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Abstract 
An approach to estimate the curve number (CN) at each pixel unit of a satellite imagery, 
which is a key parameter in the widely used Soil Conservation Service Curve Number (SCS-
CN) hydrologic model, is proposed. Instead of mapping land use and its temporal dynamics 
from satellite imageries, this approach linearly unmixes the multi-spectral radiances into three 
fractional layers which primarily control the degree of saturation within a watershed occurring 
due to a 25 cm-depth storm event, i.e., physically interpreted as the CN. The fraction layers 
used are water, sand and pure vegetation. In order to obtain a relationship between the 
fractional statistics and CN, a multi-correlationship analysis of known combinations of land 
use, hydrologic condition and hydrologic soil group is carried out in an agricultural watershed. 
The obtained relationship is applied onto the fractional layers to compute the spatial 
distribution of CN. The performance of the SCS-CN model with the spatial CN is found to be 
14% more accurate than that of the model results with only land use information from satellite 
imageries. The spatial difference of two CN layers in which the one represents the condition 
of the watershed before soil and water conservation measures was taken up and the other for 
the post conservation period indicates change in the hydrologic response of the watershed 
spatially.   
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Introduction 
Estimation of direct surface runoff in a watershed is necessary for planning, designing, 
operation and environmental impact analysis of water resources projects. The characteristics 
of the hydrologic processes governing direct surface runoff vary both in space and time 
scales. One of the critical components, land use and land cover (LULC) is generally changed 
by soil and water conservation measures. In order to analyze change in the hydrologic 
response, the SCS-CN model is the most appropriate hydrologic model (Wurbs and James 
2002, Mishra and Singh 2002). This model is defined by a single parameter, namely the curve 
number that is an integer value varying between 0 and 100. From empirical analyzes of 
rainfall-runoff data on small watersheds and hillslope areas, the National Resource 
Conservation Service (NRCS) proposed a table of CN values with four defining parameters: 
LULC, hydrologic condition, hydrologic soil group and Antecedent Moisture Conditions (AMC) 
(NRCS, 1985). For a watershed of complex combinations of land use and hydrological soil 
group, an effective CN of the watershed is computed by linear combination of the CN of all 
combinations, weighted by their respective area (Beven 1999).   
 
Satellite imageries that offer multi-spectral, temporal and spatial information about the earth 
features are commonly used to map LULC and its temporal dynamics in water resources 
studies (Schultz and Engman 2000). Some earlier studies used visual interpretation analysis 
of single date imagery to obtain the accurate map of land use and land cover (Chatterjee et 
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al. 2001). Sharma et al. 2001 digitally analyzed multi-date satellite imageries for improving 
more accuracy in mapping LULC in a multi-crop cultivated watershed. Use of a Geographic 
Information System (GIS) helps to spatially integrate all the parameters of the model 
(Gangodagamage et al. 2001). In summary, all the previous studies focused on the mapping 
of land use and its spatial integration with other parameters in a GIS for improving the 
performance of the model.  
Recent studies on the SCS-CN Model (Svodda 1991, Mishra and Singh 1999, Yu et al. 1997, 
Mishra and Singh 2002, Mishra et al. 2003) define that CN is the percent degree of saturation 
of a watershed resulting by a 25-cm depth storm event.  The critical parameters, which control 
the degree of saturation, are focused in this paper and are mapped from multi-spectral 
satellite imageries. Linear Mixing Method (LMM) is applied onto the imageries to map the 
parameters. Many previous studies demonstrated the use of LMM on satellite imageries in 
different application studies: forest cover (Hlavka and Spanner 1995), crop area (Quarmby et 
al. 1992) and lake area (Hope et al. 1999). The objective of this paper is to   compute the 
spatial distribution of CN across a watershed by spectral unmixing of satellite imagery. The 
performance of the SCS-CN model with the spatial CN is evaluated and a hydrologic 
response study for soil and water conservation measures is also addressed.  
 
Study Area and Data used 
Banha watershed, in Damodar Valley Command (DVC) area of Jharkhand state, India was 
considered as the study area. It lies between longitudes 850 13′ 50″E to 850 16′ 00″E and 
latitudes 240 13′ 30″N to 240 17′ 00″ N. The average annual rainfall is 1200 mm of which more 
than 90% occurs during monsoon months (June to October). Indian Remote Sensing (IRS) 
Linear Imagining Self Scanner (LISS)-III sensor imageries acquired during October 1996 and 
December 2000 were used. The sensor has four spectral bands (green, red, Near Infrared 
(NIR), Short wave Infrared) with average spatial resolution of 23.5 meters in the first three 
bands (Pandya et al. 2000), but 70 meters resolution in the last band.  In this watershed, soil 
and water conservation measures like construction of small check-dams, tree plantation, etc, 
were taken up from year 1997 onwards. Therefore, the 1996 year image represents the 
hydrologic condition before the conservation measures whereas the 2000 year image for the 
post period. Soil and topographic survey maps of 1:10,000 scale from the concerned 
watershed authority were collected and prepared as a basic hydrologic database in a GIS. 
Based on topography, the watershed was divided into 9 subwatersheds (Fig.1). The database 
was made with the projection of Universal Transverse Mercator (UTM). Some of the model 
parameters like land slope, subwatershed area, watershed area, hydrologic soil group, etc, 
were obtained by analyzing the topography and soil dataset.  In addition to this, ground 
information about land use, land cover, vegetation condition, topsoil condition, etc were 
collected in and around the area.  The daily observed runoff of the gauged outlet and daily 
rainfall from a weather station for year 1996 were also collected from the watershed authority.  
As mentioned earlier, the hydrologic response analysis needs an overlay analysis between 
two spatial layers. Note that an overlay analysis requires sub-pixel accuracy in geometric 
between the layers. Therefore, both satellite imageries were geometrically rectified using 22 
known and identifiable locations throughout the study area. The root mean square error of all 
the locations was found to be about 12 m (near to the sub-pixel size).   
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Methodology 
The methodology used is divided into two parts: effective CN computation and spatial CN 
computation.  
 
Traditional Land Use and cover Method (LUM) 
In order to cluster land use and land cover classes, maximum likelihood classifier was used 
with some known training locations in the watershed. Seven LULC classes were dense forest, 
open forest, wasteland with minor natural vegetation, barren wasteland, rice agriculture, rice 
agriculture fields after harvesting and water body. The same training locations were used in 
clustering both images so that uniform classes can be obtained.  After getting LULC classes 
and their spatial extent, the soil database was clustered into a number of hydrologic soil 
groups. In a GIS system, an overlay analysis between the two polygon layers was performed. 
The appropriate CN of each polygon was assigned and aggregated to each subwatershed.  
 
Linear Mixing Model (LMM) Method 
Rationale of the present approach  
As mentioned earlier, the objective of the present approach is to compute the controlling 
parameters of the degree of saturation within the watershed from satellite imagery. The 
degree of saturation is primarily controlled by degree of vegetation, sand fraction in the topsoil 
and moisture-holding capacity of the topsoil. Physically, increasing degree of vegetation 
reflects higher degree of saturation, i.e., decreasing CN.  
 
The controlling parameters can easily be located in a satellite image as dense forest, sandy 
area and water body. Using the LMM, multi-spectral satellite imagery can be unmixed into 
three fractional layers of the parameters. The fast convergence of the LMM with least residual 
error needs a condition that the chosen classes should be located in the three extreme 
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Fig.1  Banha Watershed in  India with  boundary of 9 subwatersheds, Outlet(O) and 
Drainages(Scale: 1: 50,000).(Greek numbers represent  subwatershed number) 
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vertices of red and NIR scatter plot (Schowengendt 1993). Interestingly, this condition is 
satisfied for the chosen classes. A multi-correlationship analysis between the fractional 
statistics and CN of known combinations of land use, hydrologic condition and soil hydrologic 
group is to be carried out to define the relationship which is further implemented onto the 
prepared image database to obtain the spatial distribution of CN at each pixel of the satellite 
imagery.  
 
Basic concept of LMM 
Linear Mixing Model is based on principle that observed radiance in a satellite observation 
unit (pixel) can be modeled as the sum of the radiometric interactions of individual pure 
signature classes (called the endmember) weighted by their relative fraction (Graetz 1990, 
Schowengendt 1993). The model is described mathematically as a linear vector-matrix 
equation in which K and L are number of chosen spectral bands and endmember, 
respectively. It can be given as follows 
 
 ijijij EfDN ε+=       (1) 
 
Where E is the K x L endmember signature matrix, DNij is the K-dimensional spectral vector at 
pixel ij, and fij is the L x 1 vector of endmember fractions. The added term εij represents the 
residual error in the fitting of a given pixel’s spectral vector by the sum of L endmember 
spectra and unknown noise. The constraints used are: 

 0 1ijf≤ ≤   1
1

L
fijj

=∑
=

     (2) 

This constraint produces two restrictions: i) endmember fractions must be range in between 0 
and 1, ii) and sum of the fractions should equal to 1. The constraint keeps the physical 
realistic of the endmember fractions. 
 
Computation of spatial CN  
As discussed in the rationale section, water, dense forest and sand were considered as 
endmembers for LMM approach. The pure sites representing the endmembers were located 
in and around the study area. Although, no ground information is required for the identification 
of the sites since these are spectrally distinct classes. To compute fractional layers (fij), three 
selected spectral bands (B2: 0.52-0.59μm, B3: 0.62-0.68 μm and B4: 0.77-0.86 μm in IRS 
LISS-III sensor) were used in Eqs(1-2)  with computed E matrix from the statistics of chosen 
endmembers. The fractional layers were rescaled into a range of 0 to 100 by multiplying with 
100. Within each hydrological soil class, known locations of different combination of LULC 
and hydrologic condition were identified over the image to generate their fractional statistics.  
A multiple correlationship analysis between the average of fractional layers and CN value of 
the combinations at AMC-I were carried out. Since there was no rainfall in the last 5 days 
from the image acquisition, both satellite imageries belong to the watershed at AMC-I state. It 
was found in the correlation analysis that inclusion of water class (the highest CN value (100)) 
with other combinations decreased the coefficient of determination of the relationship. It was 
therefore decided to exclude water bodies in the correlationship analysis. So, water bodies 
were easily obtained by scaled fraction layer of water (the fraction > 75) and assigned 
separately to its CN. A statistically significant correlation was obtained and applied over the 
whole fractional layers to get spatial CN. The results obtained by this method are referred as 
LMM in further sections.  
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SCS-CN model 
The SCS-CN model with appropriate initial abstraction for Indian conditions given in Gurmel 
et al. 1996 gives a relationship between the direct runoff (Qc) and total rainfall (P), both in cm: 

2( 0.3 )
( 0.7 )
P SQc P S
−

=
+

       (3) 

Where S is the potential maximum storage, in cm, and can be expressed in terms of CN as 
follows 

 
254 25.4S
CN

= −
       (4)  

Results and Discussion 
The study area is a small watershed of about 1751 hectares. Topographic analysis showed 
that the slope of area varies from 1% to 18% with an average slope of 2%. Forest and rice 
(paddy) agriculture were the major land cover and land use, respectively. Rice was the single 
dominant agriculture crop in rainy season (July-November). As soil type of the study area 
belongs to a single type, i.e. laterite, hydrologic soil group B was considered in runoff 
estimation (Dhruvanarayana 1993).  
 
Analysis of Obtained CN by traditional approach 
Since both images used belong to post-monsoon period, agricultural fields in the watershed 
were covered with fully matured rice (paddy) at crop stage in the October image or just being 
harvested in the December image. In image classification, separability analysis and overall 
accuracy are conducted to know the accuracy of the clustering. After classification of the 
imageries, the resulting overall classification accuracy for all the classes was found to be 
about 83.73 and 88.28 percent in the October and December imagery, respectively. The 
separability analysis of the training classes by Bhattacharya distance (Jensen 1996) showed 
that both rice agriculture classes had a spectral overlap with other classes such as wasteland 
with minor natural vegetation, barren wasteland (minimum separability found to be less than 
1.0) for both the dates.  The obtained CN maps for AMC-I are shown in Fig.2 (b&e) for both 
dates.  Note that the multi-spectral variations observed in the standard False Color Composite 
(FCC) of B2, B3 and B4 bands of IRS LISS III images are also  shown in Fig.2(a&d). 
 
Analysis of Obtained CN by the proposed approach 
The training sites of pure classes (Water body, dense forest and sandy area) required in LMM 
approach were kept same for both images. Signature statistics of these sites are enumerated 
in Table 1. It can be observed that signature statistics of the water body, sand and dense 
forest in both dates were different as it is expected in any non-atmospheric corrected image 
data. The fractional layers were obtained by LMM approach and available ground information 
about 14 LULC classes with hydrologic conditions (poor and good) was used to find out their 
fractional statistics. A multi-correlation analysis between the fractional statistics and its 
respective CN value for AMC-I was separately conducted for each image date (Table-2). As 
given in Table.2, statistically significant relationships (calculated F > F significant and high 
coefficient of determination R2) were obtained. However, coefficients of these relationships 
remain fairly same order in both dates. This trend has proved that selection of controlling 
parameters is appropriate in defining the degree of saturation. Another characteristic shown in 
the relationship is that fraction of vegetation cover primarily controls the degree of saturation 
and so is a critical factor for CN computation. The resulted CN maps are depicted in Fig.2(c,f). 
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Fig. 2 a) FCC, b) CN map by LUM, c) CN map by LMM for year 1996  d) FCC e) CN map by 
LUM and f) CN map by LMM for year 2000 
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Table 1:  Spectral Statistics of Endmembers   
Statistics of Endmember  
Average Digital Number (standard deviation) 

Image year Endmember 

B2: Green  B3: Red  B4:NIR 
Water bodies 64.78 (1.03) 30.38 (0.52) 17.08 (0.27) 
Sandy area 147.92 (3.21) 127.71 (4.78) 112.71 (2.01) 

1996 

Dense forest 72.70 (0.86) 36.14 (0.51) 115.92 (1.28) 
Water bodies 66.93 (0.94) 42.77(0.51) 26.08 (0.90) 
Sandy area 109.92(2.40) 102.91(4.30) 98.71 (02.50) 

2000 

Dense forest 63.50(1.02) 43.14 (1.26) 95.91 (1.58) 
  
A comparison study of computed average CN values between LUM and LMM approaches at 
subwatershed level was conducted. In Fig.3 (a), a plot between them along with variance ratio 
and the line of perfect is shown for October, 1999 and similar plot for December, 2000 in 
Fig.3(b). The variance ratio is a ratio between the variance obtained by LMM and LUM 
approaches in a subwatershed. In most of subwatersheds, variance ratios of more than 1.0 
indicate that spatial CN approach accounts of more spatial variation than traditional LUM. A 
good agreement between the average CN values for all subwatersheds was found for year 
1996. The absolute deviation of CN between the two dates remained within ±10 (Fig.4). In 
2000 year, similar agreements were found except in III, V and VII subwatersheds. These 
disagreements might be attributed for the presence of spectral overlap classes in the 
subwatersheds. In short, spatial CN approach gives fairly same trend as of LUM approach in 
a single class dominated subwatershed, but differs in a subwatershed of many LULC classes.  
 
Table 2: Relationship equations for spatial CN computation  
Image 
year 

N Relationship equation R2 SE Fcal  ( Fsig) 

1996 14 CN = 112.62 – 0.13*Xw-0.45*Xs-1.01Xf 0.84 11.39 13.16(0.015) 
2000 14 CN = 108.51–0.11*Xw-0.33*Xhs-0.935Xf 0.78 9.36 9.36(0.028) 

(Fraction symbols: Xw for water bodies, Xs for sandy area and Xf for dense forest, SE: 
Standard Error, Fcal: Calculated F, Fsig: Significant F, N: No of the combinations ) 
 
Direct Runoff Computation 
 This section gives a comparison between the estimated storm runoff by both approaches and 
observed runoff. Three storm events occurred in year 1996 were considered. Average CN 
values for the whole study area for both approaches were computed for two AMC conditions 
(I and II). By substituting the average CN in EQs.(3-4), direct runoff depth of these events 
were estimated. The estimated runoff depths are summarized against the observed runoff 
depth (Table.3). The runoff volume deviation (Dv) in %, one of the evaluation criteria in the 
rainfall-runoff model, was computed. It can be found in Table.3 that Dv values obtained by the 
present approach is less than that obtained by LUS approach expect storm event II.  
Increasing Dv of LUM in storm event II is not much significant and   this deviation may have 
resulted due to the effects of initial abstraction on a less rainfall depth storm event. By 
considering all the storm events, accuracy in direct surface runoff estimation by the proposed 
approach is found to be 14% more accurate than LUS approach.  
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Table 3: Performance of the SCS-CN model with spatial CN  

Estimated Qc, cm Deviation Dv (%) Storm  
Sr. no  

Storm period P 
 
cm 

AMC 

LMM LUM 

Observed  
Qm, 
 cm LMM LUM 

I 20 –28 ,June 21.98 I 7.31 5.69 9.01 18.84 36.84 
II 18 –26, July 12.33 II 5.31 4.16 4.71 14.48 11.64 
III 1 –11, Aug 30.82 II 22.00 19.75 22.1 0.45 10.21 

AMC: Antecedent Moisture Content, P: Total precipitation, Qc: Total runoff, LUM: the model 
with only land use and land cover and LMM : the model with spatial CN 
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Fig. 3 Scatterplots of estimated CN  by LUS and LMM for a)  year, 1996 and b) year, 
2000 with the line of perfect ( 1:1) (Inside contents of the brackets showing watershed 
number  and variance ratio) 
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Hydrologic Response study 
Change in the hydrologic response of the watershed due to soil and water conservation 
measures was studied by differencing spatial CN maps of year 1996 and 2000. During that 
period, small water harvesting structures were constructed and tree plantations were made 
(clearly visible in Fig.1b FCC image, 2000) as soil and water conservation measures. The 
difference CN map by LMM method is shown in Fig.5. The map shows well cluster regions of 
decreasing CN value at the downstream subwatersheds where the measures were taken up. 
However, scattered clusters of increasing CN value were found in the upstream 
subwatersheds. Change in the hydrologic response of the watershed was quantified by 
computing the difference between average CN of year 1996 and 2000 for AMC-I condition. 
The difference was found to be 0.87 and indicates that the average hydrological response 
remains same for both the years. This might be attributed to a fact that the presence of the 
measures (afforestation) at the downstream and forest degradation at the upstream nullify 
each other in improving the total soil moisture retention capacity. Because of spatial CN 
approach, hydrologic response study at small watershed scale can be feasible.  
 
Conclusions  
The proposed approach has demonstrated that estimation of spatial CN in an agricultural 
watershed becomes feasible by spectral unmixing of satellite imagery. Direct surface runoff 
computation using the SCS-CN model with spatial CN is more accurate than that of the model 
results of only land use from satellite imagery. In any hydrologic response study, spatial CN is 
more relevant because it helps to compute the change spatially. In this study, only three 
controlling parameters for the degree of saturation were used and enabled to describe about 
80 percent variation of the CN range. Use of the additional controlling parameters with high-
resolution satellite imagery can be feasible in future. It is necessary to evaluate the 
performance of the approach in different land use dominated watersheds.  
  

Fig.4 Absolute difference CN between LUS and LMM methods  for year 1996 
( white ( < 5), blue ( 5 – 10 ), green ( 10-20) and Red ( > 20 )) 
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