Notes on the morphology of the nervous system of the Carolina Locust, Dissosteira carolina L. [and] North American species of the Genus Sceliphron

John C. Hutson
University of Massachusetts Amherst

Follow this and additional works at: http://scholarworks.umass.edu/dissertations_1

Recommended Citation

Hutson, John C., "Notes on the morphology of the nervous system of the Carolina Locust, Dissosteira carolina L. [and] North American species of the Genus Sceliphron" (1915). Doctoral Dissertations 1911-2013. Paper 6.

FIVE COLLEGE DEPOSITORY

Notes on the Morphology of the Nervous System of the Carolina Locust, Dissosteira carolina L

North American Species of the Genus Sceliphion

John C. Hutson

(a) Notes on the Morphology of the Nervous System of the Carolina Locust, Dissosteira carolina L.
(b) North American Species of the Genus Sceliphron. By

John C. Hutson

Theses Submitted for the Degree of Doctor of Philosophy.

$$
\begin{gathered}
\text { Massachusetts Agricultural College, } \\
\text { Amherst, Mass. }
\end{gathered}
$$

1915.

HOTSS ON THE MORPHOLOGY OF THE NERVOUS SYSTEM OF THE CAROLIMA LOCUST, DISSOSTEIRA CAROLIHA L.* By 3. C. flutson, B.A. (Oxon.).

INTRODUCTION

This insect belongs to the Orthopterous family Acridiidae, or short homed grasshoppers, a generalizad group of insects whose anatomy, both extermal and internal, does not show any great degroe of specialization.

The Carolina locust is, moreover, a conmon insect, boing generally distributed throughout North America, but it is not an important pest.

An atteapt has been made to work out the nervous system simply ira its morphological aspect in the hope that it may serve as a roference for dissection.

I take this opportunity of thenking Dr. H. T. Fernald and Dr. G. G. Grampton for their generous assistance dyring the course of this paper. From a study of the embyoricrestages of various insects it has been shown by investigators that the nervous system in its primitive stagos consists of two narrow elongate cords wich extend more or less parallel to each other from the posterior end of the abdomen to the neighborhood of the head region. Here they gradually diverge to form the circumoesophageal collar, pass one on eithor aide of the stomadáeum (or primitive mouth cavity), and meet in the rudimentary brain. These cords soon become broadened at intervals about the middle of each body segment and these broader portions gradually develop into the ganglia er norve centres, wile the narrower intermediate strips come to form the connectives between the ganglia. These parallel strips become gradually approximated along their entire length until the ganglia fuse transversely, while the connectives generally remain separate. So that in the earliest stages of the smbryo there is a paired ganglion for every segment.

* Contribution from the Entomological Laboratory of the lassachusette Agricultural College, Amherst, Mass.
$42-2 \pi-2+2+0$

 $2 \operatorname{Lin} 2 \sin 2$

 4 10 2

 2 (2)

[^0] 2

It has been show that these paired ganglia are joined intomally by transverse commissures, the remains of the cross comisaures of the embryoar

It will be seen that so far the fusion of ganglia has been in a transverse direction, but in the later embryonic stages a longitudinal fusion takes place in the head region and in some cases at the postorior end of the abdomen.

The insect's head in its carly embryonic stages is wade up of six segments, and each of these primitive seguents has its own paired ganglion. The first three paired ganglia later fuse longitudinally to form the brain proper, while the next throe paired ganglia usually fuse to form the suboesophageal ganglion, and these two compound ganglia are connected by the circuroesophageal collar.

A process of cephalization, or longitudinnl fusion in the direction of the head, way take place in the abdowen of the embryo, but usually there is a paired ganglion for nlmost every body segment.

Passing from the embryo to the insect proper wo ind that in the inmature stages the nervous system is frequently of a primitive type, and usually varies considerably from its ultimate form in the adult of the same insect. This differenc̣ is especially murked in the case of holometabolous insects, were the adult is totally unlike the imature fonm, in that it has become much more specialized. This group of insects, which undergoes complete aetamorphosis, has a pupal or resting stage during which the nervous system is broken dow along with other internul structures and is built up again on a different plan to meet the new functions it will have to perform in the adult.

ᄃ
This new arrangement includes the process of cephalad fusion, or cephalization, and the amount of fusion of the ganglia varies considerably not only in the different orders and in different insects of the same order. but in the difforent sexes of the same insect, as Brandt (1875) and

1
$[-1+2$
\qquad

1 $\square-2+2$$\square$$\square-\frac{1}{2}$$\square$
Einpmint ? 20 iver
0 2 ?
$-1+\frac{1}{2}$ $=$
 En
$-1+2+20$ an: nuw

\qquad

\qquad
0 (1)

\square

\qquad

\qquad

4

\qquad

3 2

0^{2}

\qquad
17 $+$ \square 1

Blanchari (1876) have shown in their investigations with the higher Hymenoptera.
As a rule the adults of the forms belonging to the more specialized orders, Diptera, Coleoptera and Hymenoptera, show the greatest amount of fusion, whereas in the lower, or more generalized, orders, comparatively little cephalization takes place; in the latter group of insects the motamorphosis is incomplete and the immature form is not unlike the final adult condition. There is therefore no breaking dow and reconstruction of the nervous system in the more generalized insocts, but only a gradual change to keep pace with the developwent of wings, reproductive organs, etc. throughout the stafes from hatching to adult. So that the adults of some of these lover forms may otill have a ganglion for almost every body segrant and these ganglia may even show distinct traces of their original paired character.

As will be seen from a reference to fig. 2 , the nervous systom of the Carolina locust is that of the typical insect. The ganglia are well distributed throughout the length of the body, but there has been a concentration of ganglia in two placea, the metathorax and the eighth abdominal segment. The ganglia of the first three segments of the abomen have moved forward to fuse with the metathoracic ganglion, the ganglia of the fourth and fifth segments have aach advanced one segment, but these first five abdominal ganglia atill innervate their original segments by means of lengthened nerves. Further, the ganglia of the sixth, seventh and eight h segments have kept thoir original positions, while the ganglia of the last three segments have fused with that of the eighth segment. f

The three thoracic ganglia are separate, though the weso- and motathoracic ganglia are closely approxianted.

In the head region the brain and the auboesophageal ganglion are widely separated, but are composed of three fused primitive ganglia.

 $x=0.20$ - -2 $-1+10$.

 $+7=$ $+1+2$ $=-3$.

 a $-1+2$

 2

In some of the higher insects the thoracic ganglia have fused and have been joined by all the abdoainal ganglia to form one large ganglionic centre in the thorax, from which nerves radiate to all parts of the body region.

The brain and suboesophageal ganglion are generally distinct, though ometimes they may form one mass with a central opening through which the 0esophagus passes.

The suboesophageal ganglion way fuse with the first thoracic ganglion.

The nervous systew of the Carolina locust falls under three main divisions, the brain or supra-oesophageal ganglion; the ventral system; and the viscoral, stomatogastric, or sympathetic system.

The Brain

The brain (fig. 2) in this ingect is situated in the mediodorsal portion of the head capsule just above the oesophagus, as its other name, supra-esophageal ganglion, indicates.

It is usually the largest ganglionic complex in an insect, and investigatore have show it to be composed of three fused ganglia, representing the paired ganglia of the first three primitive segaents, or neuromeres, of the head.

The brain receives sensory iapressions from the chief sense organs and the outlying parts of the body and sends back motor stimuli by means of the connectives and nerves.

In this insect the auditory organ in each pleuron of the first abdominal segment is innervated by the metathoracic ganglion, which thus assumes one of the functions of the brain in innervating a sense organ.

It has been show by Binet (1894) that the brain coordinates the movementa of the body, whereas the subotesophageal ganglion sivjly controls the auscular movements.
(ansen

For example, an insect doprived of its brain aione can still eat if food is placed in contact with its palpi, but if tho suboesophageal genglioa is ulso removed it can make none of the movements of eating.

Again, since the brain controls the principal organ of perception, an insect deprived of its brain can neither perceive its food nor nove towards it, even if the food be placed but a short distance from ite polpi.

The relative size of the brain is no indication of the intelligence of the insect; this quality seems to be closely connected with the development of the somealled "mushroon bodies."

In the Carolina locust the brain is comparatively simple in its external features, being composed of three well defined parts, called the proto-, deuto-, and trito-cerebrum by Viallanes. These parts represent the three paired ganglia belonging respectively to the first second and third primitive segments of the head.

The protocerebrum is the largest division of the brain in this insect, being composed externally of the optic lobes (0.f.1.) and thoir ganglia (o. .g.); the ocellar lobes (oc.1.), and a central area called the pars intercerebralis by *.N.Haller (1905).

The position of these parts can be seen in fig. 2.
The optic lobes send off nerves to the optic ganglia of the compound eyes through a narrow neck.

The three ocellar lobes form an inverted triangle enclosing the pars intercerebralis or median portion of the protocerebrum, and the two lateral ocellar lobes are separated by a median cleft. Zach of these three lobos sends nerves to the corresponding ocellus (oc.).

The deutocerobrum is made up of the olfactory or a^{n} tenn lobes, (ant.)
vhich send nerves to the distal end of the antennae with branches to the wuscles of each joint of the antennāe.

The tritocerebrum is composed of the comelsourel lobes which are separated by a doep median cleft. Theso lobes give off the connectives to the (sb.g.) (tes) subōesophageal ganglion, the labral nerves $\lambda^{\text {and }}$ the suboosophageal comissure (th.c.) also the fromtal nerves to the frontal ganglion. A more detailed description of these structures will be given under the discussion of the sympathetic system.

The labral nervee rise in the frontal portion of the tritocerebrus and doscend to each side of the labruw, giving off a lateral branch to the muscles operating the labrum. The main nerve onters the labrum where it branches to the taste cups of the epipharynx and the internal labral muscles.

The Ventral Systes

In the insect under discussion the ventral nervous system consists of the suboesophagenl ganglion, the three thoracic ganglia, and the five abdominal ganglia.

The Subō̄ठophageal Gnagition

The suboesophageal ganglion lies bolow the oesophagus and under the centre of the tentorium. It is oviform, narrowing anteriorly where it recoives the long connectives from the brain, and posteriorly ware it sends the pair of connectives back to the prothoracic ganglion.

From its ventral surface it sends off three paired nerves, the mandibular, maxillary and labial, and one single nerve to the hypopharyax.a is it
Dorsally a pair of nerves aro sent back to the prothorax, where they imervatesthe upper neck muscles and the dorso-lateral prothoracic muscles. [The mandibular nerves (nd.) arise ventro-laterally, and soon after their origin give off a branch to the articulating muscles of the mandibles, while the main nerves enter the mandibles to the internal muscles and tissues. [The hypophryngeal nerve (hyp.) arises posterior to the mandibular and goes to the sensory hairs and pits in the hypopharynx.

Immediately behind this are the maxillary nerves (m) controlling

the muveles of the gales, lacinia and palpus by means of branches. In the case of the palpus the nerve apparently extends to the sensory hairs at the tip. [

The labial nerves ($1 \mathrm{~b}_{\mathrm{o}}$) are given off behind the maxillary nerves and proceed to each side of the Labium, with a branch to the tip of the pal pus. [A pair of nerves arises close to the connectives and slightly dorsal to them and extendsbackward on each side to the prothorax, where they crosses the anterior prothoracic nerves and endsin the dorso-lateral muscles. On the it may they sendsa branch to the dorsal neck muscles.

The Thoracic Ganglia

The thorax has a ganglion to each of the three segments. These ganglia are similar in external appearance, but their size increases in proportion to the number of nerves they send out. They are disc-shaped, broadly oval, each with a thick, fir central portion.

Each ganglion roughly resembles a double convex lens and the nerves are given off on three different planes, dorsal, lateral, and ventral.

Prothorax.
The prothoracic ganglion gives off four nerves, one anterior, two lateral, and one posterior. 1

The anterior nerve passes under the nerve from the suboseophageal ganglion and by means of branches innervates the ventral, ventro-lateral and lower neck muscles of the prothorax. a

The first lateral nerve extends to the transverse muscles of the prothorax with branches to the coral muscles of the log. a

The second lateral nerve (c r.2.) controls the internal leg muscles of the different joints, as far as the tarsal claws. 7

The posterior or auxiliary nerve goes backward to join the anterior ($a l_{1}$)
or alary nerve of the mesothorax.

Eesothorax.

The mesothoracic ganglion gives off five main nerves on each sido. λ
The antorior nerve from this ganglion and the posterior nerve from the previous ganglion converge, run contiguous for a short distance and separate again.

The two arms extend laterally to the upper transverse alary muecles (ala) and to the longitudinal dorsal musclos of the mesothorax. $\left(\frac{\mathrm{dt}_{2}}{\mathrm{at}_{2}}\right)=9$

Posterior to these a nerve goes to the lower transverse muscles, and ventral to these nerves we find the nerve wich imervates the coxal muscles of the mesothoracic legr.a

This is followed by the leg nerve proper (cra.) wich is homologous with the prothoracic leg nerve. a

Posterior to the leg nerve is the auxiliary nerve which joins the anterior ietathoracic nerve.

Metathorax.
The metathoracic ganglion lies close behind the preceding ganglion. It is the largest of the thres thoracic ganglia and is an imporiant one in this insect, since it supplies nerves not only to its own segment, but in addition innervates the first three abdominal segments. n

It is thus a compound ganglion made up of the ganglia of four primitive nerve segments, one thoracic and three abdominal, and the nerves from the three original ganglia of the abdomen have gradually lengthened out as thoir respective ganglia moved forward in the process of cephalization. The following nerves go out frow this ganglion:-2. The alary nerve. $\wedge^{\left.(a)_{2}\right)}$ This is a lateral nerve from the dorsal surface of the ganglion to the wing muscles. It joins with the posterior nerve of the mesothoracic ganglion and the two together (as in the wesothoracic pair) innervate the depressor and elevator muscles of the wing. The anterior
里

1
1 1-6

Pr

0 \square (2)
 $+2$
.
branch exteads to the depressor or outer layer of transverse musclee, while the posterior branch goes to the elevator or imer layer of traneverse auscles with an offahoot to the doreal longitudinal muecles of the netathorax.
2. Bohind und belov the alary nerve is a latoral nerve to the coxal and trochanteral muscles of the hind log with branches to the ventral auscles of the metathorax.
3. The auditory and first abdowinal norve (asi.). This nerve not only imervates the small ganglion in the auditory organ, but sends a branch behind the "ear" to the longitudinal doraal muscles of the firat abdowinal segrent, and to the muscles attached to the rim of the "ear."
4. The erural or leg nerve $\left(\operatorname{cr}_{3} g_{\text {. }}\right)$ goes to the hind leg vith branches to the muscles in the different joints of the leg. It divides before eatering the \log, and one branch proceeds to the tibial tendon at the divtal end of the femur, wile the main nerve imervates the femoral, tibial, and tarsal vuscles.
5. The second abdominal nerve (ang a) oxtends backwards to the longitudinal dorsal musclss of tho second abcominal sogmont with branches to the dorsoventral muscles und to the muscles attached to the arme of the furca.
6. The second ventral nerve $\left(v_{2} u_{0}\right)$ goss to the ventral muscies of the socond abdominal segment, giring off the firstventral nerve $\left(v_{1}\right.$.) on the way.
7. The third abdominal nerve (as.3.) is homologous vith the second.
8. The third ventral nerve $\left(X_{3}\right.$ g. $\left.^{\prime}\right)$ is homologous vith the second.

It vill bo seen that although the firot throe abdominal ganglia have fusod with the metathoracic ganglion, they still send off the nerves characteristic of an ebdoainal ganglion in this insect, namely a long nerve to the corsal and laternil muscles, a short ventral nerve to the ventral and muscles. A reference to the abdominal ganglia will illuatrate this point.

The Abd ominal Gang2ia

There are pive ganglia in the abdomen of Dissosteira carolina. These increase in size counting backward from the base of the abdomen, but they are all smaller tion any of the thoracic ganglia.

The first four ganglia each send off two nerver on each side and these are homologous with the nerves of the first three abdowinal ganglia which have Iused with the metathoracic ganglion. The first two gangia of the abdomen are really the ganglia of the fourth and fifth segments, but they have each moved forward one segment and are now situated in the third and fourth segrent respectively. The next two ganglia belonging to the sixth and seventh eegmenta have retained their original position and innervate the muscles of their own segments by means of two nerves homologous with those in the preceding five segments.

The lifth and last abdowinal ganglion lies in the oighth segrent. and supplies nerves to the muscles of the eighth, minth and tenth sagnents wich include the genital apparatus, but the homology of the nerves characterietic of the typical abdominal segment is not so cloar as in the preceding segments, since the nerves extending to the last two segments have fused to form one main nerve with many branches.

Female

From the anterior portion of the ganglion a lateral nerve is gives off on each side to the ventro-lateral, and dorso-longitudinal muscles of the eighth segaent.

A strong nerve goes out from the posterior end of the ganglion, giving off several branches on its way to the end of the abdomen. Near its origin this nerve divides and the anterior branch innervates the auscles of the ninth segment.

The posterior branch subdivides and its eeveral ramifications go to

0俋
the tonth and eleventh segments, where they imervate the various muscles of those segments, including those of the upper sheath of the ovipositor and the egg Eluide.

A ventral nerve goes to the muscles of the lower part of the ovipositor and the ventral muscles noar the end of the abdowen.

Male

In the male there is a lateral nerve to the musclesof the eighth abdominal segment, homologous with that in the femalo.

The posterior part of the ganglion gives off a strong nerve wich dividos into two main branches near its origin. The outer of these branches subdivides into three nerves which go to the dorso-longitudinal wuscles of the ninth, tenth and oleventh segreents and the corci.

The inner branch innervates the upper auscles of the fale genital apparatus, and gives off two branches to the ventro-lateral muscles of the ninth and tonth sogronts.

From the under side of the ganglion a ventral nerve is given off to the lower muscles of the genital apparatus.

The Sympathotic Nervous System

This consists of an upper or stomatogastric system, and a lower or median system.
stomatogastric system

The uppor sympathetic system imervates the alimentary canal as far as the Malpighian tubes. 1

It originates in the brain as a paired system, the two nerves of which rise near the labral nerves, run parallel to them for a short distance and then curve in over the oesophagus, sending off small branches to the muscles of the latter. After giving off these branches they bend upward and neet in the frontal ganglion, which lies over the median dorsal line of the -eesophagus.
(2lall

The single recurrent nerve runs backward, passing under the brain betweon the two connectives, and appears to innervate the dorsal vessel.

In this insect, as in many Orthoptera, there is no dorsal or vagus systew. Instead of this the paired sympathotic system is well developed in the shape of two nerves wich start from the back of the deatocerebrum, give off the anterior syapathetic ganglia, and proceed in a posterior direction along each side of the essophagus to a small stomachic ganglion situated anterior to the coecal pouches. On its way each nerve sonds off branches to the longitudinal and circular muscle layers of the foregut. \rightarrow

Rach of these stomachic ganglia produces five branches, laterally and posteriorly, some of which go to the muecles of the proventriculue, others to the coecal pouches or glands, and the longest appear to rua back to the posterior coscal pouches, with oxtonsions possibly to the Kalpighian tubes.

Median Systan

nerve (me)
The lower or median system consists of a suall median of which the first traces in this insect were found between the meso- and meta-thoracic ganglia, at wich point two lateral nerves aro given off and appoar to go to the mesothoracic spiracleson

Posterior to the metathoracic ganglion is another pair of lateral nerves, which were traced to within a very short distance of the spiracle of the auditory organ.

The median nerve was observed to extend posteriorly betweon the connectives as far as the third abdominal ganglion. Here it enters a mall triangular ganglion and branches out into two lateral nerves which run towards the spiracles of the fourth abdominal segment.

No further traces of the median system were observed in the specimens oxamined, but it is possible that the salivary glands and the dorsal versel may be inneruated eithen by the stomatofastrie or the median systam.

General workers
The first important worker on the nervous system of insocto was Newport who investigated the nervous system of Sphinx iigustri.

He traced the growth of the nervous system from the newly hatched larva, showing its development throughout the larval stages, and at frequent intervals during the pupal state, to its final condition in the adult. These experiments were accompanied by descriptions and a series of figures.

Leydig (1864) in addiction to his work on the brain investigated the component parts of a ganglion. file found that the nerve cells which gite off fibres originate from a central network of fino fibrillate to which he gave the rome of punktsubstanz or "fibrillar substance."

The work of Brandt (1875) and Blanchard (1876) on the variations In arrangement of the abdominal ganglia in different insects is of much interest.
L.Lonard (1880) worked out the transverse comassure below the brain in a number of different insects. 1

This commissure was first discovered by Lyonnet (1762) in Cossus
ligniperda, and found by subsequent investigators in other insects. Workers on the Brain, especially the mushroom Bodies

It is not proposed to go into the histology of the brain or its internal structure, but mention may be made of the so-celled "mushroom bodies," mich appear to play ar important part in the intelligence of insectsan

They ware first discovered by Dujardin (1850) in Orthopter and Hymenoptera, but he did not recognize their stalked character and called them "lobes with convolutions." 7

Leydig (1864) found them in Ants, Bees, ind wasps and named them "stalked bodies," but did not grasp the significance of the cup shaped bodies or calycee mich the stalks support. He recognized the olfactory lobes and central body with which the "mushroom bodies" were later ohown to be connected.

Diet (2876) was the first to use sections in the study of the brain. This method enabled him to recognize the true shape of these bodies of which he

 Hitiont
$=$

偪

[^1] $2-2+2$
-$x-2 x-2 x+2$
gave an accurate description, calling them Pilzhutformiger Korper or "mushroom bodies." ת

Flogel (1878) examined these bodies in the brain of insects pram all the different orders and showed that the development of these structures is closely correlatod with the growth of intelligence. For instance they reach their highest development in the Hymenoptera (Bees, Whaps otc.) and gradually descend the scale until they are mere rudiments in the Hemipteran

Packard (1880) described and figured them by means of sections in the Rocky Mountain Locust and the best idea of their structure in that insect may be gained by referring to his work. a

Sellonci (1882-86) found them in the brain of the Cockroach and a Fiy, and called them "Iungiformo corpo." He showed that they are connocted by fibres with the protocerebrum. He also studied the relations between the optic ganglia and the brain.

Viallanes (1884-99) worked out the development of the "mushroom bodies" in the brains of insects from several different orders. He demonstrated that the olfactory or antennal lobes, and the optic gangia are connected with these bodies by fibres wich enter the cups of the mushroom bodies, where there are masses of cells. a

Villanes considered that the mushroom bodies are connected with the intelligence, since in Bees and Wasps, wich are usually regarded as the most intelligent insects, they obtain their greatest developant.

The work of Viallanes on the brain of different insecte showed a great advance on any previous investigations. He ditided the brain of the adult insect into the proto-, derito-, and trito-cerebrum without reierence to enbryology, but he found later that these three divisions corresponded to the three primitive neuromeres or nerve segments of the brain.

Binet (1894) worked on the "mushroom bodies," but he is better known

for his physiological experiments on the brains of insocts. These experimente vere an improvement on those of Faivre along the same lines, and demonstrated that an insect may live for months without a brain, if the suboesophageal gangiion rewains uninjured.

Kenyon (1896) investigated the brain of the honey boe, and explained the internal structure of the mushroom bodies in that insect. Ho confirmed the observations of Viallanes, showing that the cup cells are particularly well developed, and that the bodies are connected by fibres with every part of the brain.

Jonescu (2809) worked on the mushroom bodies of the honey bee and found the nerve cells in the cups to be difforentiated into three groups, a median group of larger cells surrounded by two lateral groupe in which the cells are amllar. He showed that these groups of colls sond dow fibros into the stalks, as well as librous tracts into the protocerebrum.

Miss Thompson (1913) investigated the brains of three genera of Ants and considers that the complex development of the mushroom bodies in these insects is further evidence that these bodies are "the chief motor and psychic centers of the brain," a "view held by investigators of the ant brain." She finds four groups of cells in the cups, and that the arrangement of the cell groups in the ants homologous with that found by Jonescu in the honey bee. The fibre tracts arising Irom the cell groups vary in the different castes of the ants, the queen having more tracts than the worker or male. Wiss Thompson points out that this difference in the number of libre tracts is not due to size, since the mushroom bodies of the worker are larger than those of the queen in two of the genera, and about equal in the third. This therefore seems to indicate, she says, that the queen has the most c aplex and highest type of braing

Irom all these observations it would appoar that the development of the mushroow bodies is closely correlated to the intelligence in insects.
$+\bar{n}$
(.).

Acloque. -- Le corveau des insectes - Cosmos - Peris. N.S. T. LIX. Anon.-- Das gehim eines Kafers - Natur. Hunchen.

Bellonci. -- Intorno al ganglio degli Arthropadi superiori. Intern. Honatsschrift. Bd. IIİ.

Benedicenti, A. -- Recherches histologiques sur le systeme central ot peripherique du Bombyx mori. Arch. Ital. do Biologie 2. XXIV.

Berger. -- Untersuchungen ueber den Eau des Gehirus und den Retina der Arthropoden. Arb. Zoo2. Inst. Wien. Bd. I.

Berlese, A. -- Gli Insetti - Milano - Vol. I.
Binet, A. -- Contribution à 1 ótude du système nerveux sous-intestinal des insectes - Journ. 1 Anat. et Phys. I. XXX.

Blanchard, E. -- Recherches anatomiques et 20010 giques sur le systeme nerveux des insectes. Ann. des Sci. Nat. 2001. Ser.3. T. V. Bordas, L. -- Le systeme nerveux sympathetique sous-intestinal ou stomatogastrique des Orthoptères. Bull. Sci. de la France et do Laf Belgique. Vol. XXXIII.

Bottger, 0. -- Des Gehirns eines nilderen Insekts (Lepisma saccharina L.) Jena Zoitschr. f. Naturw. Bd. XLVI.
Brandt, E. -- Recherches anatomiques et morphologiques sur 10 systeme nervoux des insectes Hymenopteres. Compt. rendus Acad. Sci. Paris.

Brandt, 2. -- Vergleichend anatomische Untersuchungen ueber das Norvensystem der Käfer. Horae Soc. Ent. Ross, Bd. XV. Diet1, M. J. -- Die Organization des Arthropadengehirus Zeitschr.f. Wiss. Zool. Bd. XXVII.

Dujardin, F. -- Momoires sur le système nerveux des insectes. Ann. Sci. Nat. Só̉. 3. T. XIY. Ser.

1904

2878

Eving, H. 2. -- Yunctions of the Nervous System with apecial regard to respiration in Acrididae. Kans. Univ. Sci. Bull. Vol. II. u
Flogel, T. H. L. -- Feber den einheitlichen Bau des Gehims in den verachiedoneu Insektenordnungeu. Bd. XXX.
v. Haller, B. -- Veber den Allegreinen Bauplan des Tracheatê̌isyncervbrums. Arch. Mikr. Anat. Bd. LXV.

Hamar, A. G. .- On the nervous system of the larva of Corydalis Cornula L. Am. Ent. Soc. Amer. Vol. I No. 2.

Henneguy, L. . - Les Insectes. Paris.
Hilton -- The stomachic ganglion of the central nervous system of Corydalis larva. Ann. Ent. Soc. of Amer.

Holste, G. -- Das norvus proctodaeo-genitalis des D. marginalis. 2001. Anz. XLI.

Janet, C. -- Sur les nerfs cephaliques, les corpora allata et le teftorium de la Foumi (Hyrmica rubra). Her. Soc. 2001. France. T. XII.

Jonescu, C. N. -- Vergleichende Untersuchungen ueber das Gohirn der Honigbiens. Jena. Zeitschr. f. Maturw. Bd. XLV.
Kenyon, C. F. -- Meaning and structure of the so-callod mushroom-bodies of the hexapod brain. Amer. Nat. vol. xxx .

Kolbe; H. J. -- Einfuhrung in die Kenntnis der Iusekten. Berlin. Lienard, V. -- Constitution de I'anneau oesophagion. Arch. d. Biol. T. I. Lyomnet, P. -- Traíté anatomíque de la chenille qui roxge le bois de saule. Haye pp. 190-237.

Miall, L. C. and Denny, A. -- The Structure and Life Kistory of the Cockroach. London.

Newport, G. -- Article Insecta. Todd's Cyclopaedia of Anat. and Physiol. London. 1836-39.
12
Henerrint - \qquad 4 i
$1 \sqrt{1-2 \pi}$ $:=$ 20 \qquad

$3 \quad \cdots$

 \qquad
\qquad
 8
. \qquad
 2 \qquad

5 \qquad
$=-\quad \ldots$

$$
\cos
$$

ninus-2

1832 Newport, G. -- On the nervous system of the Sphinx ligustrí L. and on the changes wich it undergose during a part of the motamorphoses of the insect. Phil. Trans. Roy. Soc. London. 1832 - 1834.

1879 Newton, E. T. -- On the Brain of the Cockroach, Periplaneta orientalis. Quart. Journ. of Microscop. Sci. New. ser. vol. XIX. Packard, A. S. -- Text Book of Entowology. New York. Packard, A. S. -- The Brain of the Locust. Second Ropt. U. S. Come. Wasington.

1895

1902

1911
2876

1913 Thompon, Garoline B. -- Comparative Study of Brain of three Genera of Ante with Special referonce to the Hushroom Bodies. Journ. of Comp. Neur. vol. JXIII No. 6.

1884-88 Viallanes, 17 . -- Etudes histologiques et organologiques sur les centres nervoux et les organes des sens des animaux articulés. Annal. d. Sc. Nat. Xool.

1884-6e Ser. XVII Art. 3.
1885 - 6^{e} Ser. KVIII. Art. 4. 1886 - 6^{e} Ser. XIX Art. K. 4. 1887-7e Ser. II. 1888-7 7° Ser. IV.
La structure du cerveau des Orthoptères. Bull. Soc. Philomat. Paris 1836-7e Ser. XI.

Paulowa, M. -- Zum Beu Eingeveid Nervensyatem der Insekton. Z001. Auz. Bd. XVIII.

Piorantoni, V. -- Contribuzione allo studio del sistema nervoso stomogastrico degli Ortotteri Saltatori. Auszug, von R. V. Adolung. Zool. Contralblakt. 9. Jairg I.

Piotschker. -- Das Gohirn der Asefise. Jena. Zeit. \&. Natuxw. Bd. Kdv1I. Rabl-Ruckhard -- Studien ueber Insektengehirns. Arch. f. Anat. und Phys. p. 460 Taf. 2.

Explanation of Plates

Lettering of Figures

Subscripts denote the number of the segments, except under al, where 1 and 2 reler to the meso- and weta-thorax respectively.
ag. Abdominal ganglia.
a1. Nerves to the muacles of the tegmina and hind wings.
ant. Antennal nerve.
as. Nerves to the dorso ventral and dorsal muscles of the abdominal segnente.
br. Brain
c. Cercal nerve.
cr. Nerves to the muscles of pro-, meso-, and mata-thoracic legs.
dt. Nerves to the dorsal muscles of the three thoracic segmente.
f.g. Frontal ganglion.
ir. Frontal nerve.
g.a. Nervas to genital apparatus of male.
hyp. Nerve to hypopharynx.

\qquad
$\sqrt{\text { anm }}$
 0 (


```
Ib. Labial nervo.
Lbr. Labral nerve.
m. Nerve to maxilla.
md. Kandibular nerve.
me. Mediannerue
oc. Ocellar nerves.
oc.3. Ocellar lobe.
0.g. Optic ganglion.
0.1. Olfactory lobe.
ov. Nerves to sheath of ovipositor.
p.s.g. Posterior sympathetic ganglion.
sb.g. Suboesophageal ganglion.
st.g. Stomachic ganglion.
tg. Thoracic ganglion.
tr.c. Sransverse or suboesophageal commissure.
v. Nerves to ventral muscles of the abdaminal segments.
```

$$
\begin{aligned}
& \text { Part of a Thesis for the degree of } \\
& \text { Doctor of Philosophy }
\end{aligned}
$$

NORTH AMERICAN SPECIES
 of the
 GENUS SCELIPHRON

BY

J. C. Hutson M. S.

Massachusetts agricultural college amherst, June. 1995

$$
\begin{aligned}
& 4=1.98+20=
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \cdot \frac{2}{2}+2
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } x=21 \mid+3 \times 15
\end{aligned}
$$

This paper has been prepared by the writer in the intomological laboratory of the Massachusetts Agricultural College, Amherst as a part of a thesis for the Degree of Doctor of Philosophy. He here desires to express his debt of gratitude to Dr. H. T. Fernald for his valuable suggestions and kindly interest at all time during the progress of the work and for his trouble in securing material from many public and private collections in the United States; to Dr. G. C. Crampon for his ready help in the anatomical portion of the paper: and to Mr . Daniel G. Tower whose preliminary notes on these insects were at the disposal of the writer, and were of no small assistance. The writer is also under great obligations for opportunities to study material from the U. S. National Museum, the American Entomological Society at Philadelphia, the Brooklyn Museum, and the New Hampshire State College, which had been loaned to Professor Fernald through the kindness of those in charge of these collections, and also from Professor Herbert osborn, Dr. J. C. Bradley and many others, which were obtained in a similar way.

$L-a$

,
 1

 $1+2$

 $+2+2$
 $=-2 \operatorname{lin} \operatorname{lin}+10$

General Characters
The insects of the genus sceliphron of the sub-family Sceliphroninae found in North America are of medium to small size, varying from hall an inch to an inch even within the same species. The winga are large in proportion to the somewhat slender body and the logs are long, especially the hinder pair. The surface of the body is alnost completely covered with punctures varying in size and proximity to each other and with hairs difforing in length and density on various parts of the body. It will be noticed that the nature of the punctation bears a close relation to the sizo and distribution of the hairs, in that sach puncture usually has its corresponding hair, though some of these are rubbed oft in older specinens. In other words the punctures mark the places of attachment of the hairs to the chitinous integument of the insect's body.

Some of these punctures are so small as to be visible only under a high powered lens and the corresponding hairs are very fine and usually decumbent. Such hairs may be seen on the dorsal segments of the abdomen and the terms "fine sericeous" or "sparsely sericeous" are applied to such areas. Similar minute but somewhat denser hairs are found on the legs and are called "sericeous" or"densely sericeous." These last are dark or whitish according to the species, while the "coarse sericeous" hairs found on portions of the fore- and hind-tibiae are always dark.

 (20) $2 \rightarrow 20$.

 4ex

Finina
(20) $-$

 Le-man

There are two regions in which the hairs are seen to lie slat down on the integument ond are so closely set as to hide the ground color of the body, and give it a soft, satiny appearance when viewed from certain angles. The hairs in these regions are called "pubescent." one region is found along the sides of the clypens and the frons where the hairs are silvary, and more developed in males than in females. The othor region consists of two somewhat circular areas on the third and fourth ventrel segments of the abdomen of sceijohren cyanour Semales, and tho heirs in this instance vary from darik to pale brown when seen from difforent angles.

From the above description it may bo noticed that the temas "sericeous" and "pubescent" apply to fine documbent or somi-deoumbent hairs and the chief point of distinction seems to be in their density and length, since the sericoous hairs are horter and only partly dieguise the color of the integument, while the longer pubescence may completely hide the underlying chitin.

The remaining portion of the vestiture of the body in these insects is composed of erect nearly erect, more or less coarse hairs which are attached to distinct punctures of varying siees and dossity of arrangement. In connection with this part of the vestiture the writer has used the terms "hairs" or "erect hairs" coupling with thom various epithets to denote gradations in density and coarseness. The coarsest hairs are found on the clypens, the genae, the "end" and "sides" of the propodoum, the sternum of the mesothorex, and the coxae. The hairs on the "dorsum" of the propodeuw,

 20 2
 $-12+2$
 2

 -15

$$
\begin{aligned}
& \text {, }-2+1+2
\end{aligned}
$$

 $\ldots+2$
the thoracic plouva, the prothoracic lobes, the dorsal surface of the potiole and the undersides of the trochanters and fernora are perhaps not quite s o dense and coarse as those in tho first class, but the gradations are so slight that no marked line of distinction can be drawn. The amallest eract hairs occur on the dorsal portion of the aixth or terminul segment of the fomale abdomen and along the sides of the ventral portions of the abdominal segments in males and fomales.

Certain areas of the integument are marked by more or Less parallel grooves known as "striations", other parts by fine irrogular raised lines enclosing shallov punctured aroas and giving a condition known as "rugose".

These insects do not show any startiing color markings or bands, the body being more or less evenly colored with shades of metallic blue, black, or green, sometimes vith purple or violet reflections. Ao mentioned above, the actual body color is sometimes obscured by the closely set vestiture of fine pubescence. fuliginous
The wings may be dark brown to pale even in the same species, or thoy may be hyaline with fuscous tips and in most cases may show violet to bluish reflections in certain lights.
Excternal anatomy (see next page)

Analytical fory

A-kery-gasd-wowhing-table of the-fastites-of the-gphegoidea

if fitwen-by-Aehmead-and-oheuld be-censulted-by-these-intereeted
The following teble of the eubfen土lies-of the specideo heo
d. Genedian mintomojogiot-XXXI, po- 152
 Ql -

 2 +
 $+\frac{2}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$

 $2+2+2$

 Sen 4

 , 4.

$$
\begin{align*}
& 41 \cdot \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2} \tag{2}\\
& \because \mathrm{HO}-\mathrm{Moc}
\end{align*}
$$

Extornal Anatomy

Head
The head is medium to large, broader than high, and seen from above is transversely elongate. The compound eyes are large, somewhat oval bodies, extending from the sides of the vertex almost to the base of the mandibles.

Seen from in front they occupy together an area about equal to that which lies between them, while on a side viev each eyo covers about twice the area of the cheok which liee behind it. They are narrowest at the top where they are bluntly rounded, and gradually expand towards the bottom where they are broadly truncate with a slight emargination to recoive the lateral extensions of the clypems. The eyes may be nearer each other at the vertex than at the clypems, as in females, or the reverse, as is the case in males of the species dealt with in this paper.

Clypens. The clypens is roughly a trapeziform plate lying below the antennae and occupying the lower central portion of the front of the head with its lower angles extending laterally under the compound eyes to form part of the articulation of the mandibles. On either side of the ciypens is a narrow downvard extension of the frons wounded externally by the inner margin of the eye, internally by the lateral clypeal wuture, and ending below in the lower of two foveae. A second or upper fovea is also present about half way to the top of the clypers from this point close to the suture between clypems and frons, but apparently in the latter plate. The lover

$$
\pm 0-26
$$

-4y e
 Nomblun

16 $=$ $\tan +\mathrm{HE}$
20
$1-2+2$

1$+2+20+2$
4
$2+\frac{10}{2}+$

$1-2+2$

margin of the clypens is normally tridentate, but the relative size and shape of the teoth varies in epecies and individuals. These variations will be noted under the descriptions of species. The lower margin of the clypens is marked by a transverse to quite emarginate suture below the base of the antennae, and the lateral clypeal sutures may be continued upward as faint lines meeting between the antennal pite thus forming a small triangular area above the truncated apex of the clypens, or these lines may end at the auture which is then distinctly emarginate and its onde curve upwardo on each side almost to the base of the antennae. The central area of the clypels is convex, with a more or less distinct median ridge, and is covered with rather long orect black halrs anc closely set coarse punctures, and may be partially clothed with a silvery pubescence.

Frons. The frons lies betweon the clypens and the ocelli but extends downwards on each side betweon the clypens and the compound eyes and upwarde on each side of the ocellar area as far as the ocellocular line. This is a line from the top of the compound oye to the lateral ocellus on each side. The eides of the frons extending along the inner margin of the compound eyes are somewhat sunken below the rest of the facial area and are closely punctate.

The frons as a whole is usually covered with coarse orect black hairs, and the sides are more or less clothed with fine silvery pubescence which is seen to the best advantage

2

20
$2 \rightarrow 20$

(r)
218
2
2484

$2+2$
40 4
$4 \pi=4$

2

$2(x) d e d e d e$

Nater
a

Abstract

raised from bohind. A short nedian line runs from between the antennae to within a short distance of the median ocellus. Ucelli. The throe ocelli lie near the top of the hoad forming a triangle with the median ocellus, the largest of the three, below. The base of the triangle, or postocellur line, is alwaye greater than the diotance between the modian and either lateral ocellus, and always less than the ocellocular line. The exact proportions vary with the speciea. The surface between the ocolli, or intraocellar ares, is slightly raised and each of the ocelli has a slight depression at its outer base.

Vertox. Behind the ocelli is a shallow oblong dopression, and posterior to this there may be a raised ovel area, which might bo regarded as the vertex proper, but in this paper the vertax is that part of the head bounded enteriorly by a line through the lateral oce2li, posterioriy by the occipital ridge and laterally by the genae and tops of gyes.
occiput. The occiput is the narrow circular strip at the back of the head surrounding the occipital foramen, but is of no systomatic importance.

Genae. The chooks or genae are paired sclerito at the back of the head between the compound eyes and the occiput, and extend from the vertex to the base of the mandiblos. They are narrowest at the top and gradually widen ventrally where they curve in on each side to meet between the occiput and the gular cavity, and extend laterally outwards under the eyes to meet the clypeal extensions.

-1

*ation

Naing

 $-2+2$

$\pi=-\ln +1$ Mnt

The mouth parts with the exception of the mandibles do not appear to be of syetematic importance but mention way be made of the labrurs which is a narrow oblong strip attachod under the lower edge of the clypens. In pinned specimens it is usually hidden bohind the closed mandibles, but if these are opened the labrum can be seen as a slap lying over the top of the other mouth parte. Handiblos. The mandibles of females are long, rather curved, bluntly rounded at the tip, and may or may not have a tooth on the inner aide according to the species. In ialles they are shorter and taper to a point.

The extension of the lower angle of the clypens meets a corresponding extension of the genae and the two together furnish articulations for the mandible in the following manner. on the under part of the clypeal extension is a condyle which fits into a socket on the upper side of the randible, while the genel place has a facet to receive the condyle on the lower side of the mandible. There is also a median basal projection on the outer side of the mandible, serving as an attachment for nascles. Thle projeotion fite into an margination on the lover margins of the clypeal and genal extonsions when the mandible is closed, but ewings inwarde leaving the emargination empty when the mandibles are opon.

Antonnae. The antennae are situaied in the middie of the frontal areaand articulate in two oval sockets facing obliquely outwards, thus giving the antennae a wide range. They are of medium length

```
                    r
    4, +2, +2, +2,
```

\qquad
\qquad
\qquad


```\(2+2+2\)
```
```**\(1=\)
```



``` \&
```



```
\(\sin (2)\)
```



``` Ane
```



``` \(12-\log +2\)
```

consisting of 12 segments in the foralo und 23 in tho raele. The proximal segment, or scape, is divided into a small basal portion, the bulb, which articulates with the head in an oval socket, and a larger part the scape proper. The latter is to all appearances a separate segreent from the bulb, but the two parts are generally regarded as one eegment. The true scape is somewhat oval and enlarges sudiently after its junction with the bulb, forming the thickest part of the antennel. The second eegrent, or pedicel is Bmall, rounded proximally where it articulates with the scape and truncate distally where it joins the first segment of the filement. The remaining segment are known as the flagellum or filment end are more or less cylindrical. Eil the sogments of the fageilum, except the lest, are narrower at their proximal ends, the first being noticeably 80 formed. The first three segraents are about the sene lengt? and oither the first or second may be the longest according to the species. The remalning segments gradually decrease in length to the penultixate, which is the shortest. The last segment is slightly longer again and taperb distally to more or less truncate and. The antennae are dark in color, the scape and pedicel being either dark blue or dark green with strong hairs on the inner side, while the flagellun is dull black, but the covering of fine recumbent hairs may give it a greyish appoarance.

Thorax

Prothorax. The prothorax falls naturally into two parte, a somo-

3ct

what narrow anterior portion articulating with the head and know as the neck, and a broader part behind, which ariiculates with the meaothorax and is usually termed the collar. Soon from above the nock is flatly convex, narrow in front and widening posteriorly to fuse with the collar, and the angle of inclination of the dorsal surfaces to each other varies, being sometimes acute and sanetimes a right angle. The anterior doreal of the neck is slightly reflexed and is usually hidden within the occipital forman into which the neck fite. The ventral surface of the neck is shorter than the dorsal and is composed of two plates closely approximate along a median suture and together forming the opisternum of Snodgrass: The anterior portions of these plates are narrow and conceve and fit closely under the convex extension of the prothorax to form with it a short cylinder which fits into the occipital foramen, and gives the had freer movenent. Theae plates widen poster iorly into two lobes whose posterior margins are convex and unite with the concave vontral surlace of the collar to form articulations for the coxae. The small triangular sternum lies botweon the bases of the coxae and adds suppori to their articulations.

The dorsal aurface of the collar is sumevhat plat anteriorly, but slopes upwards sometimes almost vertioally to a rounded crest at the back which is divided by a median furrow into two lobec. The anterior dorsal surface may be slightly arched and almost horizontal 30 that it forms nearly a right


```
                                    LIN(4)
```



```
10, (2)
                            4, (1) N
                            L2,
```



```
                                    2-2
```



```
                            *-2
                                +
                                L
                                -
                                -
                <
                            L2
                            *4. (t)
                            R=
```

\qquad

\qquad

```
\[
2 x_{1}=-\alpha \mid
\] \(\rightarrow+\frac{2}{2}+\frac{1}{2}\)
``` \(\qquad\)
```

                                    |lime x wellom
    < (a)

```


```

        -4
                            -
    $$
\frac{1}{4}+-920+1+2
$$

```

```

                                    81-3**
    ```

\(\qquad\)
```1
```

 t-
1

```4
T
20\(\rightarrow\)
```

```\(-\)
```
```\(+184\)
```

$\rightarrow+\sec$

```+ 4.
```
```(\(+2\)
```

\qquad

```
*=1 - |
```

```
*=1 - |
```



```
                                    4-2
```

```
                                    4-2
```



```
                            L2,
```

 L2,
 75+4-4
 75+4-4
 \<th
 \<th
 LY N4,yim
 LY N4,yim
 |}+2=+2+1
    ```
                                |}+2=+2+1
```

angle with the posterior surface, the lobes being rounded and not prominenc, or it lagy form an acute angle with the postorior surfaca, in which case the lobos are rather sharp, with their crests n igher than the mesonetum.

The postarior region of the collar is somowhat vertical and extends over the antorior uargin of the mosonatum which has a broad median projection under it.

Between the lateral edge of the opisternum and the anterior laharal margin of the collar is a very narrow plate called the epireron which has beon partly tolescoped under the collnr, rhis narrow strip appears to be the continuation of the wrierior anargin of the neck. The opimeron suddenly grows vider ventrally and extends to the base of the coxe on each sicie. The coliar oxtand rentrally as far as the opimeron and Its lower posterior margin projects over a portion of the mesothorax in the fore of a semicircular lobe, called the prothoracic Lobe by Fernald. This lobe touches the side of the mesonotum above and covers a pepression on the menopleuron at the bottom of which iles a spiraole.

Nesothorax. The mesonetwin is broad, rather sellate plate with its anterior margin articulating with the posterior margin of the collar and at the sides with the prothoracic lobe. Its lateral margins are somowhat omarginate to receive the tegulne and siightly reflexed while its broadly truncate posterior margir is closely applisa to the soutollum. Lying between the
(tacy

 2 20 +20
 20 .

4
4

 -

- 4 (2)

latorai margin und the modian line on eac: aide is a shallow groove startiug from the pooterior mergin end oxtending forwerds for ebout one tinird the longtin of the wescnoture. Near the anterior ond of each groove thers is a curved incised line extonding formards for the uiddle third of tha segment. These curved lines way be the parapsidel graovas. A sho:t strajght line can be seen lying along the anterior third of the median depression of the mesorotum. The scutollum is a rathor narow plate lyind boind the nosonotum. It is diasinctly raised in the midile and usually marked by a paint madian depresoion. It has a lateral for ward oxtonsion on each side as far as the base of tho fore Vings and tegulae brokgn by two domp cavitios, a sanlier ono on each gidio of the rajised contral portion and a larger cayity froa whion tho fore sings have been evaginatod. These tin cavitios aro soparatod by s sharp ridge. The mesouleuron is a hargo platooccupying the side of the gesothurax and oxtending obilqualy ir an belind the prothoracic love to the bese of the mosocoxa where it eads in an elevation ovidently serving to prevent furthe: doresi flexure of the leg. fihe mesopleuron is bounded dorsally by part of the mesomotum, and by the ever hanging oage of the acutellua, but its ventral limits are not definod. Its anterior margin chogs a deep depression under the protioracic lobe beuring apiracle which is protected by the Lobe, but its posterior boundaries are rather vague.

 1) imine $=\mathrm{mic}=\mathrm{a}=\mathrm{a}=$ levte

$$
8=1
$$

$$
=-1=1
$$

 2 Hins
$=1$

4:

-
 (2)

This plate is divided by morphologista into three parte, the pre-episternum, the opisternum and tho opineron. The epistormal groove is a shallow lateral dopression morked by scattered ridges and soparating the pre-epistornum iroun the epistornura. Tho epimeron has no definite iimits, but lies in the broad depression extending obliquely down the sides of the body and marked by distinct foveae. This depression is known as tho motapleural groove.

There is no spparent suture or line separating the mesopleuron from the sternum or ventral plate. The latter is a large plate occupying the ventral surface between the fore and middlo coxae and marked by a digtinct modian suture pitnear each end. About halfway between this suture and the upward with a shallow cuposeion ofrad it curve mesopleuron is a short line sometimes appearing distinctly incised with a shallow depression around it.

The episternal groove is continued ventrally on azch side and curves forward to meet bohind the bases of the prom coxio. This groove divides the meso-sternure into the prepoctus, or small portion anterior to the episternal groove, and tho mesosternum proper, which extends tu the bases of the meso-coxae, whose articulations it bears.

Metathorax, The postscutollum is a narrow plate Iying bohind the scutellum to which it is somewhat closely applied and in front of the propadeum from which it is sopiarated by a deop !issure. Its lateral extonsions are from two to threo times as broad as the middle portion, and have is doep cavity from which the hind wings arise, and r rauch shallowor csvity on each side of the central portion of the plate. The posterior margins of

these lateral pieces are sonewhat flanged and extend over the anterior margin of the propodeum and the dorsal edges of the metapleura. Outsicie the cavity of the hind wings on each side is a small oval protuberance, sometimes called the metapleural lobe.

The metapleuron is a somewhat indefinite plate with its doreal portion lying obliquely under the hind wings and its ventral extending horizontally under the side of the propadoum. It is broad dorsally where its limits sre well dofined, but gradually narrows ventrally when its boundaries hacorie rathor indefinite, being mors distinct in one species than the otherl.

The hind lege are hoth at the ventral poaterior end of the netathorax with the small metasternsl area lying between the coxal cavities.

Abstract

Abdosen

The median segment or propodcum lies betveen the postscutellum and the base of the patiolo, and is bounded laterally by the metapleura. It is really the first segment of the abdomen which has become olosely connected with the thorax, and it was regarded by early writers as part of the metathorax. Behind the propadoum is a very slender cylindrical petiole which suddenly enlarges near its posterior end to the size of the abdomen. The petiols and its enlarged posterior portion form the second abdominal segment proper but for our purpose it can be regarded as the first segment of the abdomen.

an (x)
8
 2
2 $4-7=\frac{1}{2}+3$
 1. $+2$

0

$12+2$

1.
11 41 $2 \operatorname{lin} 2-2$
1
 E

- $\quad \underset{ }{+}$
 0
$+2$ P
- x_{1} -
$\left(\frac{2}{2}\right.$

\square
1 Th
2 1 ?
 6
 -
$-1+\frac{1}{+}+$ $-1+2$
\square 18
0^{2} ($+2+2+2$ 1
 To

The propodeua therefore lies betreon the wechthorax and tho petiole and is fused with the former excegt for a dorsal fiesuro soparating it from the postscutellum.

Its doranl surfage or dorsum extends from behind the postscutclum to tho point where the body begine to slope ventrally towards the bees of the petiolo. This point is markod by a wore or leus dintinct over or pit. The shape of the dorguin varise with the syecies, since ito postertor inargin may de evenly roinded, or itis aides may converge to e point. Xtis surface may ine more or less atriated, and a madian groove may be present or absent, (in eacin side of the dorsur is a spiraclo belonging to the propodeun: this llog in ths anterior half of the segment in the lins of the depression vich marks the itaits of the doraum. The gro:tion of tha prouadeim behind the dorsum is termad tha ond by fronald. It oxtends posieriorly as far as tho potiolo cind its hinder margin is strongly roflexod to prevent too great dorsal flexure of the petiole. The ond is bounded laterially by a faint deprogsion uxtending forvard on sach side from the base of the metacoxa to the etigma or spiracle. This is krown as the atignatra gruove, Betweon this gruove and the metapleuron is the remanine portion of the median sogment, known as the sida.

Tie somewhat slender potiole is hatally narrower basally then distally. It varies in length usually with the size of the specimen, and has a slight downeard curve. At the base of the dorsal side of the petiole is a small olevator muscle celled the

7

$1-120-1020$? 11
20

\qquad

\qquad
\square

 -

2 $1: 40$

\qquad

\qquad

\qquad

\qquad

 1120

1

funiculus. As mentioned above, the petiole is a slender cylinder for the greater part of its length, but onlarges doraally near its hinder end to join the secund segment of the abdomen. The sternal portion of the cylinder extends continuously to the sternum of the second abdominal segment with which it is connected by a membranous strip. The doraal portion of the cylinder is shorter thus giving the petiole proper tho appearance of being cut off obliquely and the intervening space between its posterior edge and the anterior dorsal odge of the second abdominal eegment is covered over by a roundiy convex plate. This plate may be regarded as tho true notum and is hinged to the petiole proper along ite anterior dorsal edge by a thinly chitinized strip, thus allowing considorable flexion along that region. The notum sends down a llap on each side which extends below the odge of the sternun but is connected with it on the inner side by a mombrane, so that the lower portion of the flap Is free on each side. The posterior margin of the notum widens out to lit over the anterior margin of the second abdominal -egment, and between the two plates is a thinly ohitinized strip similar to those found botween any two other abdominal egments. The modification of the potiole may be interpreted as follows. The cyindrical portion ifpossibly the result of the gradual curling up of the sternum and pleuron on each side and the ultimato dorsal fusion of the pleura to form a sid tube. During this process the notum appears to have been

 atix

 $\operatorname{tr} \tan +\frac{1}{2} \tan$ कit
 $2 \cos 2$ \square (2)

 (

 Latan and

gradually pushed backwards until it finally came to occupy its present position as a convex plate fitting over the distal end of the cylinder. The above is only a brief auggeation as to the process through which the petiols may have passed in order to reach its present highly specialized condition, but this subjoct is of sufficient interest to be worksd up from a morpho logical standpoint.

The portion of the abdomen behind the potiole is of normal size widening suddenly to somewhat ovate form. In females the tip of the abdomen is dorso-ventrally slattened to a blunt point, while in males the tip is wore or less truncate and curved under. In famales six segments are visible dorsally and ventrally, while males show seven on top and eight below. The apiracles are on the anterior dorso-lateral portion of the sogments and occur on all the segments in females and males, but usually only those on the first two segments are visible in pinned specinens. The third and fourth vontral segments of the fexale ray or may not hevopubescent spots on their ventral surfaces and the posterior margin of the third ventral segment may be inuous or almost atraight, according to the species. In males the fourth and fifth segments are finely pubescent along thoir posterior margins and the third and sixth may bo slightly pubescent elso. These segments are flattened or even concave giving tho abdomen a compressed appearance ventrally. The genitalia are usually withdrawn inside the posterior sogments so as to be almost completely hidden. In conjunction with other characters they may be used in separating males, but they

N1

 -

 $2+2$

 12 420

 $2=\sim \ln$ \qquad $-4 t$
have not been so employed in this papor. The sixth or terminal segment of females is modified to protect the genitalia, and at the same time to allow them iree play. The ventral portion of the terminal segment is longer than the dorsul and its tip is somewhat squarely truncete. It has a llap on each aide which fold fogother dorsally, while the triangular dorsal portion fits over the basal part of the segment.

Wings

The wings are of medium size and may be either hyaline and furcous at the tips, or evenly colored in varying shades of brow showing blue violet in certain lights. In this paper the nomenclature of veins and cells given by Cresson and used by Formald in his North American Digger waspe has been folloved.
 not proposed to give a general description of the wings but the characters of systematic importance will be mentioned in the table for saparation and under the deecriptions of the species. A reference to the ligures at the end of this paper will furnish all the necessary details.

Legs

The lege are long and slender eapecially the hind pair. and in addition to the hairs and spines mentioned below, all the segmenta are clothed with a fine to coarse sericeous hairs, dark or whitioh according to the species.

 $2(\log$

 and $\%$ \#

Cl

 trentar

All the coxac are clothed with somewhat long hairs but have no spines; the fore anc middlo-coxae are both smaller than the hinder pair, which articulate closer together than either of the other two pairs. The trochanters are all smaller than their corresponding coxae and heve scattered hairs mostly on the invide. The femore in the threo paire of lege are all stouter than the tibiae with which they articulate but while the fore and middle femora are distinctly longer than the corresponding tibiae, the hind fomur and hind tibia are about equal in longth. The fomera have no apines but are covered with rather long hairs on the inside. Round the tip of each tibia is a circle of small spines two of which are usually longer than the others, and each tibia usually has a row of small recumbent spines all lits sides. The fore and hind tibia has a densely sericoous area, the former in a small strip on the inside near its distal ond, and the latter in a narrow strip along its outer side. The fore tibia has a large somewhat rodified spine with a chitinous blade and some fine hairs on its inner aurface. This spine runs parallel to the first tarsal segment wich has a similar modification on its outer side. This structure forms a cleaning apparatus. The middle and hind tibiae each have two strong spines of unequal length, but only the hind tibia has a cleaning apparatus which is a little different to that on the fore-tihia as will be seen from a comparison of the figures. The tarsus in oach leg consists
 1 I
$1+1$

18

. -4
2

2.

\qquad -
2\square

te

of five segments the first of which is much longer than any of the others and is called the metatarous. All the tarsal segraents are coversd with closely set spines, those at the distal ends being longer than the others.

The last tarsal segment is provided with a pair of strong curved claws, between which is well developed pulvillus. On the inner aide of the claws near their bases there are usually two or three fine hairs one longer and stiffer than the others, while about the middle of the inside of the claw thore may be amall tooth. These tooth occur only on the claws of the fore- and middle legs in these insects.

Sensory Areas on tite jintennae of these specios

In the fenales of both cyencum and ziromermanni ail the segmente of the filament heve somewhat irregularly oblong apperently bare region lying along their inner eides when the antennae are hold curled forward. These areas appear slightly depressed and usually darker than the remaining parts of the sogments owing to the absence of the fine recumbent hairs with which thecther portions are covered. When the antenne are cleared and mounted the sbove areas are seen to be covered with pits and hat-s of various sizes probebly of a sensory nature. The structures on the male antennee appear to be more compliceted aince in addition to depressed regions along the inner paeal pertion of each filamentous segrent they have somewhat oval to oblong, bare, brow to blackish areas on the distal

 $0-2+2+2-20-20$

 - 1 P6

 -20

end of these segments. These areas when cleared are seen to be covered with small pits and hairs clasely packed and are a distinct contrast to the larger and noore scattered pits on the inner basal portions of the segments. These brownish areas ocar, as far as could be dotermined, only on the seventh, and eighth segments in cyaneum and on the seventh, eighth and ninth and occasionally sixth segments in sinmermanni, and vary in size and shape. In both species there are also minute slightly raised areas near the basul end of all the segments of the filament, but the nature of these is undetermined. They are seen on the upper part of the inside of the segments when the antennae project forward.

Analytical Koyg

A very good working table of the families of the sphegoidea is given by Ashmead ${ }^{1}$ and should be consulted by those intereated. The following tablo of the subfamilies of the Siphecidae has

1. Canadian Entomologist XXXI. p. 252
 \qquad
\qquad
 113 -

$$
\int_{2}^{\sim}
$$

been taken from those given by Ashmead ${ }^{2}$ and by Fernald ${ }^{3}$ with slight variations in connection with the subramily sceliphrominue.

Analytical Key to Subfamilies

1. Second cubital cell receiving only the first recurrent voin; the second recurrent vein received by the third cubital cell, or at least beyond the second transverse cubital. (Both recurrent veins are recoived by the first cubital cell in a fow extra-1 imital forms. 2.

Second cubital coll receiving both recurrent veins, or the second recurront vein is interstitial with the second transverse cubitus, aithough sowetincos the first recurrent is intorstitial with the ilist transverse cubitus, or then received by the first oubital colls 3.
2. Antennee inserted on the middle of the face; claws with one to six tecth beneath tibiae atrongly spinous, or at least never with woak or feeble spines; tarsal cowb in ferale present (except in Iscdontia)......................Chlorioninae (Sphecinae Authors)

Antennae inserted far anterior to the raidde of the face; claws simple, without teeth, or at most with a single swall tooth near tho middle; tibiae shooth, not spinous; tarsal comb in female nover present

Podiinae
3. Claws simple, without a tooth boneath; tioias more or less spinous; tarsal comb in fewalo present; abdomen most frequently very elongate, the petiole conposed of two segraents rarely only of one segmont; cubitel voin of hind winge usually originating beyond the
2. Idem p. 348
3. Digger Wasps of North America. Proc. U.S.Nat. IUus. XXXI, p.308.

ar I

 -

 Lhen ha
\qquad

 0

 - -1 -

transvorse median vein.
Sphocinas (Ammophilinas Authors)
Claws simple with a single tooth beneath, although sometimes very minute; hind pair with or without a tooth; tarsal comb in female absent; abdomen always with one-segmented petiole; cubital vein of hind wings intertitial or nearly so............................. 4.
4. Antennae inserted on the middle of the face; metathorax with a large V -shaped area above; mesopleura not longer than the hoight of the thorax........................ Sceliphroninae. Antennae inserted far anterior to the saiddle of the face, on or just above an imaginary line drawn from base of oyes; metathorax vithout a large V-shaped are above; mesopleura much 1onger than the height of the thorax............. podiinee.

Kay to Genera of Subfamily Sceliphroninae.

socond cubital cell receiving both rocurrent veins. spscies black and yollow, not motallic; clypens flat, at apex bidentate; tranevarse nedisn voin in front rings not interstitial With basul vein but uniting With the medisn vain a littls befors the origin of the basal norpure; patiole of abdomen about tuice as Iong as the madian segment. pelopaeus, Latr. Species metallic blue or violaceous; clypens normally 3-dentate anteriorly, trensverse median vein in front winge ir:terstitial with the basal vein; retiole of A.tomen not longor than madian segment. .Sceliphron, Klug

rameill lyay an it

 $1+2+1+2$

 $1-2+2+2+2$ 1020

 $2+2$

 $1+2$
\qquad

[^2]
Table of Species

2. Temales. ${ }^{2}$
3. Abdomen with pubescent 5 put on third and fourth vontral
segments; body hadrs almost entiroly dizrli......cyunoum Kl. (p.26) Abdonen without pubencons epot on third and fourth ventral
gegmouts; whitish hairs on dorsum of zeedian segment.. zimmermanni Dahlb p
4. Body dark blue Dlack or blue graen hairs aluost ontirely

Eojy paler, hairs nanost entirely witishs winge fuligi-
goup to hytiine vith fuecous tips.............. 2 inmormanni Daklt.

Genue Sceliphron Klug

Scoliphron Klug, Nouschrift Soz. Naturf. Freunde, Berlin III.1801, 561 Chalybion Dah2., "iya. Eur. 1. 1213, 22. Chalybion Pattun, Proc. Most. Soc. Nat. Hist. XX. 1880, 378 (desig. Patton). Genotype - Chalybion caciuleun ($=$ cyaneum Dahlb. desig. Patton)

Body metallic blue black or blue green, scmatimes with violet reflections. Clypous normelly tridentrte, out ieeth vary in $3 i z e$ and shape. Hetaplourel sutures indistinct. Elame of posterior tarsi unarmed. lotiole of abdomen somewhat veriable in length, but never as long as median segment.

The genus Sceliphron was established in 2801. by Klug who included fivo specias undor it viz: untrifoxs madraspatanum, Iunatum, cyannum and fuscum. In 1802 Latreills ${ }^{2}$ outablished the genus pelopacus
giving Sphox spirifex L. and 3. lunata $F_{\text {. as exmples, and in Vol. }}^{\text {S }}$. XIII of the sume work (1805) besides describing these species under Polopaens, mentioned that Klug had callod the genus Sceliphron. If. 2843 Dahlbom ${ }^{2}$ established the genus Chalybion, soparating it from Polopaous on a color basis with violacoum F_{0} : imenormanni n. sp., and cyanoum L. as species, and at the same time included spirifex, lunatum and several other apecies under pelopaens. Two years later in his tabulation of species on p. 432 of the same work ho mentioned Pelopaous as a genus with Chalybion and Polopaeus as sub-genera, since no additional characters could be found to justify separation. Chalybion remained under pelopaeus until 1880 whon Patton 3 geve distinctive characters in addition to color, sufficient in his opinion to eatablish Chalybion and Pelopaous as separate gonera, and with this the writer agrees.

It will be noticed that the species removed from Sceliphron by Latreille are black and yollow wile cyanoum remaining is blue, and fuscum apparently unknown to modern workers. Accordingly the soparation of Pelopueus from Sceliphron loaves cyanoum as Ats type in accordance with recomendations k. and \underline{n}. of the International Rules of Nomenclature. Patton's deaignation of cyanoum as the type of Chalybion would therefore rake this genus a synonym of Sceliphron as restricted by the rewoval of the species placed under Pelopaous by Latreillo.

Pelopaeus culifornicus Saussure is regarded by the writer as conspecific with cyanoum, since ho has oxarained a number of specimons from California, all of which are similar to cyanoum and he does

 2

 2 4

 $=-2+2$ $1-2+2$

$\pi=1+2$ $1+2$

 2 420.20

 $12+2+20+2$

not consider the shorter petiole of sufficient importance to justify separation. In this the writer agrees with Patton.

Descriptions

Sceliphron cyanoum Klug.
It has beon found advisable to give only the more important
references on this species.
Sceliphron cyanoum Klug, Nouschrift Ges. naturf. Frounde, Berl造 III. 1801, 561.

Pelopaeus cyaneus Lepelotier, Enoycl. Method. Ins. X. 1825-33.
Chalybion cyaneum Dahlbom, Hym. Eur. I. 2843, 21.
Pelopaeus (Chalybion) cyaneus Dahlbom, Hym I. 1845, 432.
Pelopaeus caeruleus Lepeletier, His. Nat. Ins, Hym. III. 1845, $\frac{3}{320 .}$

Pelopaeus caeruleus, Jones, Naturalist in Bermuda. 1859, 113.
Pelopaeus (Chalybion) caeruleus Saussure, Reised. Novara. 2001. II. 1867, 26.

Pelopaeus (Chalybion) californicus Saussure, Reise d Novara. Z001. II. 1867, 26.

Pelopeus californicus Saussure - Patton, Proc. Bost. Soc. Nat. Hist. $\mathrm{XX}, 1880,379$

Chalybion caeruleum Patton, Proc. Bost. Soc. Nat. Hist. XX, 1880, 378.
Pelopaeus caeruleus Provancher, Natural. Canad. XIII, 1882, 12.
Polopaeus caeruleus Provancher, Faun. Entom. Candd. Hym. 1883, 613.
Chalybion caeruloum Cameron, Biol. Centr.Amer. Hym. II, 1888, 25.
Chalybion (Pelopaeus) Californicum Saussufe, Cameron Biol. Centr. Amer. II, 1888, ${ }^{\text {25 }}$.

Chalybion caeruloum Schwarz, Proc.Ent.Soc. Wash.I. 1890, 254.
Pelopaeus caerulous Peckpans wis. Geol. and Nat.Hist.Sury.Bull.2, 1898, 176, p1. II. fig.5; Pl.X, figs. 1-3.

 .648, $54 \times 112-218=$
$-1+2+1+2+2$

 . 48,141 . II . 10

$$
\begin{aligned}
& \operatorname{si}-1 \quad-2 \cdot 1
\end{aligned}
$$

2ypes. There is a specimen (seen by Fernald in 1913) in the Berlin Museum bearing a label cyanous from North America and stated by the authorities there to be in KIug's handwriting. It is a mail male undoubtediy of this species. No specimens in that collection were found which appear to have been labeled by Dahlbom. At Lund are eighteen specimens, the first marked "Chalybion caeruleum, Sphox Lin. Pelopaeus Polet. 0 ' O Now York." This specimen is a male and it is to be inferred that Dahlbom at the time of labelling this specimen was confusing it with Chlorion caeruleum. This confusion hes already been discussed by Fernald (Ent. Nows XV. 1904, 117).

The types of californicus Sauss, have not been seen, but are presumably at Geneva.

The following description has been made from fifteon females and the same number of males selected from a large number of specimens and covering as wide a distribution as possible. Metallic blue black or blue green, sometimes with purple reflections espocially on legs and abdomen; head and body except abdomen: thickly pilose, pubescence silvery on sides of frons, dark on third and fourth ventral segments of famale abdomon; remainder of body covered with fine dark sericeous hairs more or less concealed by pilosity except on legs and abdomen. Winge varying from pale to dark fuliginous.

Female. Head across the eyes broflder than thorax across the tegulae; clypeus sloping abruptly at sides down to depressed areas

 -

Pin

Abstract

of frons, somewhat flat in centre with surface closely punctured and covered with dark erect hatrs and finer dark sericeous hairs; these are best seen from the side and vary indensity with individuals; anterior margin of clypeus black, extending laterally under the eyes, armed near the middle with three blunt teeth, (the median tooth generally the smallest), and a small lateral process on each side varying in size but never as large as the contral teeth; a row of strong black hairs projects forwards over the teeth; posterior margin concave, bending round at the sides to join the clypeal sutures which form the laterel boundaries of the clypeus; central portion of clypous with a median line appearing as an irrogular shiny strip; surface of frons channelled on each side of the antennal elevation and clypeus; these depressions together with the antennal region are closely punctate, the punctures being somewhat confluent and smaller than those on the clypeus with correspondingly smaller hairs; there is also a fine silvery pubescence on the sides on the froms seen best from behind; antennal region divided by a distinct median elevated line extending from between the antennae to within a short distance of the median ocellus; intra- and circum-ocellar areas finely punctured and with small erect black hairs; surface of vertex rather sparsely punctured with a fow long black hairs on a slightly raised area behind the ocelli; occiput covered with fine punctures and shorter black hairs, sometimes densely sericeous: genee clothed with long erect black pilosity interspersed with fine sericeons

 bun --ani it. 4 - ...

hairs thickest along the hinder margins of the eyes and the lower portions of the genae and giving these parts a coppery feflection when seen from behind; inner margins of compound eyes more conoave than those of males and more convergent pooteriorly than anteriorly; antennae - cape and pedicel blue black or blue green, generally motallic with few black hairs mainly on inner side and surface covered with very fine dark hairs; flagellum or filament dull sooty black or greyish black owing to the presence of minute recumbent hairs; first segment of the filament usually slightly the longest, the remaining segments very gradually decreasing in length until the last which is usually a little longer than either the ponultimate or ante-penultimate; last segment tapers distally but is somewhat squarely truncate at its distal ond; mandibles long, narrow, curved, without teeth, rather bluntly pointed; sometimes worn down so as to bo roundly truncate at tip, black or blue black Sor basal half, graduelly shading to pale brown at diatal end, with a groove along upper and lower margins, somotimes with fine hairs, and a otrong groove at extornal basal end with a few stout black hairs; there is also a row of short hairs on the inner face but these are usually hiden when the mandivles are closed. Thorax. Neck may be slightly rugose with sparse punctures and small hairs; collar narrower than remainder of thorax, sides alnost vertical, laterally compressed with a central depression ending dorsally in a doep fovea; the anterior dorsal surface may form an acute angle with the posterior surface making the lobes somewhat sharp, or it may slope gradually upwards making these more

 $a+(a+2 a+2$ 14

 T40.

rounded; median dorsal groove may be tranoversely atriated: dorsal surface, oides and opisterna trongly punctured and covered with erect black hairs interspersed with a ine bromish vestiture; prothoracic lobe with small scattered punctures and hairs, posterior edge fringed with short delicate pale brow hairs; mesonotum with a distinct median dopression for its anterior half, auriace atrongly and closely punctate and sovered with somewhat erect black hairs; scutellum also with median groove, but not so closely punctured as mesonotum, posterolateral margins of lateral depressions fringed with fine pale brown to silvery hairs; postscutellum finely punctured in centre, lateral extensions fringod posteriorly with small light brown to whitish hairs; mesopleura and mesosternum covered with strong punctures and coarse black hairs interspersed with minuto coppery hairs; motapleura and motaploural grooves somewhat sparsoly punctate; the latter sometimes almost bare and shiny; median segmentdorsal shield bounded by a Iinear U-shaped depression and broadly rounded et poaterior margin where there is a small but deop fovea; this depreseion may be traneveraely marked by ridges on each side both anterior and posterior to the spiracle, but these raised lines usually ond where the sides begin to curve round posteriorly: dorsura with a distinct median depression, rather faint anteriorly where the shield has a gradual upward slope, surface of shield usually with no markings other than rather small often confluent punctures, but may be rugose, hairs medium sized; oides and and

 - in

 mbin
 $-1+2+2$ Nug

 ; Lactely a 2

 in

Abstract

usually with more distinct punctures small at sides of shield, coarser at posterior ond pilosity to correspond; petiole stouter at distal ond before suddenly enlarging to size of abdozen, punctures line, hairs slender and rather scattered, finely sericoous mainly in upper distal surface. Abdomen of mediun aize somewhat ovate shining, arched dorsally, flatter ventrally, pointed behind, almost the whole dorsal and ventral surfaces covered with minute dark recumbent hairs giving the abdomen a dirty appearance in cortain lights without obscuring the body color; firgt three dorsal segments without coarse punctures or stout hairs, last threo with small punctures and scattered hairs, a row of fine punctures along the hinder margins of the firgt two of these aegmenty, but the corresponding hairs very rarely complete; sixth or terminal dorsal segment with a group of small punctures and hairs on each aide nearest the enterior margin, but central portion bare except for minute hairs; gixth or terminal ventral segment with a narrow punctate strip on each dorsal flap sparsely covered with small hairs of varying sizes, ventral surface covered with fine hairs except for a bare median strip; fifth ventral with low scattered punctures and hairs; fourth with a black or brow pubescent area on the middle of tho posterior part of the segment and a fow hairs on each side (Fig. 4); third bears a smaller sinilarly colored pubescent area and a deeply sinuate double row of hilre extending across the segment bohind the pubescent area, but if the abdomen is at all tolescoped these cannot always be seen; posterior margin of third segment sinuate;

 , 1

second segment with a V-shaped double row of hairs; in all of the above cases thghairs may be missing but the punctures can still be seen.

Vinge vary from pale to dark fuliginous with violot to purple roilectione except at tips which are dull and sometimes darker than the basal portion of the ving; forewing has no distinctive charaoters apart from those shown in the figures; togulae blue green or blue black, sometimes with purple lights, shining, paler at margins, finely sericeous for basal half, hairs dark; hind wings, angle botwoen median and tranoverse modian usually greater than a right angle; discoidal leaves cubital slightly oxterior to junction of median cubital and transvorse median. Legs colored with various shades of blue, black or green sometimes with metallic purple reflections; coxae and trechanters blue black or greenish black, sometimes dull purple in old specimens, trongly punctured especially on ventral side, with long black hairs and fine brom sericeous vestiture; fomora and tibiae colored much the same as the preceding segments, ferora with rather long black hairs on ventral side and minute brow hairs over the whole surface, fore and hind-tibiae finely sericoous, vith a coarser brow cericeous aroa along innor surface; tarsi may be dark to purplish or the soricoous hairs may give. them a bromish appoarance; claws dark brown for basal half, paler at tips; spines on legs black to brown.

Malo - Diffors from fomale as follows:

91.

 I 4 \&

$$
: 4611-4 x+2 \pi x=141-N
$$

Body usually more hairy; eyes more approximate below than above; clypeal teeth small and rather pointed, no side processes; frons lass sunken at sides of clypeus; mandibles of medium size, pointed at tip; antennae with thirteon segments; eecond segment of flagellum longer than first; dorsal lobes of collar usually somewhat more acute; abdomen more compressed ventrally especially the last fow segments, tip curved under; seventh or last dorsal segment evenly rounded, covered with short black hairs chiefly at sides, hinder margin bearing a pair of genital palpi one on each side, sixth, fifth, fourth and third dorsal segments with one sometimes two rows of small punctures near hinder margins but corresponding hairs often absent; eighth or terminal ventral segment usually drawn in so that only the lobed distal portion projecte beyond the hinder margin of the eeventh ventral and covers the anal opening; this lobe is here termed the hypopygium, but has been given various names by different authors; it is covered with short eroct hairs seen best in proille; seventh ventral segment bare, sixth finely sericeous; fifth and fourth finely serioeous in centre, punctate at sides; third with antorior margin sericoous and a sinuous row of punctures anterior to it; second with deeply sinuous row of punctures and hairs. Longth Females 15-23 mimales 12-18 mm.

Distribution This species is widely distributed throughout North Amerioa and the uriter has examined specimens from Southern Canada, the Eastern United States from Maine south along the east coast to Florida, then west through the Gulf States to Southern

 ath

 anaty

 b4.

California as far north as San José, thon east again through Nevada, Utah and north to the Oreat Lakes. This insect also -ocurs in South-eastern Montana but, as far as the writer knows, does not extend over the Rocky Mountains to the northern Pacific coast region. He has also seen specimens from the central Gulf Coast of Mexico.

This species therefore, as known to the writer, seoms to be entirely an Austral form occurring mainly in the Upper and Lower Austral with occasional specimons in the Iransitional.

Habits. The members of the sub-family Sceliphroninae are colloctively known as Mud-daubers, and this beautiful species is called the Blue Mud-dauber. The fomales can be noticed during the early summer months flying in and out of barns, outhouses, porches or any sheltered place, and if followed up may be seen at work on their anall earthern nests which are usually placed fairly high up near the roof.

The writer has had little opportunity of studying the habits of these insects, so that he cannot do better than give a short summary of the interecting obeervations made by Mr , and Mrs. Peckham on the habits of this spocies, then known a Polopaeus caeruleus. These observations wore made ovor a period covering a number of years and are of great interest and importance, especially those on the methods exployed by the wasps in capturing and stinging their prey.

[^3]

 $2+1+2$

$$
\text { it } 141+
$$

 $2+1+2+2$

$-1+2$

$1 . \quad 11000$

$\sim-L$ $\operatorname{sen}=0-1+2$

On appearing in the early sumaer the female selects

a spot for her nest which is always built of damp earth and soon hardens to the required firmess. She digs the mud with her mandibles "forcing heyhead down into the 8011 and raising her body into a nearly vertical position." Sho carries the mud to the building site in her mandibles and moulds it while still soft into the required shape "using her mouth, mandibles and leet." The authors found that it took from thirty-two to forty loads to complete a cell, oach load making about half a ring in the larger parts or whole ring near the bottom of the cell. The completed nest usually consists of $s i x$ or more cells on the average placed against oach other to form mass which ia then daubed over with small pieces of mud so that the contour of the rings is hidden. The great majority of the cell are placedin a vertical position with their openings on top. The cells are provisioned with spiders, a few large ones or many small ones being cramed into one cell, and the "legs of the spiders bent in all directions without regard either to their comfort or their life." The spiders are caught and held by the mandibles and forelegs, then stung first by the wasp ind flight apparently at random, and second time after alighting nearby the place of capture. This second sting is usually given on the under side of the cephalothorax. Tho authors care to the conclusion that the wasp usss her sting "rather to overcome any resistance that she may encountor than to paralyzo tho spider and thus keep it Iresh. To her it is a matter of indifference whether the spiders

 $-2+20-20$

 $\frac{2}{2}+\frac{2}{2}+\frac{1}{2}+2$

 Lata

 120
are killed or paralyzed and either result asy follow." Hr. and lirs. Peckham made un examination of a large number of recently provisioned cells of various species of Pelopaeus and found most of the spiders dead while the others, although reduced to a state of quiescence, were alive and would respond to atimulation by a guivering of the tips of the legs, but as a rule did not live very long.

Sceliphron Zinmermanni (Dahlbom)

Chalybion Zimnermanni Duhlbos Hyw. Eur. I. 2843, 22.
Polopaeus (Chalybion) Zimermanni Dahlbom Kym. Eur. I. 1845, 433.
Pelopaeus (Chalybion) aztecus, Saussure Reise d Novara Zool. II P.J. 1867 Нум $2 \bar{\sigma}$

Polopacus (Chalybion) simermanni, Saussure Reise d. Novara Zool.II. P.1. 1867 Hym 26.

Polopaous texanus Gresson, Trans. Aroer. itht. Soc. IV. 1872. 210. Chalybion Bimeramai ratton Roc. Bost. Soc. Nat. tiat. $\mathrm{XX}, 1880,379$. Ghalybion texanum Patton, idem.

Chalybion aztecura Fatton, idem.
Chalybion zitamercanni Comeronz Biol. Centr. Axaer. P. 71. 1888 Hymi II! 25!
Chalybion astecun Camerdi, idem.
Types. Dahlbomevidently described zimermannf from at least two opecirems since he records both male and fomale. In the Berlin触攵 there is a specimen labelled with this name, but so far as could be ascertained by fernald who examined it in 1913, the only difference from cyanoum was that the dorsum of the propodeum was

sifghtly cross striate which, as has been shown, is not distinctiva. At Lund thare are several specineng the ifst a melo beine labolled "Siamer m N. Aiserika" on the upper label and "Infane rianni Dlbin. sp. Ign." on the second. On the doraun of the propodeum of this seccisen are traces of transverse ridges, the thoracic hairs are white and wings quite fuliginous. Another specinon is labelled "元 Sud Carolina Zimemann". Tho writer 1s inclined to regard the ixrst named apecimon from Lund as representing at least one of the original specimens used by Dahlbom and the one at Berlin as not zimeermanni at all.

The types of aztecus Sauss. have not been seen but aro probably in the Sassure collection at Oeneva.

Toxanus Cress. wae described from two specinens called female and rale. No females with clan wings are know and a reexamination of material at Philadelphia by $u r$. Cresson shows that he designaied one of them re female by orror. Two specimens
 This species has been redescribed from seven ferales and fourteen wales frois the localities mentioned in the habitat. Female. Medium sized, dark blue or blue green, coarsor pilosity overywhere dark except on dorsum of median segment where it is whitish, iiner hairs ailvery to whitioh; no pubescent spots on third and fourth ventral segments of abdomen; randibles unidentate; winge fuliginous.

Head similar to that of cyaneum in goneral shape; clypeus usually somewhat flat at sides, archad in centre, with median ridge,
amine :

 tan

 Cink

nirface distinctly guncturod, pllosity only noderately dense, ailvery pubowcenco on wides, enterior margin bleck with nerrow oxtonsions under the oyes, threc rather pointed teeth, no latorel prosocses, posterier margin broadly truncuto and slightly owarginato; trons not 20 doeply sunken as in cyenoum diatinotly punctured, modorately covered with orect black hairs; a fine gilvery pubescence clothing nearly all the sunken aroa of the frons; ocelli with distinct grooves at outar bases; vertex sparsely punctured, arect haise rather fev, finer hairs whition; gonaw distinctly punctato, inoderatoly cense hairy intersporsed with fine sericeous vestiture; inner margin of conpound eyes dietinctly concave near ueper end, gradvally convergent towarde clypoue for lower half, eyes usually wore approximate below than above; anternse - seape bleck uith setallic ilue green reilectione, a number of rather short hairs wotly on inner surface, finer soriceous hairs vary from silvery to pale brow, pedicel with a few emall hairs on inner ouriace; Plagellum dull black with a donse covering of fine recumbent hairs giving it a black to greyich appearanco according to the light; liret sogsent of flagellur distinctly naryower proximelly and shorter than eecond, rewzining sozmente only very slightly narrower proximally laet eegnent rict cat off truncately as in cyaneum but tepering to a blunt point; mandibles of mociun lengti with one rather wice tooth on innar wargin not reaching to the tip; a row of four or live stout hoirs on outer side and about twice that number on inside.

Thorax. fintorior surface of collar with a stoop upward slope to the somewhat uoute crosts; and distinctly rugose at anterior ond, doroul lobes small and separated by a shailov depression; punctures enall and scattored, pilosity finer and sauller then in eyanoure soricoous hairs pelo to whitish; median depression on sides of collar not ending abruptly in a loyoa but continued above to the groove batwecu neck ind collar; prothorucic lobe with a fringe of pale brown hrirs; wedian depression on raesonotum faint or absent; depresoions at posterior sidos oi mesonotum not as otrongly marked as in cyonoun; scutellum nay have a slight median deprossion; posterior nargin of lateral pitz fringod with silvery winito hairs; postautellum with suall punctures, posterior margin with a foe white or pals hairs; nodian sogment - anterior nargin of dorsum ilanged, poaterior margin moro pointed than in cyanoun, wicis surface of shiold transversely striated or rugose and without modian depression, haires rather delicate, whiter at sides along the outline of dorswn, than in the centre; posterior and of dorsurs sloping rore gradurally to hindar margin than in cyanoun, surface with irreguler striations, punctures confluent, numjrous dark haire; etigevatal groove not well marked, sides of dorsum strongly punctate behind, smalior punctures anteriorly; segoploura and resostornum with deep punctures und long bleck hairs; metapleura distinctly punctate axcopt along metapleural groove winich is somewhat bare and shiny, lateral oblique depression shallover than in syanoun; potiole slightly ohorter and

 $12+2$

more slender than that of cyaneure punctures and hairs scattered. chiefly on basal half, finely sericeous mostly on upper half of distal end.

Abdomen medium to small, rather ovate, paler blue than in cyanoum, shining, with minute white recumbent hairs scattered evenly over the dorsal surface, first three dorsal segments without dark hairs, fourth and fifth with a fow scattered punctures and dark hairs; sixth or terminal segment with hairs near posterior margin, bare along median line, dorsal segment may almost cover ventral; tip of abdomon a little more slender than in cyanoum; ventral segments - dorsel flaps of terminal segment (where visible) with dark hairs along the sides, thinner or almost absent along the median line; fifth to third segments with double sinuate row of line punctures, but hairs only scattered; third and fourth without the pubescent areas present in cyanoum; second with a V-shaped double row of punctures with apex pointing forwards, but corresponding hairs not complete.

Wings similar to those of cyancum but without such a range of brow shades in the few specimens available; forewings as in figures; teguLae with white sericeous hairs; hind wings - angle botween median and transverse median about a right anglo; discoidal loaves cubital slightly more exterior to junction of median, cubital, and transverse median than is the case in cyanoum.

Legs. Segments with same general features as in cyanoum, some what paler blue; coxae, trochanters, and fomora covered with fine white recumbent hairs; fore- and hind-tibiae with a donse pale
 15.2 ail

 1 (1) 2

48 1

 $2+1+2$
 2 $112+1$ $+2.20$ entane 120 $\rightarrow+\cos +2$

 -2

brown sericeous area especially noticeable on hind-tibiae; fine hairs white on other parts of tibiae; tarsi with rather pale sericeous hairs.

Malo. Diffore from femalo as follows:
Body color paler blue; vestiture of body denser and hairs everywhere white except on face and genae and some of the ventral segments of abdomen; the approximation of the eyes acrose the clypous is more noticeable than in famale giving the face a narrower appearance below than above; middle tooth of clypeus more prominent than laterals, which are small and rudimentary; mandibles without tooth, of medium length, stout at base, tapering t.o a point; wings varying from somewhat dark fuliginous to hyaline with fuscous tips; abdomen more compressed ventrally and curved under at tip, similar to that of cyanoum rale in general foatures excopt that the fine sericoous hairs aro whitish.

Longth. Females 16-20 mm. Hales 12 - 19 mm .
Habitat. Dahlbore mentioned that "Zimmermann caught this olegant species in South Carolina, North Amorica" and it has been reported from Kichoacan; Cordova; Atoyac in Vera Cruz; Ventanas; Valladolid in Yucatan; and Teapa in Takasso. Specimens have been examined from tikin, N. C.; "Loui"; Texas - Dallas Co.; Cypress Mills; Austin; Comal Co; Brownsville; from "Mex"; Alta Mira, Tampico, Mexico; San Antonio, Nicaragua; and These localities seom to show that it is mainly a lower sustral form with occasionsl specimene from the Tropical Zone and a possible occurrence in the Southern part of the upper Austral. No records of the habits of this species as such have boen found by the writer.

 $+1$
2

$+\operatorname{lod}+$

Explanation of Plates

The following figures wore drawn by the author in nost cases with the aid of camera lucida, and are only intended to be diagramatic.

Fig. 1. Dorval viow of thorax of Sceliphron cyaneum
Fig. 2. Lateral view of Sceliphron cyanown
a. prothorax
al, nook
a2. collar
ac, anterior coxa
b. mesothorax
b_{1} : mesonotum
b2, scutellum
b $_{3}$, mesothoracic opisternum (inoluding pre-opistornum and opiaternum)
b_{4}, episternal groove
b5, mesothoracic opimeron
c. metinthorax
cl. postscutelium

C2. metapiouron (inoluding metepistemus and metopimeron).
C_{3} metaltoracic epimeron
c_{4} metaplearal labe
d. madian segment or gropodeum
dy. doraum
d2. end
d_{3}, side
d4, stigma or spiracle

Maghathintm

\author{

$$
\begin{aligned}
& \text { - Ln motor }
\end{aligned}
$$
$$
\operatorname{san} \operatorname{lan}_{1}+\pi=2
$$
d_{5}, fovea
d60 stigmatal groove
f. funiculus
fw, forewing
hw, hindwing

1. 2obe
me, mesocoxa
p. petiole
pc, posterior coxa

- stigua or spiraclo
st, ating
t. tegula

1-6 abdominal plates.
Fig. 3. Ventral aspect of abdomen of Scoliphron oyanoum famalo showing the pubescent spots on the third and fourth segments, Lettering as above.

Fig. 4. Frontal view of head of sceliphron oyaneum fomale.
fig. 5. The wings of sceliphron cyanoun with the colls named according to the usual nomenclature.

Fig. 6. The sume wings with the veins named according to the usual nomenclature.

Iig. 7. Fore tibial comb spine of Scoliphron cyanoum.
Fig. 8. Hind tibial comb spine of Sceliphron cyaneum.
Fig. 9. Antenna of Sceliphron cyaneure female.
$+17 \cdot=$

$+2$
$\square+\frac{1020}{}$
$2-2$
$+$
-

(x)

2
2 $4(2)$

道

| | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

[^0]:

[^1]: ven \square

[^2]:

[^3]: a. Instincts and habits of the Solitary Wasps by G.W. and E.G. Peckham. Wis. Geol, and Nat.Hist.Survey.Bull. No.2. Sci. Ser. No. 1. 1898, p. 176.

