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ABSTRACT 

This paper examines and compares the capability of an artificial neural network (ANN) with five 
different backpropagation (BP) algorithms, namely Gradient descent with momentum (GDM), 
Gradient descent with adaptive learning rate and momentum (GDX), The Fletcher-Reeves 
Conjugate gradient (CGF), Quasi-Newton (BGF) and Levenberg-Marquardt (LM), and a radial 
basis function (RBF) architecture for estimating groundwater level fluctuation (GLF). MATLAB 
was used to develop the ANN programming. Five-daily measurements of GLF in an observation 
well provided the data for analyzing the model. An input model using six time lags to estimate 
actual GLF and 10 hidden nodes gave an optimum result. In general, the work showed that an 
ANN could be used to estimate GLF even with relatively few data samples. The Levenberg-
Marquardt (LM) algorithm was not only the best algorithm in the BP class but also delivered better 
results than RBF. This result may be very useful in helping developing countries develop 
groundwater monitoring and management systems. Such countries typically have very few 
observation wells and lack long-period time-series data due to budget limitations and government 
policy. 
 

Keywords: groundwater level fluctuation, estimating, artificial neural network, backpropagation 
algorithms, radial basis function, MATLAB. 

 

INTRODUCTION 
Groundwater level is an indicator of groundwater availability, groundwater flow, and the physical 
characteristics of an aquifer or groundwater system. Groundwater-level monitoring is needed to 
maintain the groundwater equilibrium system and to prevent land subsidence. Monitoring of the 
groundwater level can be done by direct observation of monitoring wells or by forecasting using a 
simulation model such as an artificial-neural-network (ANN) model. 

Several researchers have applied ANNs to groundwater problems, such as Ranjithan et al. 
(1993), who developed a neural network-based screening tool to simulate the pumping index for 
hydraulic conductivity realization for groundwater remediation under uncertainty. Scientists have 
also developed ANNs to estimate aquifer parameter values (Balkhair, 2002), to forecast the 
groundwater level using rainfall, temperature, and stream discharge as inputs (Daliakopoulos et 
al., 2005), and to evaluate the groundwater level in fractured media (Lallahem et al., 2004). In 
addition, Nayak et al. (2006) used ANN to forecast groundwater level in a shallow aquifer. 
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In this study we developed ANNs using observed groundwater level for prediction and estimation 
of the groundwater level. The ANN, a "black-box model," is designed to identify the connection 
between input and output without going into analysis of the internal structure of the physical 
process. Selecting input variables is the most important step in ANN modeling. In this study we 
used a six time lag of five-daily GLF as the input model. We performed training and testing of the 
ANN models using MATLAB command-line. We investigated and compared the application of five 
different types of backpropagation neural-network (BPNN) algorithms and a radial-basis-function 
(RBF) neural network. 

 

METHODOLOGY 

ARTIFICIAL NEURAL NETWORK (ANN)  
An ANN is an information-processing construct that consists of a number of interconnected 
processing elements called nodes, analogous to neurons in the brain. Each node combines a 
number of inputs and produces an output, which is then transmitted to many different locations, 
including other nodes. The difference between the various types of ANNs usually comes from the 
many different ways to arrange the nodes (architecture) and the many ways to determine the 
weights and functions for training the network.  

A common type of ANN consists of three layers; an input layer, which is connected to a hidden 
layer, which is connected to an output layer. The activity of the input nodes represents the raw 
information that is fed into the network. The activity of each hidden node is determined by the 
activities of the input nodes and the weights on the connections between the input and the hidden 
nodes. The behavior of the output node depends on the activity of the hidden nodes and the 
weights between the hidden and output nodes. This simple type of network is interesting because 
the hidden nodes are free to construct their own representations of the input. The weights 
between the input and hidden nodes determine when each hidden node is active, and so by 
modifying these weights, a hidden node can choose what it represents.  

"Feed-forward" means that all the interconnections between the layers propagate forward to the 
next layer. The type of node being used in the ANN determines the way that total input is 
calculated as well as the way that the node calculates its output as a function of its net input. In 
the present study, the activation function used for calculation is a sigmoid logistic function. Each 
node is a simple processing element that responds to the weighted inputs it receives from other 
nodes. The receiving node sums the weighted signals from all nodes to which it is connected in 
the preceding layer. The net input xj to node j is the weighted sum of all the incoming signals: 

iijj ywxinputNet ∑==_      (1) 

Where xj  is the net input coming to node j, wij represents the weight between node i and node j, 
and yi is the activation function at node i. The activation function, yj, which is a nonlinear function 
of its net-input, is described by the sigmoid logistic function (eq. 2): 
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The three-layer feed-forward neural network includes the inputs, weights, a bias, and an output 
as shown in Figure 1. 
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         (t-2) 

Input GLF    (t-3)                                                                                              Target 

       (t-4)                                                                                           GLF 

        (t-5)        
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Figure 1. Topology of the three-layer feed-forward artificial neural network.  

We used the newff, train, and sim MATLAB command lines to create, to train, and to obtain 
output from the networks. One hidden layer with 10 nodes was selected. We used a logistic 
sigmoid, logsig, as the activation function for input to the hidden layer and for hidden layer to an 
output. The backpropagation algorithm minimized the time between target and calculation output.  

 

Backpropagation  
Backpropagation is the most common algorithm used for prediction with neural networks. 
Lippmann (1987) analyzed learning and self-organization algorithms used in multilayer nets. A 
multilayer BPNN with gradient descent was described by Rumelhart et al. (1986). Details about 
BPNN for groundwater problems can be found elsewhere, such as in Ranjithan et al. (1993). The 
term backpropagation refers to the manner in which the gradient is computed for nonlinear 
multilayer networks. Input data and the corresponding target are used to train a network until it 
can approximate a function, associate input nodes with specific outputs, or classify input nodes in 
an appropriate way as defined.  

After the output is calculated, the next step is the calculation of the error between actual outputs 
and desired output (target). If the error is less than the acceptable normalized error, the model is 
completed. If not, Error Back Propagation, one of the procedures used to adjust weights, is begun. 
The error for one input pattern is computed as follows: 
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=

−=
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Where np is the number of training samples, tpj is the target value of output node j of training 
sample p, opj is the output value of output node j of training sample p. 
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There are several variations of the backpropagation algorithm, five of which we applied and 
studied in this research. A detailed explanation of the algorithms below can be found in Demuth & 
Beale (2001). 

• Gradient descent with momentum (GDM).  
The training parameter was 0.5 for learning rate and 0.9 for momentum factor. The 
maximum iteration or epoch was 5000 with error goal 1exp(-5). 
• Gradient descent with adaptive learning rate and momentum (GDX).  
The initial learning rate was 0.01 with increment 1.05 and other parameters the same as 
GDM.  
• The Fletcher-Reeves Conjugate gradient (CGF) 
• Quasi-Newton (BGF) 
• Levenberg-Marquardt (LM) 
For CGF, BFG, and LM, we used a learning rate of 0.05.  
 

Radial Basis Function (RBF) 
The RBF network consists of only three layers similar to BP, namely input layer, a hidden layer or 
radial-basis layer, and an output layer or linear layer. The input layer collects the input information. 
The hidden layer consists of a set basis function, which applies nonlinear transformation to the 
input source. The most common transformation is a Gauss function as the nonlinearity of the 
hidden nodes (Demuth & Beale, 2001): 

 
 h(n) = exp (-n2)         (4) 
 
where n is the vector distance between the input vector p and weight vector w, multiplied by the 
bias b value: 
 
 bpwn −=          (5) 

 
The output values of the network are computed as a linear combination of this basis function 
(hidden nodes). 
The command-line function newrb in MATLAB iteratively creates a radial basis network one node 
at a time. Nodes are added to the network until the sum-squared error falls beneath an error goal 
or until a maximum number of nodes is reached. In this study the error goal was 1.0exp (-4), the 
maximum number of nodes was 10, and the spread chosen was 20. 

 

STUDY AREA   

To investigate the ANN as a robust method for solving non-linear problems such as groundwater 
level fluctuation (GLF), in this paper the ANN was used to estimate the GLF of Jakarta, Indonesia. 
Jakarta is the capital city of Indonesia and is located on Java Island. The temperature is almost 
always hot and to some extent humid. The average annual rainfall is about 1800-mm. Jakarta has 
two seasons: the wet season from October to April (with January being the rainiest month), and 
the dry season from May to September (with June through August being the driest months). 
Average daily temperatures range from 24 to 31 degrees Celsius.  
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The Jakarta groundwater basin is one of the 215-groundwater basins delineated in Indonesia. 
The boundaries of the system are the Cisadane River in the west, Bekasi River in the east and 
the Jakarta bay (Java Sea) in the north. The southern boundary is assumed close to Depok with 
very low permeability and thin aquifer (Tirtomihardjo, 1996). The bottom of the basin system is 
formed by impermeable Miocene sediment which also cropout at the southern boundary of the 
system. The basin fill consists of marine Pliocene and Quaternary sand and delta sediment up to 
300 m thick. The thickness of the sandy aquifer layer is about 1 – 5 m interconnected with a 
predominantly silt/clay sequence and comprises only 20% of total sediment deposit. Fine sand 
and silt are very frequent components of aquifers. In general, the Quaternary aquifer can be 
divided into tree aquifer systems based on the hydraulic characteristics and depths: the 
unconfined aquifer system (0-40 m), the upper confined system (40-140 m), and the lower 
confined aquifer system (> 140 m) (Tirtomihardjo, 1996). 
 
The location of the observation wells studied is spreading, as shown in Figure (2). They are 
representative of unconfined aquifer (J5), upper confined aquifer (J2), and lower confined aquifer 
(J1, J3 and J4). The characteristics of those wells are presented in Table 1. The range of GLF 
during seven years (1989-1995) for unconfined aquifer was 4.6 m for J5. The highest GLF range 
was J2 for 9.89 m. The range of J1, J3, and J4 were 5.35 m, 6.71 m, and 6.19 m, respectively. 
 

 
Figure 2. Map of study area and location of observation well used in this study 
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Table 1: Characteristic of the observation wells used in this study. 

Well 
Elevation  

from sea level (m) 

Screen depth 

from land surface (m)  
Aquifer 

J1 5.8 177 - 193 lower confined 

J2 6.9 76 - 79 upper confined 

J3 2.4 235 - 241 lower confined 

J4 6.0 231 - 237 lower confined 

J5 40.8 16 - 18 unconfined 

 
 
Under natural conditions, the recharge area of the deep aquifer is located in the hilly area at 
elevation between 25 m – 200 m. Discharge from the confined aquifer to the natural base level in 
the flat coastal area occurred mainly by upward leakage, evaporation, and outflow to the surface 
water system. Recharge to the deep aquifer system, other than horizontal inflow, may occur 
throughout the city area by downward leakage as the head level of the confined aquifer has 
dropped regionally below the water table of the unconfined aquifer (Tirtomihardjo, 1996; Sutrisno, 
1999). 
 
The groundwater contribution to the actual supply is about 250 million m3/year and is mainly 
abstracted from innumerable shallow wells (80%) and more than 3,000 deep wells (20%). 
Between 1900 and 1950, groundwater abstraction was below 10 million m3 year-1, but since that 
time, mainly after 1970, it has steadily increased in step with the growth in population and 
industrial development. In the year 1994, deep groundwater abstraction was estimated to be 53 
millions m3/year, which was about 50% higher than could be accounted for by registered wells of 
33.8 million m3/year (Soetrisno, 1999).   
 

DATA COLLECTION 

The groundwater level fluctuation studied in this research was a time series of five daily 
groundwater-level readings obtained from five observation wells (Fig. 3). One of the most 
important steps in the development of any prediction model is the election of appropriate input 
variables. The main reason for this is that ANN belongs to the class of data-driven approaches 
(Maier and Dandy, 2000). We simulated a five-daily groundwater level fluctuation. After using the 
trial and error method and considering the length of the training sample, a six time lag of the well 
concerned (t-1 to t-6) gave an optimum result. The length of the training sample was 365, or 5-
year data (1989-1993), and 146, or 2-year data (1994-1995), as a testing sample. Time lag not 
only helps overcome limitations of data but also helps to investigate the effect of time lag on the 
model. The optimal numbers of hidden neurons were determined by trial and error, which 
suggests that over-fitting does not occur if the number of training samples is at least 30 times the 
number of free parameters or weights (Maier and Dandy, 2000) 
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Figure 3. Five-daily groundwater level fluctuation and rainfall of Well J1 to J5. 
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It is important to determine the appropriate network architecture in order to obtain satisfactory 
results. In this study, one hidden layer with 10 nodes gave an optimal result. The activation 
function used was the sigmoid logistic function. Target data was scaled into the range of 0.1 to 
0.9 by normalizing with respect to minimum and maximum data before feeding into the network. 
For convenience, input data was also scaled into the range of 0.1 to 0.9. 
 
Normally, the data set for an ANN needs to be divided into three parts. The first part is for the 
training, the second part for validation and the third part for testing. However, because the length 
of our sample data was not very big, we considered only two parts: training and testing. The only 
difference between a testing phase and a validation phase is that if the error rate of the validation 
phase increases, then the training stops. In this study, those two terms are used synonymously.  
 

RESULT AND DISCUSSION 

The ANN programming was developed using MATLAB 6 for all training and testing phases. The 
training and testing period consisted of 365 samples (5 years) and 146 samples (2 years), 
respectively. Table 2 summarizes the performance of forecasting for all of the observation wells in 
terms of mean absolute error (MAE), mean relative error (MRE) root mean square error (RMSE) 
and maximum actual difference (MAD) during the training and testing period, which took place 
after a number of trial-and-error runs. In general, the results were satisfactory. Based on 
performance statistics for the BP algorithms, the Levenberg-Marquardt (LM) is the best algorithm, 
slightly better than RBF for calculating results in all cases studied during the testing period. 
However, the forecasting of the J3 and J4 observation wells seems poor compared with other 
observation wells. The J3 and J4 contain testing samples outside the range of values in the 
training period. Based on further analysis of prediction error, the three statistics' performance 
improved from the GDM algorithm to the LM algorithm and slightly decreased for the RBF 
algorithm.  
 
Absolute error is the amount of physical error in an observation. The MAE is good during training 
and testing for BP and RBF model. A relative error gives an indication of how good a 
measurement is relative to the size of the thing being measured. The MRE, which measures 
accuracy with less sensitivity for outlying values than RMSE, is very good for predicting GLF. The 
highest value of MRE is about 6.395% for the training period of the J4 observation well using the 
GDM model. The RMSE, which is a measure of residual variance that shows the global goodness 
of fit between the predicted and observed GLF, is good during training and testing, except for the 
J3 observation well for BP models that have RMSE more than one meter.  
 
Table 3 provides performance of model calculation in terms of determination coefficient (R-
square) and efficiency index (EI). In general, the prediction result in the training set was satisfied. 
However, the values for the testing period of J3 and J4 were poor. Poor prediction can be 
expected when the validation or testing data contain values outside the range of those used for 
training, because ANNs are unable to extrapolate beyond the range of data used for training 
(Maier and Dandy, 2000). To overcome this problem, we added the part of testing data that is 
outside the range to the remaining training data, and we used the whole data set to retrain the 
network. Maier and Dandy (2000) used a similar procedure. The result of this procedure is shown 
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in Table 4 and Table 5. From the calculation result, we can summarize that ANN is a powerful 
tool for forecasting GLF, even with relatively limited data. 
 
Table 2: Performance of ANN model for six algorithms in term of MAE, MRE, RMSE and MAD for 
five years training and a two-year testing period. 
 

J1 observation well J2 observation well J3 observation well J4 observation well J5 observation well 

Algorithms Training Testing Training Testing Training Testing Training Testing Training Testing 

                      

          MAE (m)         

GDM 0.200 0.158 0.235 0.251 0.492 0.620 0.529 0.569 0.132 0.180 

GDX 0.189 0.150 0.209 0.271 0.159 0.621 0.337 0.434 0.139 0.167 

CGF 0.234 0.148 0.190 0.205 0.123 0.584 0.153 0.405 0.128 0.150 

BFG 0.217 0.140 0.189 0.211 0.156 0.670 0.087 0.379 0.103 0.121 

LM 0.160 0.112 0.143 0.181 0.076 0.607 0.063 0.347 0.089 0.117 

RB 0.156 0.124 0.138 0.201 0.060 0.222 0.062 0.125 0.091 0.123 

                      

          MRE (%)         

GDM 1.023 0.736 0.584 0.590 5.324 4.827 6.395 4.982 1.370 2.053 

GDX 0.966 0.697 0.517 0.640 1.681 4.797 3.936 3.812 1.445 1.899 

CGF 1.193 0.700 0.467 0.482 1.273 4.499 1.733 3.510 1.330 1.704 

BFG 1.108 0.665 0.467 0.497 1.683 5.202 1.001 3.263 1.077 1.372 

LM 0.819 0.528 0.351 0.426 0.778 4.652 0.725 2.927 0.929 1.321 

RB 0.803 0.583 0.338 0.475 0.625 1.720 0.711 1.105 0.955 1.380 

                      

          RMSE (m)         

GDM 0.283 0.195 0.348 0.325 0.660 1.026 0.591 0.741 0.179 0.252 

GDX 0.277 0.193 0.306 0.353 0.243 1.029 0.387 0.582 0.192 0.232 

CGF 0.324 0.194 0.279 0.296 0.192 1.000 0.197 0.555 0.176 0.218 

BFG 0.311 0.194 0.288 0.295 0.228 1.080 0.119 0.538 0.148 0.190 

LM 0.242 0.155 0.239 0.275 0.113 1.045 0.090 0.535 0.129 0.188 

RB 0.239 0.158 0.242 0.286 0.108 0.386 0.091 0.172 0.134 0.204 

                      

          MAD (m)         

GDM 2.435 0.556 1.643 0.977 1.712 2.962 1.049 1.995 1.038 1.296 

GDX 2.323 0.685 1.582 1.206 1.312 2.990 1.328 1.637 1.081 1.074 

CGF 2.391 0.648 1.594 1.549 1.152 2.957 0.949 1.656 1.072 1.173 

BFG 2.392 0.579 1.587 1.317 0.989 3.154 0.663 1.627 1.057 1.256 

LM 2.346 0.574 1.524 1.410 1.014 3.035 0.639 1.662 1.047 1.338 

RB 2.296 0.572 1.567 1.448 0.947 1.432 0.685 1.036 1.116 1.321 

 
 
 
 
 
 



Affandi et al. / JOSH  (2007) 23-46 
 

Journal of Spatial Hydrology                                               
 

26

Table 3: Performance of ANN model for six algorithms in term of R-square (Determination 
coefficient) and EI (efficiency index) for five years training and a two-year testing period. 

J1 observation well J2 observation well J3 observation well J4 observation well J5 observation well 

Algorithms Training Testing Training Testing Training Testing Training Testing Training Testing 

                      

          R-sequare         

GDM 0.925 0.967 0.984 0.949 0.876 0.608 0.857 0.541 0.963 0.958 

GDX 0.928 0.975 0.988 0.940 0.892 0.772 0.871 0.667 0.958 0.961 

CGF 0.905 0.961 0.990 0.958 0.934 0.700 0.963 0.793 0.964 0.964 

BFG 0.911 0.962 0.989 0.959 0.937 0.783 0.985 0.792 0.975 0.972 

LM 0.945 0.977 0.993 0.964 0.979 0.721 0.991 0.840 0.981 0.972 

RB 0.946 0.978 0.992 0.961 0.979 0.972 0.991 0.977 0.979 0.967 

                      

          Eff. Index (EI)         

GDM 0.925 0.960 0.984 0.947 0.206 0.285 0.614 0.340 0.963 0.949 

GDX 0.928 0.961 0.988 0.937 0.892 0.280 0.835 0.593 0.957 0.957 

CGF 0.902 0.961 0.990 0.956 0.933 0.320 0.957 0.629 0.964 0.962 

BFG 0.909 0.961 0.989 0.956 0.905 0.206 0.985 0.652 0.975 0.971 

LM 0.945 0.975 0.992 0.962 0.977 0.257 0.991 0.656 0.981 0.972 

RB 0.946 0.974 0.992 0.959 0.979 0.899 0.991 0.965 0.979 0.967 
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Table 4: Performance of ANN model for retrain of  J3 and J4 in term of MAE, MRE, RMSE and 
MAD ( J3: 454 training samples; J4: 460 training samples; both: 146 testing samples). 
 

  J3 observation well J4 observation well 

Algorithms Training Testing Training Testing 

          

    MAE (m)   

GDM 0.152 0.154 0.143 0.169 

GDX 0.129 0.102 0.170 0.162 

CGF 0.099 0.099 0.092 0.113 

BFG 0.101 0.099 0.089 0.117 

LM 0.058 0.054 0.063 0.078 

RB 0.062 0.060 0.067 0.083 

          

    MRE (%)   

GDM 1.497 1.306 1.524 1.541 

GDX 1.312 0.869 1.855 1.473 

CGF 0.972 0.817 0.983 1.024 

BFG 1.006 0.841 0.945 1.051 

LM 0.579 0.466 0.679 0.717 

RB 0.614 0.509 0.717 0.754 

          

    RMSE (m)   

GDM 0.240 0.206 0.199 0.227 

GDX 0.187 0.149 0.229 0.216 

CGF 0.167 0.154 0.132 0.163 

BFG 0.168 0.134 0.126 0.166 

LM 0.100 0.076 0.094 0.123 

RB 0.111 0.084 0.101 0.128 

          

    MAD (m)   

GDM 1.583 0.685 0.899 0.665 

GDX 0.916 0.672 1.022 1.020 

CGF 1.301 0.595 0.822 0.822 

BFG 1.574 0.422 0.794 0.794 

LM 0.962 0.335 0.828 0.828 

RB 0.958 0.279 0.883 0.883 
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Table 5: Performance of ANN model for retrain of  J3 and J4 in term of R-square and EI 
( J3: 454 training samples, J4: 460 training samples) 

  J3 observation well J4 observation well 

Algorithms Training Testing Training Testing 

          

    R-sequare   

GDM 0.966 0.972 0.982 0.940 

GDX 0.979 0.985 0.977 0.946 

CGF 0.984 0.984 0.992 0.970 

BFG 0.984 0.988 0.993 0.967 

LM 0.994 0.996 0.996 0.982 

RBF 0.993 0.995 0.995 0.980 

          

    Eff. Index (EI)   

GDM 0.966 0.971 0.982 0.938 

GDX 0.979 0.985 0.977 0.944 

CGF 0.983 0.984 0.992 0.968 

BFG 0.983 0.988 0.993 0.967 

LM 0.994 0.996 0.996 0.982 

RBF 0.993 0.995 0.995 0.980 

 
 
Figure 4 provides a scatterplot of predicted versus observed GLF for a test set of a two-year 
period (146 samples of data). The GLF of J3 and J4 were retrained with 454 and 460 data 
samples, respectively. The results showed that the ANN was successful in estimating the GLF. It 
is showed that the values are close to a diagonal line, which represents a perfect fit between 
prediction and observation GLF, even with some points slightly scattered. The result indicates 
that the model prediction can be used in groundwater monitoring in such areas without involving 
any groundwater parameter as an input model. 
 
Figure 5 shows a comparison between estimated and observed GLF in the testing period of J1 to 
J5 observation wells using the LM algorithm. The mean absolute error or mean actual difference 
in observed and predicted values for each well, in general, did not exceed 0.2 meters, and the 
minimum average was 0.05 for J3 after retraining (see Table 4). High maximum actual difference 
occurred in J2 and J5 of 1.41 meters and 1.34 meters, respectively (Table 2). Positive deviation 
(actual difference) values indicate that the model overpredicts the GLF, whereas negative 
deviation values denote underprediction (Coulibaly et al., 2001). Figure 5 shows that the J1 and 
J3 are slightly underpredicted while J2 is slightly overpredicted. Interestingly, J4 and J5 are 
almost a balance. They have positive and negative deviation. It is investigated from Figure 5 that 
the ranges of actual difference are mostly less than ± 0.5 meters. All estimation results are 
acceptable within the range with minimum 94.52 % of J2. 
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Figure 4. Scatterplot of model prediction versus observed GLF 

( J3: 454 training samples, J4: 460 training samples) 
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Figure 5. Comparison between GLF observation and prediction in testing period for J1 to J5 with 
146 data samples using LM algorithm (J3: 454 training samples; J4: 460 training samples) 
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CONCLUSION 

In this study, MATLAB programming was developed for an ANN model. The ANN, along with five 
BP algorithms and RBF, was applied and compared for GLF forecasting using six time lags of the 
GLF as the input model. In general, the results showed that an ANN is an effective tool for GLF 
forecasting, even though only limited data samples are available. The input set, which contained 
data from one month before (six time lag) the five-daily GLF measurements, still had a significant 
influence on the model. Among the different BP algorithms we found that the LM algorithm 
provided better results during the testing period than other BP algorithms and RBF. Based on 
these results, we believe an ANN can be used for forecasting GLF for the purposes of 
groundwater management. 

In order to enhance the ANN model performance, we would consider the aquifer system by 
means of selecting input data from wells with the same strata of aquifer system. In addition, we 
would take into account the distance between input wells and output wells in order to maintain the 
continuous influent of groundwater level between them.  

 

ACKNOWLEDGEMENTS 

This research is supported by Technological and Professional Skills Development Sector Project 
(TPSDP), Directorate General of Higher Education, Ministry of National Education, the Republic 
of Indonesia. The authors gratefully acknowledge the valuable comments given by the reviewers. 
We would like to thank the Mining Department, Government of Jakarta Province for providing the 
valuable data and giving us permission for publication.  
 

REFERENCES 

Balkhair, K.S. (2002) Aquifer parameters determination for large diameter wells using neural 
network approach, Journal of Hydrology, 265, 118–128. 
 
Coulibaly, P., Anctil, F., Aravena, R. And Bobée, B. (2001) Artificial neural network modeling of 
water table depth fluctuations, Water Resources Research, 37(4), 885-896. 
 
Daliakopoulos, L.N., Coulibaly, P., Tsanis, I.K. (2005) Groundwater level forecasting using 
artificial neural networks, Journal of Hydrology, 309, 229-240. 
 
Demuth H. and Beale M. (2001) Neural network toolbox for use with MATLAB, User’s guide 
Version 4, The MathWorks Inc., MA-USA. 
 
Lallahema, S., Maniaa, J., Hania, A., Najjarb, Y. (2005) On the use of neural networks to evaluate 
groundwater levels in fractured media, Journal of Hydrology, 307, 92-111. 
 
Lippmann, R. P. (1987) An introduction to computing with neural nets, IEEE ASSP Magazine, 
4(2), 4–22. 
 



Affandi et al. / JOSH  (2007) 23-46 
 

Journal of Spatial Hydrology                                               
 

32

Maier, H.R. and Dandy, G.C. (2000) Neural networks for the prediction and forecasting of water 
resources variables: A review of modelling issues and applications, Environmental Modelling & 
Software, 15,101-124. 
 
Nayak, P.C., Rao, Y.R.S., and Sudheer, K.P.(2006) Groundwater level forecasting in a shallow 
aquifer using artificial neural network approach, Water Resources Management, 20, 77-90. 
 
Ranjithan, S., Eheart, J.W. and Garrett Jr.J.H. (1993), Neural network-based screening for 
groundwater reclamation under uncertainty, Water Resources Research, 29(3), 563-574. 
 
Rumelhart. D., Hinton. G.E. and Williams, R. (1986) Learning representations by back-
propagation errors, Nature, 323, 533-536. 
 
Soetrisno, S. (1999) Groundwater management problem, a Jakarta and Bandung (Indonesia) 
comparative city case studies. 
Available  at: http://www.geocities.com/Eureka/Gold/1577/index.html (accessed on January 15, 
2007) 
 
Tirtomiharjo, H. (1996) Urban groundwater database of Jakarta, Indonesia. Directorate of 
Environmental Geology of Indonesia. Bandung, Indonesia. 
Available at: http://www.scar.utoronto.ca/~gwater/IAHCGUA/UGD/jakarta.html (accessed on 
January 15, 2007) 


