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Abstract

Connectionist research is firmly established within the scien-
tific community, especially within the multi-disciplinary field of
cognitive science. This diversity, however, has created an en-
vironment which makes it difficult for connectionist researchers
to remain aware of recent advances in the field, let alone un-
derstand how the field has developed. This paper attempts to
address this problem by providing a brief guide to connectionist
research. The paper begins by defining the basic tenets of con-
nectionism. Next, the development of connectionist research is
traced, commencing with connectionism’s philosophical prede-
cessors, moving to early psychological and neuropsychological
influences, followed by the mathematical and computing con-
tributions to connectionist research. Current research is then
reviewed, focusing specifically on the different types of network
architectures and learning rules in use. The paper concludes by
suggesting that neural network research—at least in cognitive
science—should move towards models that incorporate the rel-
evant functional principles inherent in neurobiological systems.

1 The Connectionist Revolution

This solution takes the form of a new associationism, or bet-
ter, since it differs deeply and widely from that older British
associationism, of a new connectionism. ([109], p. 4)

Connectionist research is firmly established within the scientific commu-
nity. Researchers can be found in such fields as artificial intelligence [33][1],
cognitive neuroscience [76], economics [117][121], linguistics [84], philosophy
[48], and physics [47] to name but a few. It has even been suggested that
connectionism represents a Kuhnian-like paradigm shift for psychology [98].
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But, perhaps the field that has most benefited from connectionist research is
the multidisciplinary field of cognitive science [8][19][96][69][108]. As Han-
son and Olson have stated: “The neural network revolution has happened.
We are living in the aftermath” ([42], p. 332).

Unfortunately, this revolution has created an environment in which re-
searchers may find it difficult to keep up with recent advances in neural
network research. Furthermore, the history of connectionist research is
often overlooked, or at least misconstrued [81]. As a result, a view pop-
ular with current researchers is that connectionism really emerged in the
1980’s—there is only brief mention of research before that time (e.g., [8],
[48]).

Connectionism, however, has a very long past. In fact, one can trace
the origin of connectionist ideas to the early Greek philosopher, Aristotle,
and his ideas on mental associations. These ideas were elaborated by the
British empiricists and then naturally extended by the founders of psychol-
ogy. Neuropsychologists then contributed to the growth of connectionism
by trying to relate the processes of learning and memory to underlying
properties of the brain. But, this is only half of the picture. The other
half of the picture is filled in by those researchers engaged in mathematical
research and early computing science who contributed to the formal, com-
putational understanding of both the power and limitations of connectionist
networks.

Although it might be argued that these past researchers were not true
“connectionists” in today’s terms, the ideas they put forth in the disciplines
of philosophy, psychology, neuropsychology, mathematics, and computing
science are fully embodied within today’s connectionism. And, it is only
through a review of the contributions made by each of these disciplines that
we can place connectionism in its proper context today.

2 Connectionism and Cognitive Science

Before we begin with our definition of connectionism, a brief digression is
required. As noted earlier, connectionism is used in many different fields
of science. For example, connectionist networks have been used for aid-
ing astronomical work [106], assisting medical diagnosis [20], regulating in-
vestment management [121], and controlling robotic limb movement [113].
Many of these systems, however, are approached from an engineering per-
spective; that is, the designers are only interested in making the networks
as efficient as possible (in terms of network topology, correct responses, and
generalization). Consequently, this attitude towards connectionism could
be characterized as the “engineering” approach. In fact, it may just be
this approach that Reeke and Edelman had in mind when they offered this
blunt assessment of connectionist research:

These new approaches, the misleading label ‘neural network
computing’ notwithstanding, draw their inspiration from sta-
tistical physics and engineering, not from biology. ([37], p. 144)

Although the engineering approach to connectionist research is of in-
terest and demands much attention, in this paper we will review connec-
tionism from a different perspective—that of cognitive science. This second
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approach uses connectionism to answer questions pertaining to human cog-
nition, from perceptual processes to “higher level” processes like attention
and reasoning. That is, connectionist cognitive scientists are interested
in drawing their inspiration from biology, not technology. Consequently,
the goals of the engineering approach (e.g., minimizing network structure,
improving generalization, etc.) are not necessarily those of the cognitive
science approach to connectionism. To understand what these goals are,
however, we need to understand what cognitive science is.

2.1 Cognitive Science

The “birth” of cognitive science is often traced back to the Symposium on
Information Theory held on September 10-12, 1956 at M.I.T. [36]. There,
researchers from various disciplines gathered to exchange ideas on commu-
nication and the human sciences. Three talks in particular, Miller’s The
magical number seven, Chomsky’s Three models of language, and Newell
and Simon’s Logic theory machine, have been singled out as instrumental
in seeding the cognitive science movement. Following these talks, a per-
ception began to emerge that “human experimental psychology, theoretical
linguistics, and computer simulations of cognitive processes were all pieces
of a larger whole” (Miller, 1979; p. 9; cited in [36], p. 29). That is,
there arose a belief that to understand the functioning of human cogni-
tion, one had to combine the efforts of several different disciplines. In fact,
similar sentiments had been expressed previously in the literature by such
researchers as Hebb [44] and Wiener [120].

. . . a proper explanation of these blank spaces on the map of
science (can) only be made by a team of scientists, each a spe-
cialist in his own field but each possessing a thoroughly sound
and trained acquaintance with the fields of his neighbors . . .
([120]; p. 9)

Today, cognitive science can be defined as the interdisciplinary study of
mind; It draws upon such diverse fields as Computing Science and Artifi-
cial Intelligence [15], Linguistics [80], Neuroscience [85], Philosophy [59],
and Psychology [36], to name but a few. Although each discipline has
its own unique interpretation of cognitive science, they are bound into a
cohesive whole by a central tenet. This tenet states that the mind is an in-
formation processor; that is, it “receives, stores, retrieves, transforms, and
transmits information” ([105], p. 1). This information and the correspond-
ing information processes can be studied as patterns and manipulations of
patterns. Furthermore, these processes posit representational or semantic
states that are fully realized within the physical constraints of the brain.

Traditionally, this information processing approach has been character-
ized by the physical symbol system hypothesis of Newell and Simon [77]
which forms the basis of the “classical” approach to cognitive science. Ba-
sically, the hypothesis states that cognition is based upon patterns of infor-
mation, that these patterns of information can be represented as symbols,
and that these symbols can be manipulated. Consequently, it is sometimes
assumed that the architecture of the mind is the architecture of von Neu-
mann style computers (e.g., [86]). In contrast, connectionism is often viewed
as a radically different approach to studying the architecture of the mind,
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accounting for aspects of human cognition handled poorly by the traditional
approaches (e.g., graceful degradation, content-addressable memory; [78]).
What, then, are the properties of connectionism that distinguishes it from
the traditional approach to cognitive science?

2.2 Connectionism Defined

Connectionism—within cognitive science—is a theory of information pro-
cessing. Unlike classical systems which use explicit, often logical, rules
arranged in an hierarchy to manipulate symbols in a serial manner, how-
ever, connectionist systems rely on parallel processing of sub-symbols, us-
ing statistical properties instead of logical rules to transform information.
Connectionists base their models upon the known neurophysiology of the
brain and attempt to incorporate those functional properties thought to be
required for cognition.

What, then, are the functional properties of the brain that are required
for information processing? Connectionists adopt the view that the ba-
sic building block of the brain is the neuron. The neuron has six basic
functional properties [27]. It is an input device receiving signals from the
environment or other neurons. It is an integrative device integrating and
manipulating the input. It is a conductive device conducting the integrated
information over distances. It is an output device sending information to
other neurons or cells. It is a computational device mapping one type of
information into another. And, it is a representational device subserving
the formation of internal representations. Consequently, we would expect
to find these functional properties within our artificial neural networks.

As an example, Rumelhart, Hinton, and McClelland [91] (p. 46) list
eight properties that are essential to Parallel Distributed Processing (PDP)
models.

• A set of processing units

• A state of activation

• An output function for each unit

• A pattern of connectivity among units

• A propagation rule for propagating patterns of activities through the
network of connectivities

• An activation rule for combining the inputs impinging on a unit with
the current state of that unit to produce a new level of activation for
the unit.

• A learning rule whereby patterns of connectivity are modified by ex-
perience

• An environment within which the system must operate

These eight properties of PDP models map easily onto the six functional
properties of the neuron. The processing unit is the neuron itself. The state
of activation and the activation rule are part of the input and intergrative
device of the neuron and the output function is simply the output of the
neuron. The pattern of connectivity and propagation rule map onto the
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conductive function of the neuron. And, the learning rule and environment
are part of the computational and representational functions of the neuron.

To be fair, though, PDP models are simply a subclass of connectionist
models. Therefore, Bechtel and Abrahamsen [8] have reduced the above
list to four properties that distinguish the different types of connectionist
architectures. These four properties are:

1. The connectivity of units,

2. The activation function of units,

3. The nature of the learning procedure that modifies the connections
between units, and

4. How the network is interpreted semantically.

The above properties of connectionist models can be summarized in three
basic tenets. First, signals are processed by elementary units. Second,
processing units are connected in parallel to other processing units. Third,
connections between processing units are weighted. These three tenets are
necessarily broad in their descriptions so as to accommodate all aspects of
connectionism; however, further elaboration is given below.

For example, the processing of signals encompasses the receiving, trans-
formation, and transmission of information. The signals themselves may
be carried by electrical, chemical, or mechanical means. Furthermore, sig-
nals could be supplied from an external stimulus (such as light impinging
on the retina) or from other processing units. The processing units (see
Figure 1) may refer to neurons, mathematical functions, or even demons à
la Selfridge [100]. Lastly, information may be encoded in the units either
locally or in a distributed manner.

Figure 1: Different forms of processing units: (a) stylized sympathetic
ganglion, (b) mathematical function.
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Connections between units may or may not be massively parallel in the
sense that every unit is connected to every other unit. Moreover, connec-
tions may be “feed-forward” (i.e., signals being passed in one direction only
[92], [93]), or “interactive” (i.e., bidirectional passing of signals [66]).

Finally, the weights associated with the connections may be “hard-
wired”, learned, or both. The weights represent the strength of connection
(either excitatory or inhibitory) between two units. These three tenets allow
a large spectrum of models (e.g., Selfridge’s Pandemonium [100]; Rumel-
hart & McClelland’s Past-Tense Acquisition Model [95]; Dawson’s Motion
Correspondence Model [18]) to fall within the classification of connectionist
research.

To understand how these different models fit into connectionist research
today, one needs to be aware of how connectionist research has developed.
The best way of accomplishing this is to start at the beginning.

3 Old Connectionism

We have chosen to analyze connectionism within the interdisciplinary realm
of cognitive science. Consequently, we should not be surprised to find that
connectionist research has an interdisciplinary origin. In fact, the essence of
connectionism can be traced back to philosophy, psychology, mathematics,
neuroscience, and computing science. It is only through a review of the
contributions made by each of these disciplines that we can place connec-
tionism in its proper context today.

3.1 Philosophical Roots

Although the popularity of connectionist research has grown considerably
over the past decade, it is certainly not a new phenomenon. Aristotle
(ca. 400 B.C.) has been cited [2] as the first scientist to propose some
of the basic concepts of connectionism; that is, memory is composed of
simple elements linked or connected to each other via a number of different
mechanisms (such as temporal succession, object similarity, and spatial
proximity). Furthermore, these associative structures could be combined
into more complex structures to perform reasoning and memory access.
Thus, a “well-specified outline of a perfectly viable computational theory
of memory” ([2], p. 3) based on the interconnection of simple elements
existed at least 2,400 years ago.

Moreover, many of the underlying assumptions of connectionism can be
traced back to the ideas eminent in the philosophical school of materialism
(e.g., la Mattrie, Hobbes), and the resulting school of British empiricism
(e.g., Berkeley, Locke, Hume). Materialists held the view that nothing
existed except for matter and energy, and that all human behaviour—
including conscious thought—could be explained solely by appealing to
the physical processes of the body, especially the brain (cf., Descartes’ du-
alism). This lead to the empiricist view that human knowledge is derived
ultimately from sensory experiences, and it is the association of these expe-
riences that lead to thought [5][59]. Therefore, human cognition is governed
by physical laws and can by studied empirically.

Within the empiricist tradition, accounting for psychological processes
is known as associationism. The basic concepts of associationism are [8]:
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1. mental elements or ideas become associated with one another through
experience,

2. experience consists of such things as spatial contiguity, temporal con-
tiguity, similarity, and dissimilarity of ideas,

3. complex ideas can be reduced to a set of simple ideas,

4. simple ideas are sensations, and

5. simple additive rules are sufficient to predict complex ideas composed
from simple ideas

Although many associationist concepts are evident in the behaviourist move-
ment in psychology, the cognitivist movement within psychology has dis-
missed associationism as inadequate to account for cognitive phenomenon
such as recursive grammars (e.g., [10]).

Not surprisingly, with assumptions founded in associationist theories,
connectionism has often been mistaken for associationism (e.g., [32], foot-
note 29), and subsequently dismissed as a viable theory of cognition. As
pointed out by Thorndike [109], however, connectionism should not be con-
fused for associationism. Rather, connectionism has borrowed concepts
from associationism and has expanded them. For example, connectionism
employs such concepts as distributed representations, hidden units, and
supervised learning—concepts foreign to associationism [8].

In fact, Bechtel [7] points out that connectionism embodies a very dis-
tinctive characteristic that distinguishes cognitivism from behaviourism and
associationism; specifically, connectionist modelers postulate that the con-
nections between units provide structure in which mental activity occurs,
and this structure is important for mediating future behaviour. Hence, con-
nectionists are not repudiating cognitivism, they are simply providing an
alternative to the standard rules and representation view of cognition. On
the other hand, connectionism does embrace one very important aspect of
associationism often missing from classical cognitive models; connectionism
focuses on learning as a natural activity of the system being modeled. Con-
sequently, Bechtel [7] concludes that connectionism may provide “a basis to
draw together aspects of the two traditions that have generally been viewed
as incommensurable” (p. 60).

3.2 Psychological Manifestations

With the emergence of psychology as a distinct field from philosophy, the
ideas underlying connectionism became more refined and based on the
known neurophysiology of the day. In fact, founding psychologists such
as Spencer [103] and James [55] are often cited for early examples of con-
nectionist networks—networks that combined associationist principles with
neurology.

The appearance of the hardline behaviourist movement (e.g., [115],
[102]), by all accounts, should have signaled the demise of connectionist
ideas in psychology1. Surprisingly, however, it was behavioural psycholo-

1Watson proposed that psychology should only be interested in objective, observable
behaviour: “the consideration of the mind-body problem affects neither the type of
problem selected nor the formulation of the solution of that problem” [115]p. 166. This
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gists (e.g., [109],[110],[51]), that finally made the distinction between asso-
ciationism and connectionism [112]. Following the demise of behaviourism
and the rise of cognitivism and symbolic processing, connectionist research
all but disappeared from psychological literature. It has only recently be-
come vogue once again.

But, for now, let us concentrate on psychology’s contribution to con-
nectionism.

3.2.1 Spencer’s Connexions

In his two volume series entitled The Principles of Psychology, Herbert
Spencer [103][104] laid out the foundations of what was then the emerging
field of psychology. One of his central tenets was that a description of the
nervous system was essential for the understanding of psychology. Thus, he
devoted several sections of his text to describing neural structures and their
functions. Part of this description included describing how connections may
be formed—not only the connections between one neuron and another (see
Figure 2), but also the connections between ideas and concepts. He even
went so far as to state that “there is a fundamental connection between
nervous changes and psychical states” ([103], p. 129).

A E

a e

Figure 2: The needful connexions between afferent (A) and efferent (E)
fibres to allow efficient transmission of a signal to move a muscle. Points a
and e are where the afferent and efferent fibres diverge respectively (adapted
from [103];vol. 1, Figure 7).

Using the growth of intelligence as an example, Spencer first identified
those psychical aspects that define intelligence—the correspondence of in-
ternal relations with external relations. Intelligence grew as a function of
the differentiation of external events into ordered states of consciousness.
Thus, changes in the psychical states could be linked directly to changes
in the external order. As an infinite number of correspondences between
internal and external events could exist over time, Spencer concluded that

is exemplified by Skinner’s view [102] that behaviour could be studied without any appeal
to the brain.
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no general law could be stated for such a series of changes. Instead, a law
of changes had to be sought in the small, immediately connected changes:

When any state a occurs, the tendency of some other state d
to follow it , must be strong or weak according to the degree of
persistence with which A and D (the objects or attributes that
produce a and d) occur together in the environment. ([103], pp.
408)

This law of connection also holds for events that co-exist in the world. If
events A and B habitually coexist in the environment, then conscious states
a and b must coexist as well. As neither A or B is antecedent or consequent,
then state a is just as likely to induce state b as state b is to induce state a.
Thus, the networks of connections could either be “feed-forward” (as in the
case of a and d) or “interactive” (as in the case of a and b). As one last note,
Spencer states that it is “the strengths of the connexion” ([103], p. 409)
between the internal states and external events that is important. In other
words, correct knowledge of the world is encoded within the connections of
the brain.

3.2.2 James’ Associative Memory

Further examples of early connectionist theory are also evident in William
James’ [55][56] treatment of psychology (interestingly enough, also a two
volume set entitled The Principles of Psychology). James, like Spencer, was
committed to the fact that psychological phenomenon could be explained
in terms of brain activity—“no mental modification ever occurs which is
not accompanied or followed by a bodily change” ([55], p. 5). In fact, James
equated the analysis of neural functioning with the analysis of mental ideas.

There is a complete parallelism between the two analyses, the
same diagram of little dots, circles, or triangles joined by lines
symbolizes equally well the cerebral and mental processes: the
dots stand for cells or ideas, the lines for fibres or associations.
([55], p. 30)

The most obvious example of connectionist principles is James’ asso-
ciative memory model; the model consists of individual ideas that are con-
nected in parallel such that recall of one idea is likely to cause the recall
of related ideas. Thus, within this model, activation of event A with its
component parts a, b, c, d, and e (e.g., attending a dinner party) caused
activation of event B with its component parts l, m, n, o, and p (e.g., walk-
ing home through the frosty night) since all aspects of A were connected,
or redintegrated, with all aspects of B (see Figure 3).

James recognized that, all things being equal, any activation in such
a network would unfortunately result in “the reinstatement in thought of
the entire content of large trains of past experience”2 ([55], p. 570). To
counter this type of total recall, James proposed the law of interest: “some
one brain-process is always prepotent above its concomitants in arousing
action elsewhere” ([55], p. 572). Hence, not all connections in the brain
are created equal. But, how are these connections modified, and hence the

2James quickly points out that only the minor personages within Dickens’ and Eliot’s
novels possess this type of memory system.
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Figure 3: James’ distributed memory model [55]. Activation of event A
causes activation of event B through weighted parallel connections.

associations between memories learned? James proposed the law of neural
habit:

When two elementary brain-processes have been active together
or in immediate succession, one of them, on reoccurring, tends
to propagate its excitement into the other. ([55], p. 566; his
italics)

In other words, when two events occur repeatedly, the connection be-
tween the relevant brain-processes is strengthened (we shall see this no-
tion reappear a little later in a more formal manifestation). Note that
James is talking about modifying brain-processes physically and not sim-
ply strengthening the associations between ideas. Even now, we begin to
see the borrowing and modification of associationist ideas to account for
cognitive processes and learning in biological systems.

More importantly, these very simple concepts—weighted, modifiable,
parallel connections—laid down over a century ago form the cornerstone of
connectionism today.

3.2.3 Thorndike’s Connectionism

Edward Lee Thorndike was a student of James; therefore, it is not surpris-
ing that he carried over some of the principles inherent in James’ work.
Although often considered one of the founding behaviourists (e.g., [82]),
Thorndike was concerned with states of mind (cf., [115]), and how they
changed with experience. More importantly, however, Thorndike can be
considered one of the first true connectionists.

In his book, The Fundamentals of Learning [109], he differentiated be-
tween the principles of British associationism and what he had coined “new
connectionism.” He believed so much in this new connectionism that in
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1949 he summarized what he considered his most important contributions
to psychology under the title Selected Writings from a Connectionist’s Psy-
chology so that students may “know something of connectionist psychology”
([110], p. v).

Thorndike’s connectionism can be viewed as a turning point where the-
ories of neural association became sub-symbolic and graduated from merely
implementational accounts to accounts of the functional architecture [112].
In other words, the neural connections became a substitute for, instead of a
mechanism of, ideational processes. Thus, his computational descriptions of
the fundamentals of learning were couched in the language of connectionist
principles.

For example, to Thorndike, the most prevalent questions within learning
theory were:

1. What happens when the same situation or stimulus acts repeatedly
upon an organism—does the mere frequency of an experience cause
useful modifications?

2. What happens when the same connection occurs repeatedly in a
mind?

3. What effect do rewards and punishments have on connections, and
how do they exert this effect?

In order to answer these questions, Thorndike proposed two different laws.
The first law, the “Law of Exercise or Use or Frequency”, states that all
things being equal, the more often a situation connects with or evokes or
leads to or is followed by a certain response, the stronger becomes the
tendency for it to do so in the future. The second law, the “Law of Effect”,
states that what happens as an effect or consequence or accompaniment
or close sequel to a situation-response, works back upon the connection to
strengthen or weaken it. Thus, if an event was followed by a reinforcing
stimulus, then the connection was strengthened. If, however, an event was
followed by a punishing stimulus, then the connection was weakened. The
principles underlying this law are very similar to the supervised learning
techniques (such as error backpropagation) used in today’s neural networks.

Finally, Thorndike anticipated the backlash against the principles of
connectionism:

Many psychologists would indeed deny that any system of con-
nections was adequate to explain his behaviour, and would in-
voke powers of analysis, insight, purpose, and the like to sup-
plement or replace the simple process of connection-forming by
repetition and reward. ([109], p. 355)

Through a series of experiments, however, Thorndike [109] shows that
there is “no sufficient reasons for ascribing any power over and above that
of repetition and reward to any ‘higher powers’ or ‘forms of thought’ or
‘transcendent systems’ ” (p. 382) and thus “justif[ies] the connectionist’s
faith” (p. 4).
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3.2.4 Hull’s Learning Rule

In 1943, Clark L. Hull[51] set for himself the task of elaborating the laws of
behaviour from a molar level description of neural activity (since the results
of molecular neurophysiology at the time were inadequate). As part of this
elaboration, he described several functional properties of neural activity
that he deemed important for organism survival. These include:

1. the afferent neural impulse (s1) which is a non-linear function of the
input it receives,

2. interactions between two or more afferent neural impulses (s2 & s3)
which implies that behaviour to the same stimulus is not constant
under all conditions, and

3. the spontaneous generation of nerve impulses which may account for
the variability of behaviour to identical environments.

Having identified these three functional properties of neural activity,
Hull then makes the statement that the “supremely important biological
process” of learning could be expressed in terms of modifying receptor-
effector connections:

The essential nature of the learning process may, however, be
stated quite simply . . . the process of learning consists in the
strengthening of certain of these connections as contrasted with
others, or in the setting up of quite new connections. (pp. 68-
69)

The process of learning is wholly automatic—it occurs as the result of the
interaction of the organism with its environment, both external and inter-
nal. Furthermore, the rules of learning must be capable of being stated in a
clear and explicit manner without recourse to a guiding agent. Thus, Hull
developed several empirically testable equations to describe the learning
process. The one that concerns us the most for historical reasons is his
formula for the growth of stimulus-response habits. This is simply the in-
crease in the strength of connection (to a physiological maximum) between
a stimulus and a response as a function of the number of reinforcing trials.

The growth of habit strength is dependent on three factors (p. 114):

1. The physiological limit or maximum (M),

2. The ordinal number (N) of the reinforcement producing a given in-
crement to the habit strength (∆◦SHR),

3. The constant factor (F ) according to which a portion (∆SHR) of the
unrealized potentiality is transferred to the actual habit strength at
a given reinforcement.

Thus, habit strength as a function of the number of reinforcement rep-
etitions can be computed as follows

N
S HR = M −Me−N log 1

1−f (1)

which generalizes over trials to

∆H = f(M −H) (2)
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Hull is quick to point out that habit strength cannot be determined by
direct observation; the strength of the receptor-effector connection can only
be measured and observed indirectly. This is because the organization of
the processes underlying habit formation are “hidden within the complex
structure of the nervous system” (p. 102). Consequently, the only way of
inferring habit strength is to note the associations between the antecedent
conditions which lead to habit formation and the behaviour which is the
consequence of these same conditions.

It has been pointed out [112] that this equation is a forerunner to
the Rescorla-Wagner rule [87], which has been shown [107] to be essen-
tially identical to the Widrow-Hoff [118] rule for training Adaline units (see
Equation 6). Furthermore, this equation can be seen as a primitive form
of the generalized delta rule for backpropagation in neural networks (see
section 4.6, Equation 16)

3.3 The Neuropsychological Influence

Connectionist models derive their inspiration from neurophysiology. Con-
sequently, it is appropriate to touch briefly on the neuropsychological in-
fluence exerted on connectionism. Following the pioneering work of such
researchers as Sherrington and Cajal3, researchers began to seek the neural
correlates of learning and memory. From this research paradigm emerged
two prominent figures in regards to the history of connectionism: Karl
Lashley and Donald Hebb.

3.3.1 Lashley’s Search for the Engram

One of the most intensive searches to localize memory traces—or engrams—
within the brain was initiated by Karl Lashley in the 1920’s. Lashley’s
studies involved training an animal to perform some specific task (such
as brightness discrimination or maze orientation) and lesioning a specific
area of the cortex either before or after training. Lashley then recorded
the behavioural effects of cortical lesions on retention and acquisition of
knowledge. In 1950 [58], he summarized 30 years of research into two
principles:

• The Equipotentiality Principle: all cortical areas can substitute for
each other as far as learning is concerned.

• The Mass Action Principle: the reduction in learning is proportional
to the amount of tissue destroyed, and the more complex the learning
task, the more disruptive lesions are.

In other words, Lashley believed that learning was a distributed process
that could not be isolated within any particular area of the brain. Fur-
thermore, it was not the location of the lesion that was important (within
reason4), but the amount of tissue destroyed that determined the degree of

3Sherrington was responsible for coining the term synapse to denote the structural and
functional loci of interaction between neurons while Cajal was responsible for introducing
the neuron theory—the nervous system is composed of neurons which are individual
functional units.

4Lashley recognized that removing large portions of the visual cortex would prevent
such things as brightness discrimination, but that this was due to the animal not being
able to see, not to any deficit in learning or memory per se.
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behavioural dissociation. Although these two principles have been contro-
versial since their publication, they do contribute to the field of connection-
ist research; specifically, to the ideas of distributed representations, mul-
tiple internal representations, and emergent network properties. In fact,
recent lesioning experiments performed by connectionists (e.g., [29],[83])
would tend to agree with Lashley in terms of network processing being
distributed and nonlocalized. Just as neuropsychologists have questioned
Lashley’s conclusions [53], however, the conclusions derived from experi-
ments on lesioned connectionist networks are also being challenged [73]).

3.3.2 Hebbian Learning

Perhaps the most influential work in connectionism’s history is the con-
tribution of Canadian neuropsychologist, Donald O. Hebb (a student of
Lashley). In his book, The Organization of Behaviour [44], Hebb presented
a theory of behaviour based as much as possible on the physiology of the
nervous system. Hebb reduced the types of physiological evidence into two
main categories: (i) the existence and properties of continuous cerebral ac-
tivity, and (ii) the nature of synaptic transmission in the central nervous
system. Hebb combined these two principles to develop a theory of how
learning occurs within an organism. He proposed that repeated stimula-
tion of specific receptors leads slowly to the formation of “cell-assemblies”
which can act as a closed system after stimulation has ceased. This con-
tinuous cerebral activity serves not only as a prolonged time for structural
changes to occur during learning, but also as the simplest instance of a
representative process (i.e., images or ideas).

The most important concept to emerge from Hebb’s work was his for-
mal statement (known as Hebb’s postulate) of how learning could occur.
Learning was based on the modification of synaptic connections between
neurons. Specifically,

When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.
([44], p.62; his italics)

The principles underlying this statement have become known as Hebbian
Learning. ¿From a neurophysiological perspective, Hebbian learning can
be described as a time-dependent, local, highly interactive mechanism that
increases synaptic efficacy as a function of pre- and post-synaptic activity.
Although the neurophysiology in Hebb’s day was inadequate to support or
deny Hebb’s postulate, recent research has shown that Long-Term Poten-
tiation (LTP) has those putative mechanisms required of Hebbian learning
(e.g., [27]).

Within connectionism, Hebbian learning is an unsupervised training
algorithm in which the synaptic strength (weight) is increased if both the
source neuron and target neuron are active at the same time. A natural
extension of this (alluded to by Hebb as the decay of unused connections)
is to decrease the synaptic strength when the source and target neurons are
not active at the same time. Hence, Hebbian learning can be formulated
as:

wij(t+ 1) = wij(t) + neti netj (3)
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where

wij(t) = the synaptic strength from neuron i to neuron j at time t

neti = the excitation of the source neuron.

netj = the excitation of the destination neuron.

There are serious limitations with Hebbian learning as stated (e.g., the
inability to learn certain patterns), but variations of this simple algorithm
exist today (e.g., Signal Hebbian Learning; Differential Hebbian Learning;
[114]).

3.4 The Mathematical Influence

The next major formulation of connectionist theories can be attributed to
McCulloch and Pitts [70]. In their seminal paper A logical calculus of the
ideas immanent in nervous activity, they explicitly laid out the foundations
of neural modelling in terms of propositional logic. To accomplish this, they
simplified the activity of neurons into five functional states (p. 118):

1. The activity of the neuron is an “all-or-none” process.

2. A certain fixed number of synapses must be excited within the pe-
riod of latent addition in order to excite a neuron at any time, and
this number is independent of previous activity and position on the
neuron.

3. The only significant delay within the nervous system is synaptic delay.

4. The activity of an inhibitory synapse absolutely prevents excitation
of the neuron at that time.

5. The structure of the net does not change with time.

Using these principles, McCulloch and Pitts were able to show that any
statement within propositional logic could be represented by a network
of simple processing units. Furthermore, such nets have the in principle
computational power of a Universal Turing Machine. “If any number can
be computed by an organism, it is computable by these definitions, and
conversely” (p. 128). Since all information processing can be characterized
by a Turing Machine (e.g., [111]), it was assumed that human cognition
could also be characterized by a Turing Machine. Consequently, McCulloch
and Pitts concluded that:

To psychology, however defined, specification of the net would
contribute all that could be achieved in that field— even if
the analysis were pushed to the ultimate psychic units or “psy-
chons,” for a psychon can be no less than the activity of a single
neuron. (p. 131)

McCulloch and Pitts also proved that there is always an indefinite num-
ber of topologically different nets realizing any temporal propositional ex-
pression (TPE), although time discrepancies might exist between the differ-
ent realizations. What this states is that there exists many different algo-
rithms to compute the same function, or similarly, many different possible
network configurations (say in terms of processing units and connections).



CONNECTIONISM 33

3.5 Early Computer Models of Connectionism

Logically, if it were possible to construct non-living devices —
perhaps even of inorganic materials — which would perform
the essential functions of the conditioned reflex, we should be
able to organize these units into systems which would show true
trial-and-error learning with intelligent selection and the elimi-
nation of errors, as well as other behavior ordinarily classed as
psychic. Thus emerges in a perfectly natural manner a direct
implication of the mechanistic tendency of modern psychology.
Learning and thought are here conceived as by no means nec-
essarily a function of living protoplasm any more than is aerial
locomotion. [52] pp. 14-15.

Perhaps the most influential event in the development of connectionism
was the invention of the modern computer. Theories that could only be
tested previously by observing the behaviour of animals or humans (e.g.,
[109][110][51]) could now be stated more formally and investigated on arti-
ficial computation devices. Hence, theory generation and refinement could
now be accomplished faster and with more precision by using the empirical
results generated by the computer simulations.

The computer and its influence on learning theory can be credited with
producing both positive and negative press for connectionism. Selfridge’s
Pandemonium [100] and Rosenblatt’s Perceptrons [89][90] did much to fur-
ther the concepts of connectionism. The proofs on the limitations of simple
perceptrons by Minsky and Papert [74], however, nearly caused the com-
plete abandonment of connectionism.

3.5.1 Pandemonium

Recognizing that previous attempts to get machines to imitate human data
had all but failed, Selfridge [100] proposed a new paradigm for machine
learning. Pandemonium was introduced as a learning model that adaptively
improved itself to handle pattern classification problems that could not be
adequately specified in advance. Furthermore, whereas previous computer
models relied on serial processing, Selfridge proposed a novel architecture to
deal with the problem, parallel processing. The move to parallel processing
was not an arbitrary one, but one motivated by two factors: (1) it is easier,
and more “natural” to handle data in a parallel manner5, and (2) it is easier
to modify an assembly of quasi-independent modules than a machine whose
parts interact immediately and in a complex way.

Pandemonium consists of four separate layers: each layer is composed
of “demons” specialized for specific tasks. The bottom layer consists of
data or image demons that store and pass on the data. The third layer
is composed of computational demons that perform complicated computa-
tions on the data and then pass the results up to the next level. The second
layer is composed of cognitive demons who weight the evidence from the
computational demons and “shriek” the amount of evidence up to the top
layer of the network. The more evidence that is accumulated, the louder
the shriek. At the top layer of the network is the decision demon, who

5“parallel processing seems to be the human way of handling pattern recognition” [99]
p. 66.



34 MEDLER

simply listens for the loudest “shriek” from the cognitive demons, and then
decides what was presented to the network.

The initial network structure is determined a priori by the task, ex-
cept for the computational level which is modified by two different learning
mechanisms. The first mechanism changes the connection weights between
the cognitive demons and the computational demons via supervised learn-
ing (all other connections within the network being fixed a priori). The
weights are trained using a hill-climbing procedure in order to optimize
the performance of the network. After supervised learning has run long
enough to produce approximately optimal behaviour, the second learning
mechanism is employed.

The second learning mechanism selects those computational demons
that have a high worth (based on how likely they are to influence a deci-
sion), eliminates those demons that have a low worth, and generates new
demons from the remaining good demons. Generation can be accomplished
by either mutating a demon, or conjoining two successful demons into a
continuous analogue of one of the ten nontrivial binary two-variable func-
tions. It should be noted that this second mechanism may be one of the
first genetic machine learning algorithms.

Selfridge has demonstrated the effectiveness of Pandemonium on two
different tasks: distinguishing dots and dashes in manually keyed Morse
code [100], as well as recognizing 10 different hand-printed characters [99].
Thus a practical application of connectionist principles have been applied
to pattern recognition. In fact, Pandemonium has been so successful as
a model of human pattern recognition that it has been adopted and con-
verted into a more traditional symbolic model (with connectionist principles
appropriately ignored) by cognitive psychologists (e.g., [62])

3.5.2 The Perceptron

The perceptron, more precisely, the theory of statistical sepa-
rability, seems to come closer to meeting the requirements of a
functional explanation of the nervous system than any system
previously proposed. [89] p. 449.

Although originally intended as a genotypic model of brain function-
ing [89][90], the perceptron has come to represent the genesis of machine
pattern recognition. Basically, the perceptron is a theoretically parallel
computation device composed of (i) a layer of sensory units (S-unit) which
transduce physical energy (e.g. light, sound, etc.) into a signal based on
some transformation of the input energy, (ii) any number of layers of as-
sociation units (A-unit) which have both input and output connections,
and (iii) a final layer of response units (R-unit) which emit a signal that
is transmitted to the outside world. Figure 4 shows a typical perceptron
configuration. It should be noted that Rosenblatt was equally comfortable
representing a perceptron system as a network diagram, a set diagram, or
even a symbolic diagram (e.g., see [90], Figure 2, p.86).

A perceptron can therefore assume any number of possible configura-
tions in terms of the number of units in each layer,and the number of layers.
We will concern ourselves, however, with what Rosenblatt defines as the el-
ementary α-perceptron. An elementary α-perceptron is defined, then, as
a network in which S-units are connected to A-units (although not neces-
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Figure 4: A typical perceptron configuration. Physical energy is transduced
by the sensory units, passed to the association units, and then emitted to
the outside world by the response units.

sarily massively parallel), and all A-units are connected to a single R-unit,
with no other connections being permitted. Furthermore, all connections
are considered to have equal transmission rates, τ . The transfer function
between units i and j at time t is expressed as

c∗ij(t− τ) = u∗i (t− τ) vij(t− τ) (4)

where u∗i (t − τ) is the output of unit i at time t, and vij(t − τ) is the
connection strength between units i and j at time t. Connection strengths
from S- to A-units are fixed, while connection strengths from A- to R-units
vary with the reinforcement history applied to the perceptron. Both A- and
R-units have a threshold, θ, and emit a signal whenever the input signal,
α, is equal to or greater than θ. We can assume that τ = 0 without loss of
generality, and thus, the reinforcement rule is

∆vij = u∗i (t) · η =
{
η if αi(t) ≥ θ,
0 otherwise.

(5)

where η is of constant magnitude.
The theoretical importance of the elementary α-perceptron lies in the

fact that, for binary inputs, a solution exists for every classification, C(W ),
of all possible environments W . In other words, an elementary α-perceptron
is capable of solving any pattern classification problem expressed in binary
notation. The proof is rather trivial:

1. For every possible pattern, Si, in W , let there be a corresponding
A-unit, ai.

2. Make the connection, vij , between ai and the corresponding sensory
unit, sj , excitatory (i.e., value equal to +1) if the pattern on that sj
is “on”; otherwise make the connection inhibitory (i.e., value equal to
-1).

3. Set the threshold of ai, θ, equal to the number of excitatory connec-
tions. Thus, ai responds to one and only one pattern in W .
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4. If Si is a positive instance of C(W ) then make the connection from ai
to the R- unit positive (i.e. value equal to +1); otherwise make the
connection negative (e.g., value equal to -1). With the threshold of
the R-unit equal to zero, the network correctly classifies all Si in W .
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Figure 5: The solution for an elementary α-perceptron solving the XOR
problem. Weights are either +1 (solid line) or -1 (broken line), whereas
biases are indicated by the number within the processing unit.

The above proof shows theoretically that any pattern classification prob-
lem expressed in binary notation can be solved by a perceptron network.
As a concrete example, Figure 5 shows the network configuration for solv-
ing the XOR problem. The problem with this proof, however, is that it
produces the final network structure, but does not indicate if the network
could be trained to such a configuration. Consequently, Rosenblatt de-
veloped the Perceptron Convergence Theorem to show that an elementary
α-perceptron using an error correction procedure is guaranteed to converge
on a solution in finite time, providing that (i) a solution exists, (ii) each
pattern is presented to the network at least twice, and (iii) the connections
between the S-units and A-units are fixed.

Although theoretically very powerful, the practical problem with per-
ceptrons was that there was no reliable method of adjusting the connec-
tions between the sensory (input) units and the association (internal) units.
Hence, as a true learning network, perceptrons were limited to just a layer
of sensory units connected directly to a layer of response units, with no
intervening layers. With the output of the R-unit being monotonic (i.e.,
u∗i (t) = f(αi(t)), where αi(t) is the algebraic sum of all the inputs into
unit ui), the resulting networks were very limited in their computational
power. Rosenblatt was quick to point this limitation out, although he left
the proof up to the reader.

It is left to the reader to satisfy himself that a system with less
“depth” than an elementary perceptron (i.e., one in which S-
units are connected directly to the R- unit, with no intervening
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A-units) is incapable if representing C(W ), no matter how the
values of the connections are distributed. [90] p. 101.

3.5.3 Adaline

The next major formulation of a learning rule for networks came from the
research of Widrow and Hoff [118]. They developed “Adaline” (first for
adaptive linear, then adaptive linear neuron, and later adaptive linear ele-
ment as neural models became less popular) as an adaptive pattern classi-
fication machine to illustrate principles of adaptive behaviour and learning.
The learning procedure was based on an iterative search process, where per-
formance feedback was used to guide the search process. In other words, a
designer “trains” the system by “showing” it examples of inputs and the re-
spective desired outputs. In this way, system competence was directly and
quantitatively related to the amount of experience the system was given.
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Figure 6: A typical Adaline unit. The inputs are sent along weighted
connections (gains) to a summer which performs a linear combination of
the signals. The output of the summer is compared to the value of the
reference switch and the gains are adjusted by the same absolute value
to produce an output of exactly -1 or +1. Adapted from Figure 1, [118],
c©1960 IRE (now known as IEEE).

The typical Adaline unit, also called a “neuron element,” is illustrated
in Figure 6. It is a combinatorial logic circuit that sums the signals from
weighted connections (gains), ai, and then sends an output signal based on
whether or not the internal signal exceeded some threshold. The threshold
was determined by a modifiable gain, a0, which was connected to a constant
+1 source. As opposed to the usual convention of using signals of 0 and 1,
the Adaline used input signals of -1 and +1 which meant a signal was always
passed along a connection (unless the gain on the line was zero). Similarly,
the gains on the connections were adjusted so that the output signals were
exactly -1 or +1; therefore, classification was not simply correct, but exactly
correct. This restriction on the outputs meant that learning continued
even if the classification was simply correct as the summed inputs may
not be exactly -1 or +1. This continued learning was an improvement
over the simple perceptron which did not change its weights if the gross
classification was correct. The learning procedure is based on the error
signal generated by comparing the network’s response with the optimal
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(correct) response. For example, consider an Adaline unit with 16 input
lines and a bias threshold. A pattern is presented over the 16 input lines,
and the desired output is set into the reference switch (see Figure 6). If the
error (computed as the difference between the summer and the reference
switch) is greater than zero, then all gains including the bias are modified in
the direction that will reduce the error magnitude by 1/17. Upon immediate
representation of the pattern an error signal of zero would be produced.
Another pattern can now be presented to the network and the connections
modified6. Convergence is achieved when the error (before adaptation) on
any given pattern is small and there are small fluctuations about a stable
root mean-square value.

The Widrow-Hoff rule [107] is formulated as:

ri = z[(t)− y(t)]xi(t) (6)

where t is the target pattern, y(t) is the network’s output, and xi(t) is the
input to the network. Because this rule is dependent on an external teacher
it is termed supervised learning. The Widrow-Hoff rule is also known as the
delta rule because the amount of learning is proportional to the difference
between the output and the target [91].

3.5.4 Perceptrons Revisited (Minsky & Papert)

Although it was known for a decade that simple perceptrons were limited
in their ability to classify some patterns, it was not until Minsky and Pa-
pert published Perceptrons in 1969 that the extent of these limitations were
fully realized. In fact, it was with this publication that the connectionist
tide was stemmed7 (at least for a while). Instead of asking if neural net-
works are good, Minsky and Papert asked the question “what are neural
networks good for?” This is clearly a computational level question aimed
at identifying the limitations of the representational abilities of perceptron-
like networks. As Minsky and Papert point out in their prologue to the
1988 edition of Perceptrons, “No machine can learn to recognize X unless
it possesses, at least potentially, some scheme for representing X.” (p. xiii;
their italics).

Hence, their approach to the study of neural networks was based on
studying the types of problems that were being proposed at the time—
mainly visual pattern recognition [81]. In doing so, they discovered that
some pattern recognition problems (e.g., distinguishing shapes such as tri-
angles from squares) were relatively easy and could be computed by simple
networks. Conversely, some problems (e.g., determining if a figure was con-
nected or not) were extremely difficult and required large networks to solve
them. The main distinction between these two types of problems was not
the size of the pattern space, but the concept of order ([74], p. 30).

In general, the order of some function Ψ(X) is the smallest number k
for which we can find a set Φ of predicates satisfying{

|S(ϕp)| ≤ k ∀ ϕ in Φ,
Ψ ∈ L(Φ).

(7)

6Note that at this point, presenting the first pattern to the network would produce
an error that was small but not necessarily zero.

7Neural network research did not wane due to lack of interest, but because of lack of
funding [81]
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where ϕ is a simple predicate, and L(Φ) is the set of all predicates that
are linear threshold functions. It should be noted that the order of Ψ is a
property of Ψ alone, and not relative to any particular Φ. Functions that
have an order of 1 are called “linearly separable” and can be solved by a
single layer perceptron.

The types of pattern recognition problems that gave simple perceptrons
trouble were those whose order was greater than 1. These types of prob-
lems are termed “linearly inseparable” and require a layer of processing
units between the input and output units. At the time, however, there
was no reliable method of training this intermediate level, and therefore
perceptrons were limited to being trained on linearly separable problems
only.

Minsky and Papert [74] used a very simple and elegant example to show
the practical limitations of perceptrons. The exclusive-or (XOR) problem
(see Figure 5) contains four patterns of two inputs each; a pattern is a
positive member of a set if either one of the input bits is on, but not both.
Thus, changing the input pattern by one bit changes the classification of the
pattern. This is the most simple example of a linearly inseparable problem
(see Figure 7). A perceptron using linear threshold functions requires a
layer of internal units to solve this problem, and since the connections
between the input and internal units could not be trained, a perceptron
could not learn this classification. And, if perceptrons failed on this small
pattern set, what hope was there for larger pattern sets that were also
linearly inseparable?

(A)

Input

(B)

Internal

Output

Input

Output

Figure 7: (A) Linearly separable problem—the pattern space requires a
single hyperplane to make the proper classification; therefore, a network
requires no hidden units. (B) Linearly inseparable problem—the pattern
space requires two (or more) hyperplanes to make the correct classification;
therefore, a network requires a layer of internal units.

Furthermore, Minsky and Papert lay out other limitations of networks.
For example, if a network is to solve a problem with order R, then at
least one partial predicate ϕ must have as its support the whole space R.
In other words, at least one internal unit must be connected to each and
every input unit. This network configuration violates what is known as
the “limited order” constraint. Another limitation that Minsky and Papert
discuss is the growth of coefficients. For linearly inseparable problems, the
coefficients (i.e., weights) can increase much faster than exponentially with
|R|. This leads to both conceptual and practical limitations. Conceptually,
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although the behaviour of a network may be “good” on small problems,
this behaviour may become profoundly “bad” when the problem is scaled
up. Practically, for very large |R|, the amount of storage space required for
the weights would overshadow the space required to simply represent the
problem.

Although advances in neural network research have produced methods
for training multiple layers of units (e.g., [92] [93]), many of Minsky and
Papert’s concerns remain unanswered. Networks using linear threshold
units still violate the limited order constraint when faced with linearly
inseparable problems (but see section 4.8). Furthermore, the scaling of
weights as the size of the problem space increases remains an issue [31].

3.6 The Importance of Old Connectionism

The publication of Perceptrons by Minsky and Papert in 1969 has taken on
almost a mythical aura—it has been likened to the huntsman being sent out
to bring back the heart of Snow White [81]. Regardless of whether or not
the work precipitated or merely coincided with the decline of connectionist
research, it serves as a useful delineation between the “Old” and “New”
connectionism.

The examples of connectionist networks provided in this section are of-
ten classified under the term “Old Connectionism”. Old Connectionism is
characterized by two different types of networks. The first are small, train-
able networks, such as single layer perceptrons, that are computationally
limited (i.e., cannot be trained to solve linearly inseparable problems). The
second type of networks are large, computationally powerful networks that
are mainly hardwired (although they could have a trainable layer of weights
such as Pandemonium), and thus are limited in their learning ability. The
problem with Old Connectionism was that it had no reliable way of com-
bining these two different types of network architectures. To be an effective
tool within cognitive science, researchers had to find a way of combining
these two different types of networks.

Consequently, we are left with the question “Why should we be inter-
ested in Old Connectionism?” The first reason is purely academic. To
understand the role of connectionism today we have to understand how the
field has developed. By knowing the history of connectionism, not only are
we in a position to counter the arguments against connectionism from the
classical camp (e.g., knowing why connectionism is not associationism), but
also we are in a position to evaluate claims from the connectionist camp
that it may represent a paradigm shift [98]. To be effective researchers, we
need to know both sides of the argument.

The second and more important reason is that by studying the devel-
opment of connectionism we can appraise the strengths and weaknesses
of the connectionist approach to information processing and adjust our
course of inquiry accordingly. For example, we know that connectionist
networks have the in principle power of a UTM [70], but we also know
that perceptron-like single layer networks are limited in their computa-
tional power [74]. Thus, we should focus current research on multilayer
networks. We know that there are guaranteed algorithms based very much
on early behaviourist theorizing for training single layer networks [90], yet
no such algorithm exists for multiple layer networks. Can the same be said
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of biological learning? Finally, we should stop working in the “biological
vacuum” and heed the echoing call for models of learning to be based more
on the known neurophysiology of the brain.

With the introduction to connectionism’s interdisciplinary background
from its philosophical roots to its computational apex completed, the cur-
rent state of connectionism can now be evaluated.

4 New Connectionism

This section is concerned with describing connectionist systems in the post-
Perceptrons era; that is, networks falling under the classification of “New
Connectionism”. New Connectionism is characterized by computationally
powerful networks that can be fully trained. Such networks have often been
hailed as providing a simple universal learning mechanism for cognition
(but see [34]). Moreover, the learning algorithms embodied within new
connectionist models have created very powerful information processors—
they are both universal function approximators [16] and arbitrary pattern
classifiers [63].

As stated earlier, we are living in the aftermath of the neural network
revolution. As a consequence, the number of different connectionist archi-
tectures available to researchers today is immense; to discuss them all is
beyond the scope of this paper. Instead, this section will focus on three
specific architectures and provide a cursory examination of four other con-
nectionist architectures.

It should be noted, however, that the demarcation between“Old” and
“New” is somewhat tenuous. Following the publication of Perceptrons,
there was a decrease in the number of researchers actively engaged in con-
nectionist research; but, research did not cease. In certain respects, how-
ever, there was a change in the focus of connectionist research. Whereas
previous researchers were interested in a connectionist theory of mind, the
focus of research during the 1970’s and early 1980’s was more directed to-
wards a connectionist theory of memory. This is exemplified by the work
on associative memory models reported in Hinton and Anderson [45]. The
models described in Parallel Models of Associative Memory were seen as
a departure from standard memory models of the time for three distinct
reasons (e.g., [97]):

1. The systems were assumed to have a neurophysiological foundation,

2. The systems offered an alternative to the “spatial” metaphor of mem-
ory and retrieval, and

3. The systems assumed a parallel, distributed-processing system that
did not require a central executive to coordinate processing.

These researchers were aware of the limitations of connectionist models
for learning linearly inseparable pattern classification tasks; consequently,
the focus of their research was directed more towards how memory was
stored and retrieved. In many ways, the work presented in Hinton and
Anderson (1981) serves an important role by bridging the gap between
Perceptrons and Parallel Distributed Processing.
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4.1 Modern Connectionist Architectures

In this section, three different network architectures will be described in
detail. After each of the main architectures is described, related network
architectures will also be reviewed. These reviews will provide somewhat
less detail as they are meant to provide only a cursory examination of
comparable architectures.

The first architecture to be described in detail is James McClelland’s
[66] Interactive Activation and Competition (IAC) model of information
retrieval from stored knowledge. Although early versions of the IAC ar-
chitecture did not learn—hence, it could rightly be considered within the
class of Old Connectionism as defined earlier—the model displays many
characteristics of human cognition that are missing from classical symbolic
models. Furthermore, a new learning rule for IAC networks is proposed
within this section. Thus, it is included here in our description of modern
connectionism.

Following the description of the IAC network, the work of two pioneer-
ing researchers in the field of neural network learning immediately following
the Perceptrons era will be briefly reviewed. First, Stephen Grossberg’s
[39][40] instar and outstar configurations and his Adaptive Resonance The-
ory (ART) networks will be introduced. Second, we will cover Teuvo Ko-
honen’s [57] self-organizing maps (which are now commonly referred to
as Kohonen networks). Coupled with the new learning rule for the IAC
networks, these architectures provide a link from the“Old” to the “New”
Connectionism.

The second architecture to be covered in detail is the generic PDP archi-
tecture8; that is, a multi-layered network trained with Rumelhart, Hinton
and Williams’ [92][93] backpropagation algorithm. The generic PDP net-
work is probably the most well known and most widely used architecture
today it is estimated that about 70% of real-world network applications use
the backpropagation learning algorithm [116]. Furthermore, the algorithm
is suitable for both function approximation tasks and pattern classification
problems.

One criticism leveled against the generic PDP architecture, however, is
that is only capable of a static mapping of the input vectors. The brain,
on the other hand, is not stateless but rather a high-dimensional nonlinear
dynamical system [26]. Consequently, the recurrent network architecture
pioneered by John Hopfield [47] will be briefly discussed. The basic charac-
teristic of recurrent networks is that some processing activation (usually the
output) at time t is re-used (usually as an input) at time t+1. Thus, a fully
connected recurrent network is potentially a very powerful architecture for
temporal processing; however, more efficient heuristics and algorithms for
reliable learning are required.

The third architecture to be discussed specifically is a variation on
the generic PDP architecture developed by Dawson and Schopflocher [24].
These value unit networks use the same basic learning algorithm as the
generic PDP architecture, but use a non-monotonic activation function—
the Gaussian—in their processing units. This new activation function has
been shown to have certain theoretical and practical advantages over stan-

8The term ‘generic’ was first coined by [3] to describe this type of network architecture
and is maintained here for consistency.
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dard backpropagation networks. For example, value units are able to solve
linearly inseparable problems much easier and with fewer hidden units than
standard networks. Also, the hidden unit activations adopted by value unit
network often fall into distinct “bands”, allowing for easier interpretation
of the algorithms being carried out by the network.

Finally, the last architecture to be briefly covered is the Radial Basis
Function (RBF) network (e.g., [75]). The reason for covering the RBF
architecture is that it and the value unit architecture are often confused.
This is because both networks use a Gaussian activation function in their
processing units. As the section will show, however, the networks are not
equivalent.

4.2 Interactive Activation and Competition Models

McClelland’s [66] Interactive Activation and Competition (IAC) model il-
lustrates the power of a large network for retrieving general and specific in-
formation from stored knowledge of specifics. Although the network rightly
falls into the category of Old connectionism as defined earlier (i.e., the net-
work is hardwired and cannot “learn” new information), it is included in
this section because it nicely illustrates those properties of an information
processing system that are often overlooked in classical theories of cognitive
science. These include graceful degradation, content-addressable memory,
output availability, and iterative retrieval [78]. Furthermore, the network
suggests that we may not need to store general information explicitly.

The basic IAC network consists of processing units that are organized
into competitive pools. Connections within pools are inhibitory; this pro-
duces competition within the pools as strong activations tend to drive down
weaker activations within the same pool. Connections between pools, how-
ever, are normally excitatory and bi-directional; thus, we have interactive
processing. Units within the network take on continuous activation values
between a minimum and a maximum, with their output normally equal to
the activation value minus some threshold (although this can be set to zero
without loss of generality). The basic mathematics of network functioning
are fairly straight-forward (e.g., [41][68]).

Units within the IAC network compute their activation, ai, based upon
the unit’s current activation and the net input. The net input arriving into a
unit (see Equation 8) is calculated by summing the weighted activations sent
from all other internal units connected to it, plus any external activation
supplied by the environment. Thus, the net input to unit i that is connected
to j other units is

neti =
∑
j

wij outputj + extinputi (8)

where wij is the weight (positive or negative) of the connection between
unit i and unit j, and

outputj = [aj ]+ =
{
aj if aj > 0,
0 otherwise.

(9)

Once the net input to a unit has been calculated, the change in that
unit’s activation can be computed as follows:
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If (neti > 0),
∆ai = (max− ai)neti − decay(ai − rest).

Otherwise,

∆ai = (ai −min)neti − decay(ai − rest).

where max, min, decay, and rest are parameters supplied by the modeler.
Normally, the parameters are set to max = 1, min ≤ rest ≤ 0, and 0 ≤
decay ≤ 1. It is also assumed that ai is initialized and remains within the
range [min, max].

With these equations in place, we can evaluate how ∆ai changes over
time. For example, imagine that the input, neti, to a unit is fixed at
some positive value. As the activation, ai, of a unit becomes greater and
greater, ∆ai becomes less and less—when ai reaches max then ∆ai =
−decay(ai − rest) = −decay(max− rest). When ai is equal to the resting
level, then ∆ai = (max − rest)neti. If we assume that max = 1 and
rest = 0, then these equations reduce to ∆ai = −decay when ai is maximal
and ∆ai = neti when ai is minimal. Between these two extremes is the
equilibrium point, where ∆ai = 0; that is, we can calculate the value of ai
such that given a constant net input, the unit’s activation does not change
with time. To determine the equilibrium point (assuming max = 1 and
rest = 0), we simply set ∆ai to zero and solve for ai which gives:

0 = (max− ai)neti − decay(ai − rest)
0 = neti − (ai)(neti)− (ai)(decay)
0 = neti − ai(neti + decay)

ai =
neti

neti + decay
(10)

This means equilibrium is reached when the activation equals the ratio of
the net input divided by the net input plus the decay. Analogous results
to Equation 10 are obtained when the net input is negative and constant.
It should be noted that equilibrium is only reached when the net input to
the unit is constant—if the net input changes with time, then equilibrium
is not guaranteed (in practice, however, equilibrium is often achieved).

Having analyzed the mathematical basis of the network, we can now
turn our attention to a more specific example of the IAC architecture.
McClelland’s [66] network is based on the bi-directional interconnection of
nodes. A node is a simple processing device that accumulates excitatory
and inhibitory signals from other nodes via weighted connections and then
adjusts its output to other nodes accordingly. There are two different types
of nodes in the network: instance and property nodes9. There is one instance
node for each individual encoded in the network. The instance node has
inhibitory connections to other instance nodes and excitatory connections
to the relevant property nodes. The property nodes encode the specific
characteristics of an individual. Property nodes are collected into cohorts
of mutually exclusive values; nodes within a cohort have mutually inhibitory

9In reality, both of the nodes have the same physical characteristics and therefore
only represent different types of information. It is often assumed, however, that instance
nodes are ‘hidden’ from direct access whereas property nodes are not.
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connections. Knowledge is extracted from the network by activating one or
more of the nodes and then allowing the excitation and inhibition processes
to reach equilibrium.

All information processing models take time, and the IAC model is no
exception. Time is measured in “cycles”, where a cycle consists of a node
computing its activation level (dependent on previous activation, current
excitatory and inhibitory signals being received, and a decay function) and
then sending a signal to all connected nodes. During a cycle, all nodes are
computing their activation levels in parallel. Furthermore, at the comple-
tion of any cycle, we can evaluate the current state of the network. This
means that we can wait for the network to reach equilibrium and a definite
answer, or we can ask what the network’s best “guess” to a question is
before equilibrium is reached.

The specific network reported [66] encodes information about the mem-
bers of two gangs called the “Jets” and the “Sharks”. Property cohorts
include Name, Gang, Affiliation, Age, Education Status, Marital

Status, and Occupation. Figure 8 illustrates the network’s architecture
and the individual properties within each cohort. Note that McClelland’s
original network had 27 individuals encoded, while Figure 8 only encodes
the properties of three individuals.

Lance
Doug

Earl Bookie

Burglar

Pusher

40’s

30’s

20’s

Divorced
Married Single

Jets

Sharks

H.S.

J.H.

Col.

Figure 8: A much reduced version of McClelland’s [66] “Jets” and “Sharks”
network for illustrative purposes. The solid nodes are “instance units” (one
for each gang member) while the hollow nodes are “property units” that
encode specific characteristics. Inhibitory connections are not shown.

To illustrate how the network retrieves specific information, we will use
Lance as an example. First, the name node “Lance” is activated by an
external signal. The node then sends an inhibitory signal to all other name
nodes, and an excitatory signal to the instance node for Lance. When the
instance node receives enough stimulation, it sends an inhibitory signal to



46 MEDLER

all other instance nodes, and an excitatory signal to the properties of Lance,
specifically the nodes for “Jets”, “20’s”, “J.H.”, “Married”, “Burglar”, and
the name node “Lance”. These property nodes send out inhibitory signals
to the other nodes within their cohorts and an excitatory signal back to the
instance nodes to which they are connected (which means instance nodes
other than Lance may be activated). Eventually, the network will settle
into a state of equilibrium where the properties of Lance will be activated
at a high level and all other properties will be relatively inhibited. This is
an example of content-addressable memory.

To retrieve general information from the network, we can activate one of
the other property nodes. For example, if we wished to find out the average
characteristics of members in the Jets Gang, we would simply activate the
“Jets” unit and look for the property nodes with the highest amount of
activation in each cohort. It turns out that the average member of the Jets
is in his 20’s, has a Junior High education, is single, and is equally likely
to be a pusher, a bookie, or a burglar. Furthermore, the network will also
tell us who the gang members of the Jets are. This general information is
not encoded specifically anywhere within the network; therefore, the model
“has no explicit representation that the Jets tend to have these properties”
([66], p. 171) and yet this information is available.

Finally, the IAC model is able to handle incomplete or missing data
and even perform when the network has been damaged. If the network is
given incorrect information (e.g., inquire about who was a Shark, in their
20’s, single, a burglar, and had a Junior High education) it will return with
the best match. In this case, the network returns the individual Ken who
fits all the characteristics except for education level [68]. Furthermore, if
we sever the connection between the instance node Lance and the property
“Burglar”, the network is still able to return a value of “Burglar” when
the property node “Lance” is activated even though there is no direct con-
nection. In effect, Lance will activate other individuals who are similar
to him, and thus the network “guesses” at Lance’s profession by default
assignment.

The IAC network illustrates quite effectively content-addressable mem-
ory (e.g., retrieval of the properties of Lance by supplying his name only),
output availability (e.g., assessing the state of the network at the end of
a cycle), iterative retrieval (e.g., finding the average property of a Jets
member from all other possible properties), and graceful degradation (e.g.,
retrieval of information when connections are severed or incorrect informa-
tion is given)—properties required in a model of human information pro-
cessing [78]. This model also questions the classical view that we explicitly
store generalizations.

4.2.1 A Possible Learning Mechanism for IAC Networks

Although IAC models are an important contribution to the connectionist’s
tool bag, the initial models still suffered from the inability to learn and,
hence, rightly fall into the classification of Old Connectionism. The ability
of the IAC networks to incorporate so many of the characteristics of human
information processing, however, make it difficult to dismiss the architec-
ture for lack of a learning mechanism. Consequently, a possible learning
mechanism for the IAC networks is proposed here.

In devising a new learning mechanism, we would want to incorporate
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as many of the known neurophysiological properties (both theoretical and
empirical) of learning as possible. The first modification would be to add
a Hebbian-like learning mechanism to increase or decrease the weighted
connections between nodes, so that those nodes that are active together
become more strongly connected (either inhibitory or excitatory), and those
nodes that are seldom active together weaken their connection [44]. The
second modification would be to limit the maximum possible weight of
any connection. The idea behind this restriction comes from Hull’s [51]
growth of habit strength and Minsky and Papert’s[74] observation that
network weights often grow without bound and there is no evidence that
biological neural networks behave in this manner. A third property to
be incorporated into a possible learning mechanism would be to prevent
weights from shifting sign; that is, weights that are positive remain positive,
and weights that are negative remain negative. Finally, a decay process
should be added to the learning mechanism to account for the “use it or
lose it” property evident in real neural circuits (e.g., [27]). Consequently,
learning in an IAC network could be accomplished by adding the following
equation to the mathematics of the architecture:

If(wij > 0)
∆wij = η(wmax− wij)aiaj − wdecay(wij). (11)

Otherwise

∆wij = η(wmin+ wij)aiaj − wdecay(wij).

where wmax ≥ max, wmin ≤ min, and wdecay ≥ 0 are parameters specific
to the network weights, η is a learning parameter, and the unit activations
ai and aj are assumed to fall into the range [min, max] as before. What
Equation 12 states is that the change in weight is equal to some propor-
tion of the unrealized weight potential (cf., Hull’s growth of habit strength)
minus some decay process. Note that this equation guarantees that as the
inactivity between nodes persists, weights will approach but never cross
zero; in other words, weights that are inhibitory remain inhibitory, and
weights that are excitatory remain excitatory. Thus, the network is an un-
supervised learning algorithm based on self-organizing principles. A simi-
lar learning rule—although less encompassing—for IAC networks has been
proposed and tested [11] to train a face recognition network.

Therefore, with these modifications, the IAC architecture could be said
to bridge the gap between Old and New Connectionism. But, the IAC
network is still somewhat limited in the knowledge it can represent; for
example, while the architecture represents semantic knowledge quite well,
the architecture probably is not suitable for controlling limb movement.
Consequently, we need to explore other architectures and learning methods,
and the best place to start is with the forerunners to the most common
network and learning algorithm today.

4.3 Grossberg’s Instars and Outstars

Many of the ideas commonly used in artificial neural networks today can be
attributed to Stephen Grossberg [39]. One such contribution is the instar
and outstar configurations, which were originally proposed as models of
certain biological functions. Basically, instars are neurons fed by a set
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of inputs through synaptic weights, while outstars are neurons driving a
set of weights. Instar neurons and outstar neurons are capable of being
interconnected to form arbitrarily complex networks.

The purpose of instar neurons is to perform pattern recognition. Each
instar is trained to respond to a specific input vector X and to no other.
This is accomplished by adjusting the weight vector W to be like the input
vector. The output of the instar is the sum of its weighted connections (see
Equation 14). This calculation can be seen as the dot product of the input
vector and the weight vector, which produces a measure of similarity for
normalized vectors. Therefore, the neuron will respond most strongly to
the pattern for which it was trained.

An instar is trained using the formula ,

wi(t+ 1) = wi(t) + α[xi − wi(t)] (12)

where,

wi(t) = the weight from input xi

xi = ith input

α = training rate coefficient which should be set to 0.1 and then
gradually reduced during the training process.

Once trained, the instar will respond optimally to the input vector X, and
respond to other vectors that are similar to X. In fact, if you train it over
a set of vectors representing normal variations of the desired vector, the
instar develops the ability to respond to any member of that class.

The outstar works on a complementary basis to the instar. It produces
a desired excitation pattern for other neurons whenever it fires. To train
the outstar, its weights are adjusted to be like a desired target vector

wi(t+ 1) = wi(t) + β[yi − wi(t)] (13)

where β is the training rate coefficient which should start at 1 be slowly
reduced to 0 during training. Ideally, the outstar neuron should be trained
on vectors that represent the normal variation of the desired vector. Thus,
the output excitation pattern from the neuron represents a statistical mea-
sure of the training set and can converge to the ideal vector even if it has
only seen distorted versions of the vector.

4.4 Grossberg’s Adaptive Resonance Theory

It would be hard to mention Grossberg without making a least a brief
mention about Adaptive Resonance Theory (ART). ART was initially in-
troduced by Grossberg [40] as a theory of human information processing: it
has since evolved into a series of real-time neural network models that per-
form supervised and unsupervised category learning, pattern classification,
and prediction [12].

The simplest ART network is a vector classifier—it accepts as input a
vector and classifies it into a category depending on the stored pattern it
most closely resembles. Once a pattern is found, it is modified (trained) to
resemble the input vector. If the input vector does not match any stored
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pattern within a certain tolerance, then a new category is created by storing
a new pattern similar to the input vector. Consequently, no stored pattern is
ever modified unless it matches the input vector within a certain tolerance.
This means that an ART network has both plasticity and stability; new
categories can be formed when the environment does not match any of the
stored patterns, but the environment cannot change stored patterns unless
they are sufficiently similar.

There are many different variations of ART available today. For exam-
ple, ART1 performs unsupervised learning for binary input patterns, ART2
is modified to handle both analog and binary input patterns, and ART3
performs parallel searches of distributed recognition codes in a multilevel
network hierarchy. ARTMAP combines two ART modules to perform su-
pervised learning while fuzzy ARTMAP represents a synthesis of elements
from neural networks, expert systems, and fuzzy logic [12]. Other systems
have been developed to suit individual researcher’s needs; for example, Hus-
sain and Browse [54] developed ARTSTAR which uses a layer of INSTAR
nodes to supervise and integrate multiple ART2 modules. The new ar-
chitecture provides more robust classification performance by combining
the output of several ART2 modules trained by supervision under different
conditions.

4.5 Kohonen Networks

A Kohonen network [57] can be characterized as a self-organizing map used
for pattern recognition. It differs from the generic PDP architecture in
several ways (see Section 4.6). First, application of an input vector to the
network will cause activation in all output neurons: the neuron with the
highest value represents the classification. Second, the network is trained
via a non-supervised learning technique. This poses a rather interesting
problem. As the training is done with no target vector, it is impossible
to tell a priori which output neuron will be associated with a given class
of input vectors. Once training is completed, however, this mapping can
easily be done by testing the network with the input vectors. A typical
Kohonen network is illustrated in Figure 9.

The n connection weights into a neuron are treated as a vector in n-
dimensional space. Before training, the vector is initialized with random
values, and then the values are normalized to make the vector of unit length
in weight space. The input vectors in the training set are likewise normal-
ized.

The algorithm for training a Kohonen network can be summarized as
follows:

1. Apply an input vector X to the network.

2. Calculate the distance Dj (in n dimensional space) between X and
the weight vectors Wj of each neuron.

3. The neuron that has the weight vector closest to X is declared the
winner. Use this weight vector Wc as the center of a group of weight
vectors that lie within a distance of d from Wc

4. Train this group of vectors according to

Wj(t+ 1) = Wj(t) + α[X −Wj(t)]
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Figure 9: (A) A Kohonen network with two inputs mapping onto a 4 x 5
output field. (B) Randomized weight structure before training. (C) Typical
weight structure following training.

for all weight vectors within a distance d of Wc. Note the similarity
between this equation and Equation 12.

5. Perform steps 1 through 4 for each input vector.

As training proceeds, the values of d and α are gradually reduced. It is
recommended by Kohonen that α start near 1 and reduce to 0.1, whereas
d can start as large the greatest distance between neurons and reduce to
a single neuron. Furthermore, the number of training cycles should be
approximately 500 times the number of output neurons to ensure statistical
accuracy.

Because the input and weight vectors are normalized they can be viewed
as points on the surface of a unit hypersphere. The training algorithm
therefore adjusts the weight vectors surrounding the winning neuron to be
more like the input vector. In other words, the algorithm tends to cluster
weight vectors around the input vector.

Such adaptive units can be organized into a layer to produce a feature
map. A feature map is a nonlinear method of representing the original
signal space and resembles the topographic maps found in many areas of
the brain [88]. The feature map is produced by the unsupervised training
of the adaptive units which gradually develop into a spatially organized
array of feature detectors whence the position of the excited units signal
statistically important features of the input signal. Consequently, more
frequently occurring stimuli will be represented by larger areas in the map
than infrequently occurring stimuli.

Kohonen maps and unsupervised learning are but one way of training
connectionist networks. But, if both the input and corresponding output
patterns are known a priori, then supervised learning can be used. The
most common supervised learning algorithm is the backpropagation algo-
rithm used to train generic PDP networks.
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4.6 The Generic PDP Network

As we saw in Section 3.5.2, an elementary α-perceptron has the in princi-
ple power to solve any pattern classification problem expressed in binary
notation, whereas a network with less depth is limited in its computational
power. This increase in computational ability derives from the fact that
a multilayer network can theoretically carve a pattern space into an arbi-
trary number of decision regions [63]. Furthermore, it can be shown that
such networks are also universal function approximators—that is, they are
able to solve any function approximation problem to an arbitrary degree of
precision [16][43][49]. These results are specific to the network architecture
alone, and not to the learning rule used to train the networks.

Thus, we need to make a distinction between the network architecture
and the learning rule. This move serves a dual purpose. First, it allows
us to make claims about the computational power of networks regardless
of the training procedure used. Second, we can evaluate the learning rule
independent of the network architecture. The consequence of making this
distinction between architecture and learning rule is that it allows us to (i)
address concerns about the “biological plausibility” of certain learning al-
gorithms (e.g., backpropagation) without compromising the interpretation
and final results of the trained network, and (ii) determine if differences
in network performance are due to architectural discrepancies or modifica-
tions of the learning algorithm. Therefore, we will first define the generic
connectionist architecture, and then define the learning rule.

4.6.1 The Generic Connectionist Architecture

The building block for the generic connectionist architecture is the artifi-
cial neuron (see Figure 1). The functional properties of the artificial neuron
mimic those of actual neurons; that is, the neuron receives and integrates
information, processes this information, and transmits this new informa-
tion (e.g., [27][60]). Mathematically, the input function to the neuron is
expressed in Equation 14; netpj is a linear function of the output signals,
opi, from units feeding into j with weighted connections, wij , for pattern p.

netpj =
∑
i

wijopi (14)

The output function of the neuron is a non-linear function of its input and is
expressed in Equation 15. Note that the training rules typically used require
that the activation function of the artificial neuron be differentiable and
monotonic. Consequently, the most common function used is the logistic
or sigmoid function which compresses the range of the net input so that
the output signal lies between 0 and 1. This function allows the network to
process large signals without saturation and small signals without excessive
attenuation. Thus, in Equation 15, opj is the output of the neuron, netj is
the input, and θj is the “bias” of the unit which is similar in function to a
threshold.

opj = f(netpj) = (1 + e−netpj+θj )−1 (15)

Units that use a function such as the logistic have an order of 1 [74]
and are able to carve a pattern space into two distinct regions (see Fig-
ure 10). Thus, networks using this form of activation function can solve
linearly inseparable problems without any hidden units. These networks
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have been termed Integration Devices by Ballard [6], and generic PDP nets
by Anderson and Rosenfeld [3].

Figure 10: A monotonic activation function—such as the logistic—divides
a pattern space into two distinct regions

The power of these simple units emerges when they are connected to-
gether to form a network, or multi-layer perceptron (MLP). The most com-
mon MLP is a feed-forward architecture consisting of an input layer, an
internal or hidden layer, and an output layer (see Figure 7B); such networks
are often referred to as three-layer networks, although this nomenclature
is not always agreed upon10. Units in one layer propagate their signals
to units in the next layer through uni-directional, weighted connections.
Normally, connections do not exist within layers, nor do they transcend
more than one layer (i.e., from the input layer directly to the output layer);
however, exceptions do exist.

Furthermore, it is assumed for simplicity that processing within the
network occurs in discrete time intervals. It is further assumed that all
processing is done in parallel; that is, all signals pass through the connec-
tions from one layer to the next at the same time and all units in a layer
process their activations at the same time. Thus, the speed of processing—
in terms of how long it takes the network to solve a problem—is directly
proportional to the number of layers in the network, not the number of
processing units. A three layer network with 5,000 units theoretically takes
the same number of time steps to compute its function as a three layer
network with five units (practically, this is not the case as networks are
often modeled using serial computers). Consequently, parallel processing
in neural networks is often hailed as a solution to the 100-step constraint11

10For example, Wasserman [114] argues that since input units do not compute any
function, they should not be counted as a layer; therefore, he calls these two-layer net-
works.

11The 100-step constraint is based on the processing speed of neurons [30]. Most
complex behaviours occur in a few hundred milliseconds—this means entire behaviours
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plaguing classical models.
The major advantage of multilayer networks over single layer networks is

that they can theoretically carve a pattern space into an arbitrary number of
decision regions and therefore solve any pattern classification problem [63],
overcoming one of the limitations cited by Minsky and Papert [74]. Fur-
thermore, it can be shown that such networks are also universal function
approximators—that is, they are able to solve any function approximation
problem to an arbitrary degree of precision [16][43][49]. It should be noted
that although these proofs of function approximation are theoretically pow-
erful, they are not necessarily tractable from a practical sense. This reason
for this is two-fold: (i) in order to determine the requisite weights for the
model, these proofs assume a highly representative sample of the range and
domain of the function, and (ii) no effective procedure is typically given for
arriving at the requisite set of weights.

Although MLP’s have the required computational competence for cog-
nitive scientists to find them interesting, their real allure lies in their ability
to learn. Various training techniques have been proposed previously (e.g.,
Selfridge’s supervised and genetic learning; Rosenblatt’s reinforcement rule;
Widrow and Hoff’s Delta Rule), but they have all been limited to training
only one layer of weights while keeping the other layers constant. What
connectionism needed to move into the mainstream was a general learning
rule for networks of arbitrary depth. In this way, a relatively simple net-
work with a generic learning algorithm can be applied to a wide-range of
different tasks.

Consequently, the next section will introduce the Generalized Delta
Rule—also known as the standard backpropagation algorithm—and two
variations on the rule that use nonmonotonic activation functions within
the processing units. Furthermore, radial basis function networks will also
be introduced as they use the same general framework but are differentiated
by the net input function that they calculate and the activation function
used within the processing units.

4.6.2 The Generalized Delta Rule

Papert’s [81] likening of Perceptrons to the huntsman being sent out to
bring back Snow White’s heart is appropriate, for the huntsman did not
return with the heart of Snow White, but the heart of a deer. Similarly,
connectionism was not slain by Perceptrons, it was just quietly minding
its time until its prince came. And, for connectionism, Prince Charming
turned out to be the Generalized Delta Rule (GDR).

The GDR can be considered one of the most significant contributions to
connectionist research: It has allowed the training of multilayer networks.
In fact, the work of Rumelhart, Hinton, and Williams [92][93] is often cited
as the catalyst for the strong resurgence of connectionist research in the
latter half of the 1980’s (e.g., [8][48]). As the name implies, the GDR
is a generalization of the Widrow-Hoff Delta Rule for training networks of
Adaline units [119]. The training procedure, however, is commonly referred
to as backpropagation of error, or backpropagation (backprop) for short.

Although Rumelhart et al. are often credited with popularizing the
GDR, the learning rule itself was derived previously on three separate in-

are executed in less than a hundred time steps as opposed to the millions of time steps
required by classical models.
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dependent occasions, first by Werbos in 197412, then by Parker in 198213

and finally by LeCun in 198614. In fact, the GDR is simply a basic form
of backpropagation. In its more general form [116], backpropagation con-
tributes to the prediction and control of large systems (in terms of optimal
planning and reinforcement learning), and not simply to supervised learning
as is often assumed. Consequently, backpropagation can be applied to any
differentiable, sparse, nonlinear system—it is not restricted to any specific
form of MLP, nor is it restricted to artificial systems. The main advantage
of backpropagation over traditional methods of error minimization is that
it reduces the cost of computing derivatives by a factor of N , where N is
the number of derivatives to be calculated. Furthermore, it allows higher
degrees of nonlinearity and precision to be applied to problems.

Werbos [116] notes that since backpropagation is used in so many dif-
ferent applications, its actual definition has often become muddled and
confused. Therefore, he offers these two standard definitions (p. 135, his
italics):

1. Backpropagation is a procedure for efficiently calculating the deriva-
tives of some output quantity of a nonlinear system, with respect
to all inputs and parameters of that system, through calculations
proceeding backwards from outputs to inputs. It permits “local” im-
plementation on parallel hardware (or wetware).

2. Backpropagation is any technique for adapting the weights of param-
eters of a nonlinear system by somehow using such derivatives or the
equivalent.

What we are concerned with, however, is the special form of backprop-
agation for training neural networks. Werbos [116] calls this the basic form
of backpropagation, although most researchers today simply refer to it as
backprop. The GDR, as applied to neural networks, is a supervised learn-
ing algorithm (cf., Widrow & Hoff’s delta rule—Equation 6) used to adjust
the weights in an MLP in accordance with the Principle of Minimal Dis-
turbance15. To begin, a training vector is presented to the network via the
input units and the activations are then passed through weighted connec-
tions to the hidden units. The net input function to the hidden units is
computed (Equation 14), the activation function is applied, then the out-
put signal is generated (Equation 15) and propagated to the output units.
The output units then use Equations 14 and 15 to produce a final output
signal, opj , which is compared to the desired target output, tpj . The total
error, E, is defined in Equation 16, where p is an index over the patterns
being presented, j is an index over output units, o is the actual state of the
output, and t is the desired (target) state of the output.

12Beyond regression: New tools for prediction and analysis in the behavioral sciences.
Masters thesis, Harvard University, Boston, MA.

13Learning logic, Invention Report S81-64, File 1, Office of Technology Licensing,
Stanford University, Stanford, CA.

14Learning processes in an asymmetric threshold network. In E. Bienenstock, F. Fo-
gelman Souli, & G. Weisbuch (Eds.), Disordered systems and biological organization.
Berlin: Springer.

15Principle of Minimum Disturbance: Adapt to reduce the output error for the current
training pattern, with minimal disturbance to responses already learned [119](p. 719). It
is noted that unless this principle is followed, it is difficult to store the required pattern
responses simultaneously; hence, learning becomes problematic.
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E =
1
2

∑
p

∑
j

(tpj − opj)2 (16)

Learning is defined therefore as the minimization of this error term by
gradient descent through an error surface in weight space. Gradient descent
is described by the relation Wk+1 = Wk + µ(−∇k) where Wk is a weight
vector, µ is a parameter that controls stability and rate of convergence and
∇k is the value of the gradient of the sum squared error (SSE) surface at
Wk. Consequently, to begin gradient descent, an initial weight vector, W0,
is defined and the gradient of the error surface at this point is measured.
Weights are then altered in the direction opposite to the measured gradient,
producing a new weight vector based upon the above relation. Every time
this procedure is repeated with a newly calculated weight vector, Wk, the
SSE is caused to be reduced on average and moves towards a minimum.
Because the true gradient is often impractical and inefficient to obtain,
the instantaneous gradient is often computed based on the square of the
instantaneous error. The instantaneous gradient is used because it is an
unbiased estimate of the true gradient and is easily computed from single
data samples [119].

Therefore, to minimize E by gradient descent, the partial derivative of E
with respect to each weight within the network needs to be computed. For a
given pattern, p, this partial derivative is computed in two passes: a forward
pass using Equations 14 and 15, and a backward pass which propagates
the derivatives back through the layers; hence, backpropagation of error.
The backward pass begins by first differentiating Equation 16 which gives

∂Ep
∂opj

= tpj − opj

and then applying the chain rule to compute

∂Ep
∂netpj

=
∂Ep

∂opj
· ∂opj
∂netpj

.

The second term of the above equation is produced by differentiating Equa-
tion 15 which gives

∂opj
∂netpj

= f ′j(netpj) = opj(1− opj).

Therefore, the effect on the error due to a change in the total input to an
output unit is known. But, as the total input is simply a linear function
of the output from previous layers and the related connection weights, the
effect on the error due to a change in the previous outputs and weights can
be computed. For a weight wij from unit i to unit j, the derivative is

∂Ep
∂wij

=
∂Ep
∂netpj

· opi

and the effect of all connections emanating from unit i is simply

∂Ep
∂opi

=
∑ ∂Ep

∂netpj
· wij .
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Thus, two different error signals can be defined depending on if the unit is
an output unit or an internal unit. For an output unit, the error signal is

δpj = (tpj − opj)f ′j(netpj) (17)

whereas for an internal unit, the error signal becomes

δpj = f ′(netpj)
∑
k

δpkwkj . (18)

Hence, weights in the network are changed by

∆pwij = ηδpjopi (19)

where η is a learning parameter to scale the weight change, and Equation 17
is used for output units and Equation 18 for internal units. Finally, learning
can be improved by adding a momentum term, α, which uses the previous
weight changes to influence the current changes

∆pwij(t) = ηδpjopi(t) + α(∆pwij(t− 1)). (20)

The weights of the network can be updated after every pattern presenta-
tion, or after the entire pattern set has been presented. Typically, training
of the network continues until convergence is reached. For function approx-
imation problems, convergence is measured by a sufficiently small total sum
of squared errors (SSE) as computed by Equation 16. For pattern classifica-
tion problems, convergence is attained when the network correctly classifies
all input patterns. The performance of the network is normally assessed by
the number of “sweeps” or “epochs” the network uses to solve the problem,
where a sweep is defined by the single presentation of the entire training
set.

Thus, the GDR overcomes the earlier limitations of Old Connectionism
by allowing multilayer networks to be trained on any information process-
ing problem. As Minsky and Papert [74] point out in their Epilogue to
Perceptrons, however, many problems still exist with the GDR and the
generic PDP architecture. One problem is that the GDR searches through
an error space using gradient descent; although gradient descent on average
moves towards a minimum it is not guaranteed to move towards a global
minimum. In other words it is neither dependable nor efficient, though
there are techniques for trying to improve this [116]. Another problem is
that networks with only one layer of hidden units trained with the GDR
still must violate the limited order constraint to solve linearly inseparable
problems.

Although basic backpropagation is powerful enough to solve a wide va-
riety of problems, much work is done on improving the performance of
artificial neural networks especially in regards to three specific characteris-
tics:

1. Generalization: the ability to predict data outside the original train-
ing set,

2. Learning Speed: increasing the convergence rate, especially for sys-
tems learning from real-time experience, and
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3. Fault Tolerance: the ability to perform despite noise or breakage.

The general rule of thumb—at least from an engineering perspective—for
the first two characteristics is to make the networks as simple as possible:
use fewer connections and smaller weights. The third characteristic, on the
other hand, is trickier to pin down. For example, the ability to perform
despite noise can be seen as the ability to generalize; thus, smaller network
structure would seem to be the answer. Performance despite breakage,
however, requires larger network structures with some form of redundancy
built in.

As mentioned earlier, one problem with generic PDP networks is that
they are static; that is, previous inputs have no effect on new inputs (except
during the training period). Consequently, the standard generic PDP ar-
chitecture may not be appropriate for modeling some time dependent tasks,
such as recognizing a pattern of sounds as forming a word. Therefore, the
recurrent network architecture will be briefly introduced.

4.7 Recurrent Networks

A recurrent network is defined as one in which either the network’s hidden
unit activations or output values are fed back into the network as inputs.
Figure 11 shows one possible structure for a recurrent network. In this

Input

Hidden

Output

State

Figure 11: Recurrent network architecture. Connections from output to
state units are one-for-one. Note that not all connections are shown.

network, inputs are received from an external source, passed to a hidden
layer, and then on to the output layer. The signal from the output layer
is passed to an external source, as well as back to a state layer which then
acts as an input layer (along with the actual input layer) to the hidden
layer on the next pass.

As the output of the network at time (t) is used along with a new input
to compute the output of the network at time (t+1), the response of the net-
work is dynamic. That is, the network’s response can be stable (successive
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iterations produce smaller and smaller output changes until the outputs
become constant) or unstable (the network’s outputs never cease chang-
ing). This stability issue proved a problem for early researchers, but Cohen
and Grossberg [14] devised a theorem showing that at least a subset of
recurrent networks were guaranteed to produce outputs with stable states.
Stable networks are typified by weight matrices that are symmetrical along
the main diagonal, with diagonal weights of zero (i.e., wij = wji, wii = 0).

Much of the early work on recurrent networks was pioneered by John
Hopfield [47]. In fact, some have argued that it was because of Hopfield’s
stature as a well-known physicist that neural network research was made
respectable again [3]. Hence, certain configurations of recurrent networks
are referred to as Hopfield nets. One problem that plagued earlier versions
of Hopfield networks, though, was that the networks tended to settle into
local minimum instead of the global minimum. To combat this problem,
one can change the weights statistically instead of deterministically. This
technique is known as simulated annealing, and networks trained using this
method are known as Boltzmann machines [46].

It has been shown that recurrent networks can simulate finite state au-
tomata [13] and that one can construct a second-order recurrent network
such that internal deterministic finite-state automata state representations
remain stable [79]. Furthermore, it has been proven that finite size recur-
rent networks can simulate any multi-stack Turing Machine in real time
and non-deterministic rational nets can simulate non-deterministic Turing
Machines [101].

Adding recurrent connections to the generic PDP architecture is but
one way of improving the performance of such networks. Another way is
to use different activation functions within the processing units. Such an
approach was taken by Dawson and Schopflocher [24] when developing the
value unit architecture.

4.8 Value Unit Networks

Despite their immense theoretical power as universal function approxima-
tors and arbitrary pattern classifiers, networks trained with the GDR suf-
fer from severe practical training problems. Networks are prone to local
minima and notoriously slow if they do find a solution. One reason for
this behaviour is the limitations imposed on the processing units by the
GDR processing units must have a function that is both differentiable and
monotonic. Consequently, the most commonly used activation function for
processing units is the logistic (see Equation 15). This choice of activation
function is normally motivated by engineering principles; for example, the
logistic function is chosen because it fulfills the requirements of the learn-
ing rule, while similar functions—such as tanh—are chosen simply for their
ability to improve performance in terms of learning speed over the logistic.

But, we could also adopt a different perspective and choose an activation
function based upon neurophysiological evidence. Evidence from single-
unit recordings (that is, record the output of the neuron with respect to
its input) suggests that there are at least two functionally different types
of neurons in the brain in regards to their output encodings [6]. This can
be illustrated by comparing the recordings from neurons that function as
a basic part of the oculomotor system to neurons in the visual areas of the
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cortex.
The first type of neurons—for example, those in the servo system con-

trolling eye movement—have linear outputs whose firing rate is propor-
tional to a scalar parameter such as the rate of eye rotation. These neurons
could be characterized as summation or integration devices [6] and have
the equivalent activation function as the logistic used in artificial neurons.
The outputs of such neurons have two features—larger values mean more
frequent pulses, and the output is one dimensional. From a physiological
perspective, these neurons use frequency encoding. In other words, neu-
rons using a monotonic activation function could be viewed as encoding
variables.

In contrast, neurons in visual areas of cortex use fundamentally different
encodings for their output. These neurons have multidimensional receptive
fields16; that is, if the input stimulus is within a receptive field, the neuron
will increase its firing rate, otherwise it remains at its baseline firing rate.
The firing rate is specifically determined by the degree of match between
the stimulus and receptive field—the stronger the match, the stronger the
firing rate. From a physiological perspective, neurons with this type of
firing pattern use spatial or place encoding. In other words, neurons using
a nonmonotonic activation function could be viewed as encoding values.
Consequently, Ballard [6] terms these neurons value units.

As “the value unit way of representing information seems to be a prop-
erty of most cortical cells” [6], p. 68, the logical move—from a cognitive
science perspective—would be to incorporate this type of activation func-
tion into a connectionist network.

4.8.1 The Value Unit Architecture

In considering a nonmonotonic activation function for artificial neurons,
the most likely choice would be the Gaussian. Such an activation func-
tion is readily apparent not only within the cones of the eye [17], but also
within the tuned neurons in the visual cortex [50]. From a computational
perspective, the Gaussian

opj = G(netpj) = e−π(netpj−µj)2
(21)

where netpj is the same as in Equation 14 and µj is the bias of the acti-
vation function, has the advantage of being able to carve a pattern space
into three decision regions (see Figure 12) while still satisfying the GDR’s
requirement that the function be differentiable. Consequently, such an ac-
tivation function could be said to be limited order 2; it is of limited order
because the planes are restricted to parallel cuts in the pattern space.

The nonmonotonicity of the activation function buys the value unit net-
works certain theoretical and practical advantages over standard integration
device networks. For example, the fact that a single value unit can subdi-
vide a pattern space into three regions by placing two parallel hyperplanes
within the pattern space means that the processing power of the unit is
increased. Whereas standard integration device networks require the same

16In this respect, a receptive field is defined in terms of all the neuron’s inputs, includ-
ing possible feedback connections from neurons in other parts of the cortex. This is in
contrast to the normal interpretation of receptive field which limits itself to the inputs
from a specific stimulus.
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Figure 12: A non-monotonic activation function—such as the Gaussian—
carves a pattern space into three regions

number of hidden units as the order of the problem (e.g., a 4-parity problem
is order 4 and therefore requires four hidden units), networks with value
units in both the hidden and output layers require considerably fewer. In
fact, for problems such as parity which require parallel cuts of the pattern
space, the number of hidden units needed is

(order div 2)− 1

where the operation div returns the quotient. Therefore, a solution to the
XOR problem can be represented in a network without any hidden units,
and a solution to the 4-parity problem can be represented in a network with
only one hidden unit! Moreover, the added processing power of the value
unit means that the limited order constraint need not be violated; that is,
it is possible to solve the parity problem without any hidden unit connected
to every input unit.

On the other hand, the nonmonotonicity of the activation function has
the potential to limit the value unit architecture. For example, value units
actually require hidden units to solve linearly separable problems [71]. Fur-
thermore, because the value unit uses a nonmonotonic activation function,
it is not uniquely invertible, and therefore it has been suggested that the-
oretically, value units are not suitable for function approximation [24]. On
the other hand, the RBF unit which also uses a nonmonotonic activation
function is routinely used for function approximation [75][64]. As will be
shown, however, the basis underlying the RBF network is different than the
value unit.17. In all other respects, however, the value unit architecture is
the same as the generic PDP architecture, including its ability to be fully
trained by a variation of the GDR.

17In fact, recent results have shown that, in practice, value units can perform some
types of function approximation tasks[71]
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4.8.2 Modifying the Generalized Delta Rule

Normally, replacing the f ′(netpj) in Equations 17 and 18 with the first
derivative of the Gaussian causes the network to fall into a local minimum
which asserts that some property of the pattern space p is not true, but
fails to assert the some property of p is true. To avoid these local minima,
Dawson and Schopflocher added a second term to the standard GDR’s error
function to produce a new cost function, Cp. The first component of Equa-
tion 22 is the standard cost function used in the backpropagation algorithm
and measures the failure of the network to match the observed output opj
with the target output tpj . The second component of Cp measures the net-
work’s failure to set netpj = µj (a component of the Gaussian) when the
desired output is equal to 1: It essentially prevents the unit’s activation
from falling towards either negative or positive infinity.

Cp =
1
2

n∑
j=1

(tpj − opj)2 +
1
2

n∑
j=1

opj(netpj − µj)2 (22)

The new learning rule is therefore based on changing the weights such that
the cost function in Equation 22 is minimized. Consequently, the desired
weight change for the connection originating from unit i and terminating
at unit j for given pattern p can be computed as

∆pwij = η(δpj − εpj)Ipi (23)

where δpj = (−tpj − opj)G′(netpj) is equivalent to δpj in Equation 19 with
the exception that the derivative is of the Gaussian and not the logistic. The
εpj term is equal to Tpj(netpj−µj) and is the augmented error-minimization
function from Equation 22. Similarly, the unit’s bias term can be modified
using the equation

∆pµj = −η(δpj − εpj) (24)

by treating the parameter µj as a connection weight between output unit
j and some other unit whose activation is always 1. Furthermore, it can be
shown that, at the end of training, the error function minimized is equiva-
lent to that of the GDR’s. These modifications allow a network trained with
the backpropagation algorithm to use non-monotonic activation functions.

4.8.3 Value Unit Performance

Value unit networks have been applied to a wide variety of pattern classifi-
cation tasks, from “toy” problems [24] [25] [72], to diagnosing Alzheimer’s
patients from SPECT data [20], to identifying logical problems [9], to clas-
sifying mushrooms [22]. One of the surprising aspects of the value unit
architecture is that, from an engineering perspective, they have been shown
to converge faster and more reliably on linearly inseparable problems than
the more traditional MLPs that use monotonic activation functions. Fur-
thermore, value unit networks show better generalization, and better ability
to be “scaled up” from toy problems.

To quickly show the processing power of value units over standard in-
tegration devices on linearly inseparable problems, a small experiment was
conducted using four different network architectures to solve the 4-parity
problem (see Figure 13). The first network was a standard integration de-
vice network with four hidden units (A). The second network had the same
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Figure 13: Network architectures for solving the 4-parity problem. Network
(A) is an intergration device, while networks (B), (C), and (D) are value
unit networks. Note that (A) and (B) have identical network structure
(except for the processing unit), (C) requires only one hidden unit to solve
the 4-parity problem, and (D) does not violate the limited order constraint.

structure (i.e., 4 hidden units), but used value units instead (B). The third
network (C) used the minimal value unit architecture of one hidden unit
to solve the problem. Finally, the fourth network used two value units, but
did not violate the limited order constraint (D); that is, no hidden unit was
connected to every input unit. All networks were trained to a criterion of
0.0025 and had an upper limit of 10,000 sweeps imposed. Table 1 reports
the results of the experiment; specifically the percentage of converged net-
works (total of 50 individual runs for each architecture), and the minimum,
median, and maximum number of sweeps to reach convergence. As can be
seen, all value unit networks clearly outperformed the integration device
network.

Table 1: Performance of Networks Trained on the Four Parity Problem

CONVERGENCE
ARCHITECTURE % MIN MED MAX

A - Integration Device 24 1929 3607 9246
B - Value Unit 100 46 213 621
C - Minimum Value Unit 88 98 267 620
D - Limited Value Unit 64 133 134 209

The first thing to note is that all value unit networks, regardless of
network topology, outperformed the integration device network both in
terms of convergence rate and speed of convergence. In fact, when the
integration device network did converge—which was only approximately
one quarter of the time—it took an order of magnitude longer to do so.

Consequently, from a computational perspective, value unit networks
show more competence than integration device networks in solving linearly
inseparable problems such as parity. Furthermore, many different types
of network topologies can be used to solve the 4-parity problem (see sec-
tion 3.4). As it has been argued that networks are algorithms [94], this
means that the different network topologies are different algorithmic de-
scriptions for solving the 4-parity problem. Choosing the correct algorithm
(network architecture) simply becomes a matter of comparing the compu-
tational competence between systems we are modeling. Finally, it should
be noted that the fourth value unit network architecture (D) satisfies the
Minsky and Papert’s [74] limited order constraint, effectively addressing
one of their concerns about neural networks.
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4.9 The Radial Basis Function Network

One of the misconceptions surrounding the value unit architecture is based
upon its use of a Gaussian activation function. This is because another
network architecture, the Radial Basis Function (RBF) network [75] uses
a similar activation function. That, however, is where the similarities end.
The RBF network is a three-layer feedforward network that uses a linear
transfer function for the output units and a nonlinear transfer function (nor-
mally the Gaussian) for the hidden units. The input layer simply consists
of n units connected by weighted connections {µij} to the hidden layer and
a possible smoothing factor matrix {

∑
j}. A hidden unit can be described

as representing a point x in n-dimensional pattern space. Consequently the
net input to a hidden unit is a distance measure between some input, xp,
presented at the input layer and the point represented by the hidden unit;
that is, netj = ‖x − xp‖ . This means that the net input to a unit is a
monotonic function as opposed to the nonmonotonic activation function of
the value unit. The Gaussian is then applied to the net input to produce a
radial function of the distance between each pattern vector and each hid-
den unit weight vector. Hence, a RBF unit carves a hypersphere within a
pattern space whereas a value unit carves a hyperbar.

In general, an RBF network can be described as constructing global
approximations to functions using combinations of basis functions centered
around weight vectors. In fact, it has been shown that RBF networks are
universal function approximators [38]. Practically, however, the approxi-
mated function must be smooth and piecewise continuous. Consequently,
although RBF networks can be used for discrimination and classification
tasks (see [64] for some examples), binary pattern classification functions
that are not piecewise continuous (e.g., parity) pose problems for RBF
networks[75]. Thus, RBF networks and value unit networks are not equiv-
alent.

4.10 The Importance of New Connectionism

The major turning point in connectionist research occurred with the dis-
covery of methods for training multilayer networks. With this discovery,
connectionist models not only had the computational power to answer those
questions interesting to cognitive science, but also had a method of learn-
ing how to answer those questions. Thus, there is an explicit distinction
between network architectures and the learning rules used to train them
within new connectionism.

By understanding the different types of architectures and learning rules,
researchers are in a position to choose the appropriate type of network to
solve specific problems. For example, if one wanted to solve a pattern
recognition problem that was linearly separable, then an integration device
network would be appropriate. If the problem was linearly inseparable,
however, then the value unit architecture would be more appropriate.

It should be noted that the field of connectionism is ever-evolving, and
new architectures and learning rules are being constantly developed. For
example, McCaughan [65] has trained networks that use a sinusoidal acti-
vation function and has found that such networks can solve both linearly
separable and inseparable problems with relative ease. In a different ap-
proach to connectionism, Zemel [122][123] has applied minimum description
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length analysis to connectionist networks in order to optimize their internal
representations. Similarly, Bayesian theories are being incorporated in con-
nectionism in order to understand aspects of rationality in human cognition
[67] and to guide unsupervised learning of higher order structure in pat-
terns [61]. As these new techniques are building upon the previous research
presented in this paper, they will not be elaborated here. Instead, we will
conclude with what we have learned about the history of connectionism,
and its possible future directions.

5 Conclusions

Connectionism has a long and varied past—it has borrowed and incorpo-
rated ideas from philosophy, psychology, neuroscience, mathematics, and
computing science. By studying the history of connectionism, we place
ourselves in a knowledgeable position to support or deny claims about
connectionism. For example, we now know that claims about connection-
ism merely being another form of associationism [32] are false. Further-
more,claims that connectionism may offer a Kuhnian-like paradigm shift for
psychology [98] are not necessarily true either, especially when connection-
ism’s rather long history is considered. On the other hand, we can support
the claim that connectionist networks have the computational power to be
a valuable tool within cognitive science.

We know where connectionism has come from, and what the current
state of connectionism is—but, where should connectionism be headed?
Within cognitive science, there have been recent calls for a third genera-
tion18 of neural network models to be developed (e.g.,[35]). It has been
argued that this third generation of networks should take the “neural” a
little more seriously, and incorporate as many known neurobiological princi-
ples as possible. That is, these “neuromorphic” networks should transcend
the simplified components, layered architectures, and limited scale of the
first and second generation networks. Results [24][72] [21] have shown that
such principles can be successfully applied to network architectures and
learning rules. Furthermore, these neuromorphic networks often result in
unanticipated improvements in performance and interpretability [9][23] over
standard networks. Thus, we may have lots to learn by returning to the
“neural” roots of connectionism.
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