclature field indicates that the gene abbreviation and product name are officially 

approved by the HUGO Gene Nomenclature Committee. A “P” indicates that the 

nomenclature is preferred but not officially approved. 

 

THE GENE ID TO SNP TABLE QUERY 

The gene to SNP table query requires one Locuslink ID for input and returns a table that 

summarizes data for all of the known SNP’s in and adjacent to the gene. If you only 

know the name or abbreviation for the gene, you can use the link on the web input form 

to look up the Locuslink ID at NCBI. There is also a link to the dbSNP homepage at 

NCBI in case you need more information about a specific SNP. 

 

Most of the fields in the output table for this query are self-explanatory. There are lookup 

tables on the web input form to provide descriptors for the function class and validation 

status codes.  

 

The main problem we had while developing this query was the frequency of dbSNP 

updates at NCBI. We subscribe to NCBI mailing lists that usually, but not always, notify 

 



us when a new dbSNP build is available. If you see any results in the CLSD output that 

don’t agree with the NCBI website, please let us know as soon as possible. 

 

MAINTENANCE AND DOWNTIME 

It is not unusual for CLSD be unavailable for short periods due to minor problems or 

routine maintenance. CLSD usually lets us know in advance if service is going to be 

interrupted for more than a short time due to routine maintenance. We will try to pass 

these alerts on to you as soon as we hear about them from CLSD. If the CLSD browser is 

down for more than 2-3 hours, and you haven’t heard from us in advance, please let us 

know. 

 

 



APPENDIX G: MAINTENANCE MANUAL 

 

OUTLINE 

The CLSD browser consists of four components: 1) the web input form, 2) PERL 

program, 3) DB2 client, and 4) CLSD. Each of these components will be discussed in 

turn, followed by a summary of update procedures and a general approach to 

troubleshooting.  

 

THE WEB INPUT FORM 

The web input form passes query parameters entered by the end-user to a PERL program 

that runs on a webserver in the Medical Genetics department. The host, path, and 

filename for the web input form HTML file is:  

fisher.medgen.iupui.edu: /home/apache/htdocs/binf/cgiproto.html  

The web input form URL for end-users is:  

http://www.medgen.iupui.edu/binf/cgiproto.html

Note that the UNIX path and the URL for the web input form are different, even though 

they point to the same html file. The web input form passes the query parameters to the 

path and program specified in the <FORM> tag in the header of the html code. The 

currently active program is db120_2.pl:  

<FORM action=http://www.medgen.iupui.edu/cgi-

bin/binf/prod/db120_2.pl method=post> 

Access to the web input form is password protected because the data in CLSD is not 

licensed for use outside IU: 

 

 

http://www.medgen.iupui.edu/binf/cgiproto.html


 username: clsdbrw 

 password: ****** 

[Note: the password is masked in this document but not the actual user manual]. 

Joe Urbanski can help you if you ever need to change the password or username. 

 

THE PERL PROGRAM 

The PERL program is located on a webserver in Medical Genetics and serves two 

functions. The first is to accept input parameters from the web input form and generate 

SQL that is sent to CLSD. The second is to convert the raw data received from CLSD 

into HTML-based output tables that are sent back to the end-user. PERL programs are 

currently stored in two directories: 

fisher.medgen.iupui.edu: /var/apache/cgi-bin/binf/dev/ 

fisher.medgen.iupui.edu: /var/apache/cgi-bin/binf/prod/ 

Note that the UNIX path to the active PERL program is different from the path in the 

HTML <FORM> tag, even though they both point to the same program. 

 

The PERL program requires frequent modifications to keep up with changes and updates 

at CLSD and NCBI. The development directory (/guidev) is used for writing and 

debugging new PERL programs. A PERL program which has been finalized and is ready 

for use is copied to the production (/prod) directory. This arrangement minimizes the 

possibility of accidentally modifying a program that is actively being used. It also ensures 

that if the active program is ever corrupted, there will be a backup copy in the 

development directory.   

 

 



To run the PERL program from the command line in SSH shell, you need to supply the 

input parameters that would normally be submitted by the web form. The syntax is as 

follows: 

perl db120_2.pl input=marker marker1=D14S588 marker2=D14S592 

perl db120_2.pl input=sgene gene=2487 

The output from this command will be an html document, which may be large. You can 

usually tell if the output is OK by looking at the first page or so of code, but if necessary, 

the output can be copied into a text editor on your PC, saved as an html file, and opened 

with Netscape or Internet Explorer. 

 

THE DB2 CLIENT 

The DB2 client establishes a remote connection to CLSD from Medical Genetics. Joe 

Urbanski has assumed most of the responsibility for installing and maintaining the DB2 

client. SSH Secure Shell can be configured so it will automatically connect to the DB2 

client whenever you open SSH. You can ask Joe Urbanski for help if you’d like to set this 

up. Alternatively, you can connect to the DB2 client manually at the beginning of each 

session by entering the following at the command prompt (use your username and 

password, without quotation marks):  

 db2 connect to clsd2 user “username” using “password”; 

 

CLSD 

The CLSD homepage is: http://www.indiana.edu/~rac/clsd/. This homepage provides a 

list of available databases and the tables and field names for each database. Sometimes 

 

http://www.indiana.edu/%7Erac/clsd/


the table and field names at CLSD are different from the source databases. With the 

exception of dbSNP, CLSD does not maintain data dictionaries or entity relationship 

diagrams. For this information you will have to go to the source databases. Be 

forewarned that the documentation at NCBI may be incomplete and fragmented across 

many different web pages and ftp directories. 

 

University Information technology Services (UITS) and  Research and Academic 

Computing (RAC) maintain a number of other useful bioinformatics resources: 

http://www.indiana.edu/~rac/bioinformatics/

 

Our contact at CLSD is Andrew D. Arenson. Andy was recently promoted and CLSD is 

in the process of filling his old position. CLSD has only limited capability of making 

updates until this position is filled. Andy’s new position includes supervising whoever is 

hired to replace him. 

 

CLSD maintains a mailing list which is helpful in keeping up with service changes and 

planned downtime. Instructions for subscribing to this list are on the CLSD homepage. 

 

To accounts are required to access CLSD. The department of Medical Genetics has one 

account on the university research supercomputer, and a second account for CLSD. To 

connect to the research supercomputer, open SSH Secure Shell Client and logon to 

orion17.uits.iupui.edu: 

 username clsdbrw 

 password ********   

 

http://www.indiana.edu/%7Erac/bioinformatics/


[Note: the password for clsdbrw account is masked in this document, but not in the actual 

maintenance manual]. To start CLSD, type the following commands at the command 

prompt: 

 cd /usr/local/bin 
bash 
source ~db2inst2/sqllib/db2profile 
db2 connect to clsd2 
cd /N/u/clsdbrw/SP 
 

These commands are saved in a file called logon that is stored in the clsdbrw home 

directory: /N/u/clsdbrw/SP. I usually open this file and copy and paste the commands into 

the command prompt as a block so I don’t have to type them in manually.  

 

Here is the procedure for running SQL on a direct connection to CLSD. This bypasses the 

web input form, PERL program, and DB2 client. This is helpful for writing new SQL 

code or ruling out CLSD as the source of the problem when the CLSD browser goes 

down.  

 

You can run simple queries from the command line as follows:  

db2 “select * from dbsnp120.snpfunctioncode”  

More complex SQL (anything longer than one line) has to be run from a file. I generally 

write the code in MS Word (or other text editor in Windows), and then copy and paste the 

code into vi (or other UNIX editor of your choice). I find this much easier than writing 

the SQL itself in vi. Sample sql: 

select *  
from dbsnp120.snpfunctioncode 
where code = 1; 
 

 



Save the file from vi with a filename like test.db2, and exit vi to the command prompt. To 

run this file from the command prompt, type:  

db2 -tf test.db2 

The -t tells DB2 that your SQL code ends with a semicolon. The -f is necessary when 

running SQL from a file instead of directly from the command line.  

 

IBM has an extensive set of documentation manuals on their DB2 technical support page: 

http://www-306.ibm.com/cgi-

bin/db2www/data/db2/udb/winos2unix/support/v8pubs.d2w/en_main

 

NCBI 

Each of the major databases at NCBI has a home page that is a good place to start when 

you are looking for documentation. NCBI has a lot of good documentation in addition to 

this, but some of it is very hard to find unless you know where to look for it. The 

following URL’s are current as of this writing but are subject to change. 

NCBI maintains a number of useful email lists. These usually, but not always, give you 

advance warning if NCBI is planning any updates or other modifications that may affect 

CLSD or the CLSD browser: 

http://www.ncbi.nlm.nih.gov/Sitemap/Summary/email_lists.html

 

A good overview of ftp download resources at NCBI: 

http://www.ncbi.nlm.nih.gov/Sitemap/index.html#FTPDatabases

 

http://www-306.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v8pubs.d2w/en_main
http://www-306.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v8pubs.d2w/en_main
http://www.ncbi.nlm.nih.gov/Sitemap/Summary/email_lists.html
http://www.ncbi.nlm.nih.gov/Sitemap/index.html#FTPDatabases


There is a lot of useful documentation in some of the ftp readme.txt files that is otherwise 

very difficult to find. 

 

A good summary of the genome sequencing and annotation process: 

http://www.ncbi.nlm.nih.gov/genome/guide/build.html#sts

 

Description of fields in LocusLink flat files (these are converted to tables and fields when 

the flat file is uploaded to CLSD): 

ftp://ftp.ncbi.nih.gov/refseq/LocusLink/README

 

Description of fields in the ePCR flat file that we use to get positions for chromosome 

markers: 

ftp://ftp.ncbi.nih.gov/repository/UniSTS/UniSTS_ePCR.Reports/Homo_sapiens/READM

E

 

Data dictionaries and entity relationship diagrams for dbSNP: 

ftp://ftp.ncbi.nih.gov/snp/mssql/schema/

 

Description of fields in GenBank flat files: 

http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html#AccessionB

 

A Nature Genetics article that does an excellent job of providing step-by-step instructions 

for task-specific, frequently asked questions at NCBI: 

 

http://www.ncbi.nlm.nih.gov/genome/guide/build.html#sts
ftp://ftp.ncbi.nih.gov/refseq/LocusLink/README
ftp://ftp.ncbi.nih.gov/repository/UniSTS/UniSTS_ePCR.Reports/Homo_sapiens/README
ftp://ftp.ncbi.nih.gov/repository/UniSTS/UniSTS_ePCR.Reports/Homo_sapiens/README
ftp://ftp.ncbi.nih.gov/snp/mssql/schema/
http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html#AccessionB


http://genomics.iupui.edu/G865/NatGenUserGuide/start.html

(Sept 2002, v. 32 supplement pp 1 - 79) 

  

MAINTENANCE AND UPDATES 

CLSD draws data from databases that are constantly being updated and modified. As a 

result, a significant amount of maintenance is required to keep CLSD and the CLSD 

browser functioning. We have relatively efficient processes for incorporating dbSNP 

updates because we’ve already done this five or six times. When NCBI makes substantial 

changes to other databases that we have not dealt with before, much more work may be 

required to incorporate these revisions the first time. As additional experience is gained, 

the new processes should become more efficient. 

 

When NCBI changes the structure of a database, the first task is to determine whether or 

not these affect the tables and fields that are being used by the CLSD browser. Once you 

know what the changes are, you can usually just modify the SQL embedded in the PERL 

code. To make major modifications, you may need to write and test the new SQL on a 

direct connection to CLSD on orion17.uits.iupui.edu, and then incorporate the new SQL 

into the old PERL program. 

 

The following is a general procedure for incorporating new dbSNP updates. The first step 

is to change the dbSNP table prefixes in the PERL/SQL code. The easiest way to do this 

is to copy the program into MS WORD and use the FIND/REPLACE function. For 

example,  the prefix “dbsnp119.”would be replaced by “dbsnp120.” If the data model 

 

http://genomics.iupui.edu/G865/NatGenUserGuide/start.html


changes, you will have more work to do. Sometimes new tables are created to replace old 

tables, and sometimes data fields are moved from one table to another.  

 

To modify the PERL program, I usually copy the active program in the /prod directory to 

the guidev directory under a new filename. For example, /prod/dbsnp119.pl would be 

used to create a new copy of the same file named /guidev/dbsnp120.pl. The new program 

in the /guidev directory is used for modification and debugging. When the new program 

is finished, it is copied to the /prod directory. 

 

The lookup tables for validation status codes (dbsnpxxx.snpvalidationcode) and 

functional class codes (dbsnpxxx.snpfunctioncode) also need to be checked to see if they 

have been updated. These tables are not used in the PERL/SQL code, but they are used to 

provide lookup tables on the web input form that provide descriptions for the code 

numbers.  

 

The HTML file for the web input form will also need to be modified to reflect the new 

target program in the <FORM> tag, as well as any revisions to the validation status and 

functional class code lookup tables. I usually copy the current HTML document to a text 

editor in Windows and save the file to my hard drive to modify and test the new code. 

When the new HTML document is finished, go back to the /home/apache/htdocs/binf/ 

directory on fisher and copy the active (old) HTML file to a new filename that reflects 

the backup date. For example, cgiproto.html would be copied to cgiproto-bkp-2004-05-

14.html. The new HTML document in the Windows editor is then used to overwrite old 

 



cgiproto.html file. This process ensures that a working backup copy of the HTML file is 

always available if it is ever needed. It also provides a consistent URL for the end-users 

that does not have to be changed every time the web input form is updated.  

 

TROUBLESHOOTING 

It is not unusual for CLSD be unavailable for short periods due to minor problems or 

routine maintenance, so I do not usually take any action unless the CLSD browser is 

down for more than 2-3 hours. If you subscribe to their email list, CLSD will usually 

announce any major maintenance in advance. 

 

If CLSD browser is down for more than 2-3 hours and no routine maintenance has been 

planned, I usually start with CLSD and work backwards towards the web input form in a 

stepwise manner to determine which component is causing the problem. Here is a general 

procedure for troubleshooting: 

1) Login to orion17.uits.iupui.edu. The login screen will often give you up to date 

information on any planned or unplanned interruptions in service on the research 

supercomputer. 

2) Login to CLSD and run some simple SQL to see if CLSD is working 

3) If CLSD seems to be working OK, go to fisher.medgen.iupui.edu and try 

running one or more queries using the PERL program from the command line 

4) If the PERL program is working OK, try running one or more queries from the 

web input form 

 



5) At this point, you should have a pretty good idea which components are 

affected. The error messages will usually help determine what the problem is and 

how to start working on it. Sometimes you will need help from technical support 

in Medical Genetics, CLSD, or both.   

 

 



APPENDIX H: PERL CODE FOR FINAL VERSION 
 
fisher.medgen.iupui.edu: /var/apache/cgi-bin/binf/prod/db120_2.pl 
 
The first section of this program contains comments, invokes PERL modules, and opens 
a connection to CLSD. The CLSD connection is called a database handle, or $dbh. Our 
departmental account at CLSD has username “clsdbrw”. The password for accessing the 
clsdbrw account is masked in this document but not the actual PERL program. 
 

#!/usr/local/bin/perl -w 
# db120.pl 
# use db119.pl as template 
# revise code for to convert dbsnp119 to 120 
 
use strict; 
 
use DBI; 
use DBD::DB2::Constants; 
use DBD::DB2; 
use CGI qw(:standard); 
use CGI::Carp qw(fatalsToBrowser); 
 
my $q=new CGI; 
 
my $dbh = DBI->connect(“dbi:DB2:clsd2”, “clsdbrw”, “********”) 
       or die “Couldn’t connect to database: “ . DBI->errstr; 
 

The next section determines which query the user wants to run. Depending on which 
radio button is selected on the web input form, the PERL variable $input is assigned a 
value of “marker” or “sgene”.  

 
# which query does user want to run? 
my $input = $q ->param("input"); 
 
# code is dummy cgi field for development only 
my $code = $q->param("code"); 
 

This in turn invokes one of two subroutines, “markergenetable” or “snptable”.  
 
# which query does user want to run? 
if ($input eq "marker") { 
   markergenetable(); 
} elsif ($input eq "sgene") { 
   snptable(); 
} 

 
The first step in the genetable subroutine is to pass the marker and tissue parameters 
submitted by the end-user to PERL variables.  
 

############################# GENETABLE SUBROUTINE ############## 
  
sub markergenetable { 
my $marker1 = uc ($q->param("marker1")); 

 



my $marker2 = uc ($q->param("marker2")); 
 
my $tissue = $q ->param("tissue"); 
 

These variables are then used to generate an SQL statement, $stmt. The question marks 
are placeholders for the marker ids which are entered when the statement is executed. 

 
my $stmt = "select STS_NAME, contig_chr as chr, 
pos1+contig_start-1 as chrpos 
   from epcr.Seq_STS, dbsnp120.contiginfo 
   where (sts_name in (? , ?)) 
      and (gi_num=contig_gi) 
   order by chrpos"; 

 
The statement handle, $sth, connects the SQL statement, $stmt, to the database handle 
($dbh). 

 
my $sth = $dbh->prepare($stmt) 
       or die "Can't prepare SQL statement: ", $dbh->errstr(), 
"\n"; 
 

The next command takes the current values of the marker variables and executes the 
statement handle. This sends the first query off to CLSD. 

 
$sth->execute($marker1,$marker2) 
       or die "Can't execute SQL statement: ", $sth->errstr(), 
"\n"; 

 
The first query gets chromosome positions for the two markers from CLSD. The next 
block of code assigns these values to the variables $chrpos1 and $chrpos2. A small table 
is printed for the enduser which shows the chromosome positions of the two markers.  
 

print header; 
 
print ' 
      <html><head><title>Query Results</title></head> 
       <body bgcolor="#E0E0E0"> 
        <table border="1" cellspacing="0"> 
         <tr> 
          <td><b>MARKER</b></td> 
          <td><b>CHR</b></td> 
          <td><b>CHRPOS</b></td> 
         </tr> 
       '; 
 
my ($chr1, $chrpos1, $chrpos2); 
$chr1 = 0; 
$chrpos1 = 0;  
while ( my @row = $sth->fetchrow_array ) 
{ 
    if( $chr1 == 0 ) 
    { 
        $chr1 = $row[1]; 
    } 
    if ( $chrpos1 == 0 ) 

 



    { 
        $chrpos1 = $row[2]; 
    } 
    $chrpos2 = $row[2]; 
    print qq(<tr>\n); 
    print qq(<td>$row[0]</td>\n); 
    print qq(<td>$row[1]</td>\n); 
    print qq(<td>$row[2]</td>\n); 
    print qq(</tr>); 
} 
print qq(<P>); 
print qq(</table>); 
 
$sth->finish();  

 
The next block of code uses the chromosome positions to generate a second query, which 
returns the raw data necessary for the gene output table. This query takes one of two 
forms, depending on whether or not tissue filter terms are submitted by the end-user. If a 
tissue filter term is submitted, the program will look for the term in upper, lower, and title 
case. 
 

my ($tissue1, $tissue2, $tissue3); 
my ($stmt2); 
 
if ($tissue ne "") { 
  $tissue1 = lc $tissue; 
  $tissue2 = uc $tissue; 
  $tissue3 = $tissue; 
  $tissue3 =~ s/(\w+)/\u\L$1/g; 
 
  $stmt2 = "select pos.locus_id as locus_id, 
                      pos.chrpos as chrpos, 
                      gene_length, ll.symbol as symbol,  
                      ll.product as product,  
                      express as tissue, 
                      ll.name_type as n 
 
  from (select c.locus_id, contig_start+start-1 as chrpos, end-
start as gene_length 
  from locuslink.contig as c, dbsnp120.contiginfo 
  where (gi_num=contig_gi) 
  and (((contig_start+start-1 > ? ) and (contig_start+start-1 < ? 
)) 
       or ((contig_start+end-1 > ? ) and (contig_start+end-1 < ? 
))) 
  and (source = ? )) as pos 
 
  left outer join locuslink.loci as ll 
  on pos.locus_id=ll.locus_id 
 
  left outer join unigene.locus as ul 
  on pos.locus_id=ul.locuslink_id 
 
  left outer join unigene.express as ue 
  on ul.cluster_id=ue.cluster_id 

 



 
  where (express like '%$tissue1%') 
     or (express like '%$tissue2%')  
     or (express like '%$tissue3%') 
 
  order by chrpos"; 
 
} else { 
 
  $stmt2 = "select pos.locus_id as locus_id, 
                      pos.chrpos as chrpos, 
                      gene_length, ll.symbol as symbol, 
                      ll.product as product, 
                      express as tissue, 
                      ll.name_type as n 
 
  from (select c.locus_id, contig_start+start-1 as chrpos, end-
start as gene_length 
  from locuslink.contig as c, dbsnp120.contiginfo 
  where (gi_num=contig_gi) 
  and (((contig_start+start-1 > ? ) and (contig_start+start-1 < ? 
)) 
       or ((contig_start+end-1 > ? ) and (contig_start+end-1 < ? 
))) 
  and (source = ? )) as pos 
 
  left outer join locuslink.loci as ll 
  on pos.locus_id=ll.locus_id 
 
  left outer join unigene.locus as ul 
  on pos.locus_id=ul.locuslink_id 
 
  left outer join unigene.express as ue 
  on ul.cluster_id=ue.cluster_id 
 
  order by chrpos"; 
 
} 
 
my $sth2 =  $dbh->prepare($stmt2) 
    or die "Can't prepare SQL statement: ", $dbh->errstr(), "\n"; 
 
$sth2->execute($chrpos1,$chrpos2,$chrpos1,$chrpos2,$chr1) 
    or die "Can't execute SQL statement: ", $sth->errstr(), "\n"; 

 
The final block of code in this subroutine converts the raw data from CLSD into HTML-
based output tables, which are returned to the end-user. 
 

print ' 
        <table border="1" cellspacing="0"> 
         <tr> 
          <td><b>LOCUS_ID</b></td> 
          <td><b>CHRPOS</b></td> 
          <td><b>SYMBOL</b></td> 
          <td><b>PRODUCT</b></td> 
          <td><b>N</b></td> 

 



          <td><b>GENE_LENGTH</b></td> 
          <td><b>TISSUE</b></td> 
         </tr> 
       '; 
 
while(my $data = $sth2->fetchrow_hashref){ 
  print qq(<tr>\n); 
  print qq(<td>$data->{LOCUS_ID}</td>\n); 
  print qq(<td>$data->{CHRPOS}</td>\n); 
  print qq(<td>$data->{SYMBOL}</td>\n); 
  print qq(<td>$data->{PRODUCT}</td>\n); 
  print qq(<td>$data->{N}</td>\n); 
  print qq(<td>$data->{GENE_LENGTH}</td>\n); 
  print qq(<td>$data->{TISSUE}</td>\n); 
  print qq(</tr>); 
} 
 
print ' 
        </table> 
        </body> 
        </html> 
      '; 
 
$sth2->finish(); 
 
} 

 
The code for the snp table subroutine generates only one output table. Otherwise, it is 
very similar to the marker-gene table subroutine. 
 

########################## SNPTABLE SUBROUTINE ################## 
sub snptable { 
 
my $gene = $q->param("gene"); 
 
#my $stmt = "select locus_id, snp_id, fxn_class  
#from dbsnp114.snpcontiglocusid 
#where locus_id= ? "; 
 
my $stmt = "select scl.locus_id, scl.snp_id, fxn_class, 
asn_from+ci.contig_start-1 as chrpos, avg_heterozygosity as 
avg_hz, het_se, snp.validation_status as val 
from dbsnp120.snpcontiglocusid as scl, dbsnp120.contiginfo as ci, 
dbsnp120.snp as snp 
where (locus_id= ? ) 
   and (scl.contig_acc=ci.contig_acc) 
   and (scl.contig_ver=ci.contig_ver) 
   and (scl.snp_id=snp.snp_id) 
order by chrpos"; 
 
 
my $sth = $dbh->prepare($stmt) 
       or die "Can't prepare SQL statement: ", $dbh->errstr(), 
"\n"; 
 
$sth->execute($gene) 

 



       or die "Can't execute SQL statement: ", $sth->errstr(), 
"\n"; 
 
print header; 
 
print ' 
      <html><head><title>Query Results</title></head> 
       <body bgcolor="#E0E0E0"> 
        <table border="1" cellspacing="0"> 
         <tr> 
          <td><b>LOCUS_ID</b></td> 
          <td><b>SNP_ID</b></td> 
          <td><b>CHRPOS</b></td> 
          <td><b>FXN_CLASS</b></td> 
          <td><b>AVG_HZ</b></td> 
          <td><b>HET_SE</b></td> 
          <td><b>VAL</b></td> 
         </tr> 
       '; 
 
while(my $data = $sth->fetchrow_hashref){ 
  print qq(<tr>\n); 
  print qq(<td>$data->{LOCUS_ID}</td>\n); 
  print qq(<td>$data->{SNP_ID}</td>\n); 
  print qq(<td>$data->{CHRPOS}</td>\n); 
  print qq(<td>$data->{FXN_CLASS}</td>\n); 

 
There are a significant number of missing values for the AVG_HZ and HETSE fields. 
The following code assigns these a value of ‘NA’. If this is not done, the HTML table 
will not show gridline borders for the empty cells. 

 
  my $AVGHZ = $data->{AVG_HZ}; 
# if ($AVGHZ ne "") { 
  if (defined($AVGHZ) && ("" ne $AVGHZ)) { 
    $AVGHZ = sprintf("%1.2f", $AVGHZ); 
  } else { 
    $AVGHZ = "NA"; 
  } 
  printf qq(<td>$AVGHZ</td>); 
 
  my $HETSE = $data->{HET_SE}; 
# if ($HETSE ne "") { 
  if (defined($HETSE) && ("" ne $HETSE)) { 
    $HETSE = sprintf("%1.3f", $HETSE); 
  } else { 
    $HETSE = "NA"; 
  } 
  printf qq(<td>$HETSE</td>); 
  print qq(<td>$data->{VAL}</td>\n); 
 
 
  print qq(</tr>); 
} 
 
print ' 
        </table> 

 



        </body> 
        </html> 
      '; 
 
$sth->finish(); 
 
} 
 

The final command closes the connection to CLSD. 
 
$dbh->disconnect; 

 

 



APPENDIX I: HTML CODE FOR FINAL VERSION 
 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
<HTML><HEAD><TITLE>cgi-test</TITLE> 
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1"> 
<META content="MSHTML 5.50.4926.2500" name=GENERATOR></HEAD> 
<BODY bgcolor="#C0C0C0" background="background.jpg"> 
<FORM action=http://www.medgen.iupui.edu/cgi-bin/binf/prod/db120_2.pl 
method=post><BR> 
 
<H2>ONLINE BIOLOGICAL DATA RETRIEVAL 
<P>MEDICAL AND MOLECULAR GENETICS</H2> 
 
<HR> 
 
<H2>INPUT TYPE</H2> 
<P> 
<H3><INPUT type="radio" name="input" value="marker" CHECKED> Markers 
(Gene table) </H3> 
<P> 
<UL> 
  <P><INPUT TYPE="TEXT" name="marker1"> Marker 1 &nbsp;&nbsp; 
 Search 

<a href="http://www.ncbi.nlm.nih.gov/genome/sts/query_tip.html"> 
Markers 

 </a> at NCBI) 
 
  <P><INPUT TYPE="TEXT" name="marker2"> Marker 2 
 
<P><INPUT TYPE="TEXT" name="tissue"> Filter on tissue expression 
(optional)&nbsp;&nbsp; 

 
 <P>Search <a href="http://www.nlm.nih.gov/mesh/MBrowser.html"> 
Medical Subject Headings (MeSH)</a> at NLM 
  
</P></UL> 
 
<H3><INPUT type="radio" name="input" value="sgene" > Single Gene (SNP 
table) 
<P></H3> 
 
<UL> 
  <P> 
  <P><INPUT TYPE="TEXT" name="gene"> Locus ID &nbsp;&nbsp;(Search  
     <a href="http://www.ncbi.nlm.nih.gov/LocusLink/help.html"> Locus 
ID's</a>,  
     <a href="http://www.ncbi.nlm.nih.gov/SNP/"> SNP's</a> at NCBI) 
  </P> 
</UL> 
 
  <P></P></UL> 
 
<P><INPUT type=submit value=SUBMIT><INPUT type=reset value=RESET> 
<P></FORM></P> 
 
<HR> 

 



 
<H2>OUTPUT TABLES AND FIELDS</H2> 
<P> 
<H3>Gene Table 
<P></H3> 
 
<UL> 
   <table border="1" cellspacing="0"> 
         <tr> 
            <td><b>LOCUS_ID</b></td> 
            <td><b>Unique NCBI identifier</b></td> 
         </tr> 
         <tr> 
            <td><b>CHRPOS</b></td> 
            <td><b>Chromosome position (bp)</b></td> 
         </tr> 
         <tr> 
            <td><b>SYMBOL</b></td> 
            <td><b>Abbreviation</b></td> 
         </tr> 
         <tr> 
            <td><b>PRODUCT</b></td> 
            <td><b>Short description</b></td> 
         </tr> 
         <tr> 
            <td><b>N</b></td> 
            <td><b>Nomenclature: O (Official) or P (Preferred, but not 
official)</b></td> 
         </tr> 
         <tr> 
            <td><b>GENE_LENGTH</b></td> 
            <td><b>Includes introns, exons, and mRNA tail</b></td> 
         </tr> 
         <tr> 
            <td><b>TISSUE</b></td> 
            <td><b>Reported tissue expression</b></td> 
         </tr> 
    </table> 
</UL> 
 
<H3>SNP Table 
<P></H3> 
 
<UL> 
   <table border="1" cellspacing="0"> 
         <tr> 
            <td><b>LOCUS_ID</b></td> 
            <td><b>Unique NCBI identifier</b></td> 
         </tr> 
         <tr> 
            <td><b>SNP_ID</b></td> 
            <td><b>Unique SNP identifier</b></td> 
         </tr> 
         <tr> 
            <td><b>CHRPOS</b></td> 
            <td><b>Chromosome position (bp)</b></td> 
         </tr> 

 



         <tr> 
            <td><b>FXN_CLASS</b></td> 
            <td><b>Functional class</b></td> 
         </tr> 
         <tr> 
            <td><b>AVG_HZ</b></td> 
            <td><b>Average heterozygosity</b></td> 
         </tr> 
         <tr> 
            <td><b>HZ_SE</b></td> 
            <td><b>Heterozygosity standard error</b></td> 
         </tr> 
         <tr> 
            <td><b>VAL</b></td> 
            <td><b>Validation status</b></td> 
         </tr> 
    </table> 
</UL> 
    </table> 
</UL> 
 
<UL> 
   <table border="1" cellspacing="0"> 
         <tr> 
            <td><b>FXN_CLASS</b></td> 
            <td><b>ABBREV</b></td> 
            <td><b>DESC</b></td> 
         </tr> 
         <tr> 
            <td><b>1</b></td> 
            <td><b>non-gene</b></td> 
            <td><b>SNP lies within 2000 bp upstream or 500 bp 
downstream from gene boundaries</b></td> 
         </tr> 
         <tr> 
            <td><b>2</b></td> 
            <td><b>coding</b></td> 
            <td><b>refers to exons, appears to have been replaced by 3 
and 4</b></td> 
         </tr> 
         <tr> 
            <td><b>3</b></td> 
            <td><b>synonymous change</b></td> 
            <td><b>SNP changes mRNA codon but no amino acid 
substitution</b></td> 
         </tr> 
         <tr> 
            <td><b>4</b></td> 
            <td><b>nonsynonymous change</b></td> 
            <td><b>SNP changes mRNA codon with amino acid 
substitution</b></td> 
         </tr> 
         <tr> 
            <td><b>5</b></td> 
            <td><b>UTR</b></td> 
            <td><b>untranslated region: located on head or tail of 
mRNA</b></td> 

 



         </tr> 
         <tr> 
            <td><b>6</b></td> 
            <td><b>intron</b></td> 
            <td><b>intron</b></td> 
         </tr> 
         <tr> 
         </tr> 
         <tr> 
            <td><b>7</b></td> 
            <td><b>splice-site</b></td> 
            <td><b>located on intron-exon border</b></td> 
         </tr> 
         <tr> 
            <td><b>8</b></td> 
            <td><b>contig reference</b></td> 
            <td><b>SNP's with code of 3 or 4 are listed twice in the 
database, once for each allele. The allele on the  
 
reference contig gets a 
 
 value of 8</b></td> 
         </tr> 
         <tr> 
            <td><b>9</b></td> 
            <td><b>synonymy unknown</b></td> 
            <td><b>coding: synonymy unknown</b></td> 
         </tr> 
    </table> 
</UL> 
 
<UL> 
   <table border="1" cellspacing="0"> 
         <tr> 
            <td><b>VALIDATION CODE</b></td> 
            <td><b>SHORT DESC</b></td> 
            <td><b>LONG DESCRIPTION</b></td> 
          </tr> 
         <tr> 
            <td><b>0</b></td> 
            <td><b>not validated</b></td> 
            <td><b>no validation</b></td> 
         </tr> 
         <tr> 
            <td><b>1</b></td> 
            <td><b>cluster</b></td> 
            <td><b>validated by multiple, independent submissions to 
the refSNP cluster</b></td> 
         </tr> 
         <tr> 
            <td><b>2</b></td> 
            <td><b>freq</b></td> 
            <td><b>validated by frequency or genotype data: minor 
alleles observed in at least two chromosomes</b></td> 
         </tr> 
         <tr> 
            <td><b>3</b></td> 

 



            <td><b>cluster, freq</b></td> 
            <td><b>see above</b></td> 
         </tr> 
         <tr> 
            <td><b>4</b></td> 
            <td><b>submitter</b></td> 
            <td><b>submitter submitted batch update with a second 
validation method</b></td> 
         </tr> 
         <tr> 
            <td><b>5</b></td> 
            <td><b>submitter, cluster</b></td> 
            <td><b>see above</b></td> 
 
         </tr> 
         <tr> 
            <td><b>6</b></td> 
            <td><b>submitter, freq</b></td> 
            <td><b>see above</b></td> 
         </tr> 
         <tr> 
            <td><b>7</b></td> 
            <td><b>submitter, freq, cluster</b></td> 
            <td><b>see above</b></td> 
         </tr> 
         <tr> 
            <td><b>8</b></td> 
            <td><b>doublehit</b></td> 
            <td><b>all alleles have been observed in at least two 
chromosomes apiece</b></td> 
         </tr> 
         <tr> 
            <td><b>9</b></td> 
            <td><b>doublehit, cluster</b></td> 
            <td><b>see above</b></td> 
         </tr> 
         <tr> 
            <td><b>10</b></td> 
            <td><b>doublehit, freq</b></td> 
            <td><b>see above</b></td> 
         </tr> 
         <tr> 
            <td><b>11</b></td> 
            <td><b>doublehit, freq, cluster</b></td> 
            <td><b>see above</b></td> 
         </tr> 
         <tr> 
            <td><b>12</b></td> 
            <td><b>doublehit, submitter</b></td> 
            <td><b>see above</b></td> 
         </tr> 
         <tr> 
            <td><b>13</b></td> 
            <td><b>doublehit, submitter, cluster</b></td> 
            <td><b>see above</b></td> 
         </tr> 
         <tr> 

 



            <td><b>14</b></td> 
            <td><b>doublehit, submitter, freq</b></td> 
            <td><b>see above</b></td> 
         </tr> 
         <tr> 
            <td><b>15</b></td> 
            <td><b>doublehit, submitter, freq, cluster</b></td> 
            <td><b>see above</b></td> 
         </tr> 
   </table> 
</UL> 
 
</BODY></HTML> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



APPENDIX J: WEB INPUT FORM FOR FINAL VERSION 
 
 

ONLINE BIOLOGICAL DATA RETRIEVAL  

MEDICAL AND MOLECULAR GENETICS 
 

INPUT TYPE 

Markers (Gene table)  

Marker 1    (Search Markers at NCBI)  

Marker 2  

Filter on tissue expression (optional)    

Search Medical Subject Headings (MeSH) at NLM  

Single Gene (SNP table)  

Locus ID   (Search Locus ID's, SNP's at NCBI)  

SUBMIT RESET

 

OUTPUT TABLES AND FIELDS 
Gene Table  

LOCUS_ID Unique NCBI identifier 
CHRPOS Chromosome position (bp) 
SYMBOL Abbreviation 
PRODUCT Short description 
N Nomenclature: O (Official) or P (Preferred, but not official) 
GENE_LENGTH Includes introns, exons, and mRNA tail 
TISSUE Reported tissue expression 

 

 

 

 

http://www.ncbi.nlm.nih.gov/genome/sts/query_tip.html
http://www.nlm.nih.gov/mesh/MBrowser.html
http://www.ncbi.nlm.nih.gov/LocusLink/help.html
http://www.ncbi.nlm.nih.gov/SNP/


SNP Table  
LOCUS_ID Unique NCBI identifier 
SNP_ID Unique SNP identifier 
CHRPOS Chromosome position (bp) 
FXN_CLASS Functional class 
AVG_HZ Average heterozygosity 
HZ_SE Heterozygosity standard error
VAL Validation status 
FXN_CLASS ABBREV DESC 

1 non-gene SNP lies within 2000 bp upstream or 500 bp downstream 
from gene boundaries 

2 coding refers to exons, appears to have been replaced by 3 and 4 

3 synonymous 
change SNP changes mRNA codon but no amino acid substitution

4 nonsynonymous 
change SNP changes mRNA codon with amino acid substitution 

5 UTR untranslated region: located on head or tail of mRNA 
6 intron intron 
   
7 splice-site located on intron-exon border 

8 contig reference 
SNP's with code of 3 or 4 are listed twice in the database, 
once for each allele. The allele on the reference contig gets 
a value of 8 

9 synonymy 
unknown coding: synonymy unknown 

VALIDATION 
CODE SHORT DESC LONG DESCRIPTION 

0 not validated no validation 

1 cluster validated by multiple, independent submissions to 
the refSNP cluster 

2 freq validated by frequency or genotype data: minor 
alleles observed in at least two chromosomes 

3 cluster, freq see above 

4 submitter submitter submitted batch update with a second 
validation method 

5 submitter, cluster see above 
6 submitter, freq see above 

7 submitter, freq, 
cluster see above 

8 doublehit all alleles have been observed in at least two 
chromosomes apiece 

9 doublehit, cluster see above 
10 doublehit, freq see above 

11 doublehit, freq, 
cluster see above 

12 doublehit, submitter see above 

 



13 doublehit, submitter, 
cluster see above 

14 doublehit, submitter, 
freq see above 

15 doublehit, submitter, 
freq, cluster see above 
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