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ABSTRACT 

Samapriya Roy 
 

REMOTE SENSING & GIS APPLICATIONS FOR DRAINAGE DETECTION AND 
MODELING IN AGRICULTURAL WATERSHEDS  

 
The primary objective of this research involves mapping out and validating the existence 

of sub surface drainage tiles in a given cropland using Remote Sensing and GIS 

methodologies. The process is dependent on soil edge differentiation found in lighter 

versus darker IR reflectance values from tiled vs. untiled soils patches. Data is collected 

from various sources and a primary classifier is created using secondary field variables 

such as soil type, topography and land Use and land cover (LULC). The classifier mask 

reduces computational time and allows application of various filtering algorithms for 

detection of edges. 

 The filtered image allows an efficient feature recognition platform allowing the 

tile drains to be better identified. User defined methods and natural vision based 

methodologies are also developed or adopted as novel techniques for edge detection. The 

generated results are validated with field data sets which were established using Ground 

Penetration Radar (GPR) studies. Overlay efficiency is calculated for each methodology 

along with omission and commission errors. This comparison yields adaptable and 

efficient edge detection techniques which can be used for similar areas allowing further 

development of the tile detection process.  

 

 

Lin Li, PhD., Chair 
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INTRODUCTION 

Agricultural watersheds are often drained by agricultural drainage systems (ADS) which 

are designed to allow easy transport of water from land and benefit agriculture and 

agricultural yield due to the reduced level of water in the fields (Oosterbaan, 1994).  

These ADS can be surface drains and ditches which allow the water to pass on the 

surface and are called "surface drainage systems", or tile drains which allow the water to 

pass underneath the soil and are called "subsurface drainage systems". Both surface and 

subsurface systems drain into an internal low, the overall water availability in the field or 

area of interest, and into an external or main drain transport which transports the water to 

the outlet or riverine system. Tile drainage has increased the ratio of subsurface to surface 

drainage creating major concern about the hydrologic consequences caused by these 

subsurface agricultural drainage systems and thus subsurface tile drain systems are the 

focus of the current study. The location information of these tile drain systems are limited 

and the tile drain placement layouts are complex, making detection of subsurface systems 

a valuable tool in assessment of field hydrology and in understanding flow of water 

through these agricultural areas. This further improves understanding of flow routing for 

control and assessment of water quality and quantity parameters in a given agricultural 

watershed. 

 Past investigations into location of these tile drain systems have yielded 

limitations in terms of a singular approach and the wide applicability in terms of designed 

methodology (Allred et al., 2004; Verma et al., 1996; Varner et al., 2003; Naz and 

Bowling 2008). However owing to the extent of the problem of detection and the area 

under consideration, remote sensing has been established as a key strategy. It plays a 
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valuable role in reducing human intervention and constraints while handling a large area 

and has thus been developed further for our current study.  

 

Hydrological Impacts of Subsurface ADS  

Tile drain systems are generally placed about 0.6 to 1.2 m depth underneath the soil 

surface and made from ceramic, clay or corrugated plastic materials. The function and 

location of these subsurface drainage systems vary with the inherent soil saturation and 

the amount of water drained by the systems.  Subsurface drainage improves the moisture 

and aeration conditions of the soil and has been known to reduce the total surface runoff 

by increasing total infiltration (Stillman et al., 2006). Subsurface drainage systems were 

originally placed to reduce the duration of excess soil water in the root zone, facilitate 

crop production and increase productivity.  

 From 1997 to 2007 the average total agricultural productivity in United States 

increased tremendously. Particularly the corn production has increased from 

8,732,478,098 bushels in 1997 to 12,738,519,330 bushels in 2007 (USDA Census of 

Agriculture 2007). Increased agricultural productivity has promoted large areas with 

saturated soil conditions to be converted into tiled agricultural systems (Table 1). Other 

benefits include reduced surface runoff and hence soil erosion, and improved water 

filtration in comparison to untiled areas (Skaggs and van Schilfgaarde, 1999). 
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Table 1. The number of wetlands converted to agricultural type (1980-88 to 2005)                

(Indiana NWI Update Final Report, 2010)  

  Agriculture 

  Acres % 

Fully Converted 25,023.05 79.20% 

Partially Converted 7,895.24 57.12% 

Total 32,918.29 72.48% 

 

However, there are concerns about the watershed hydrology and water quality (Naz and 

Bowling, 2008). The interactions between groundwater, surface water and subsurface 

drainage systems clearly elucidate the importance of a proper simulation and flow routing 

and distribution model to understand water quantity and solute transfer dynamics 

(Rozemeijer et al., 2010).  

 Though these studies have included the amount of water removed by tile drains, 

the timing of flow through a tile drainage system has not been incorporated into the 

design criteria (Walter et al., 1979). The absence of a control mechanism from these tiled 

fields have been linked to large loads of residual nitrogen being exported to surrounding 

waterways, imposing a problem to the overall water quality of the system (Goswami et al., 

2009).  

 

Functional Assessment of Tile Drainage Systems 

It is evident that assessing the functional and environmental benefits of a tile drainage 

system is largely dependent on understanding the spatial distribution and layout of 

underlying tile drainage networks.  The first step toward this understanding is to examine 
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the structure of a tile drainage system. Based on previous studies and the 

recommendations from the Indiana Drainage Handbook (1996), an optimal tile drain 

layout (Fig. 1) aims to provide an adequate and uniform drainage to a given field (Wright 

and Sands, 2001).  

 The layout patterns in earlier studies include parallel spaced drains with fixed 

spacing and minimum slope variation to targeted drainage (Wright and Sands, 2001). 

However such layout patterns and practices were not followed earlier and hence large 

sections of tile drain networks consist of irregular networks (Cooke et al., 2001). 

 

Fig. 1 Tile drain patterns in agricultural watersheds (adopted from Wright and Sands, 

2001) 

This led to differences in the actual tile intensity in the given area and the revised 

statistics for percentage area that has been tiled in the 1987 and 1992 agricultural census 

report (Table 2). For example, the USDA-ERS 1987 report stated that 70% of drained 
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land in Indiana is subsurface tile drained, and the 1992 USDA agricultural census 

generated similar results (Table 2). 

 

Table 2. Estimated percent cropland with subsurface drainage for Indiana (USDA 1992) 

 

This inconsistency makes understanding the flow dynamics and the role of subsurface tile 

drains in their response to agricultural flow viable. Additionally, the planning stages for 

new tile systems require information about the existing drains and their placement, 

spacing and tillage intensity including both partially functional and nonfunctional tiles.  

However such information on subsurface tiles is currently lacking. The identification of 

tile train patterns depends on a methodology to be developed and adapted.  

 Earlier studies on tile drain identification (Allred et al., 2004; Verma et al., 1996; 

Varner 2003; Naz and Bowling 2008) have included ideal tile drain layout, which are 

regularly placed and do not include irregular tile drain patterns. The current 

understanding of tile layout does not delve into the problem of larger existing irregular 

tile systems (Cooke et al., 2001). Another distinct classification that distinguishes tile 

drains systems based on their functionality, groups subsurface tiles into controlled and 

uncontrolled flow systems. The ideal situation under any given conditions would be a 

regularly placed controlled flow system which allows the farmer to control the time 

Indiana 

(A) Total cropland 1992 (ac) 13,370,000 

(B) Drained cropland (50%of total cropland) 6,685,000 

(C) Drained cropland with subsurface drainage (82%of total 
drained cropland) 

 
5,481,700 



6 
 

period and quantity of discharge (Purdue Climate Report, 2008). This has instigated 

interest in understanding existing tile systems for required modification and augmentation 

(Allred et al., 2004). The improved ADS will inculcate existing systems while optimizing 

tile density and spacing. However, most tile drain systems are truly irregular and have 

uncontrolled flow systems (Table 3).  

Table 3. Punnett square representation of tile pattern and control 

 Regular Irregular 

Controlled Regular, Controlled Irregular, Controlled 

Uncontrolled Regular, Uncontrolled Irregular, Uncontrolled 

 

The increase in agricultural practices will lead to substantial increase in tile intensity 

(Number of tiles/Unit Area) and the total tiled land area. This would require additional 

tiling operations for previously undrained areas or in areas with existing nonfunctioning 

and partially functioning drains which have to be replaced or augmented as previously 

discussed. The lack of existing tile structures coupled with the need for increase tiling 

provides added impetus for understanding the location of the tile drains.  
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STATUS OF TILE DRAIN DETECTION  

Geophysical approaches 

Exploration has been conducted with limited geophysical methods to determine the 

location and pattern of subsurface drainage networks (Allred et al., 2004). The research 

was conducted as grid surveys in areas of southwest, central, and northwest Ohio at 

eleven test plots containing these subsurface drainage systems and the detection 

efficiency was compared based on the methodology used (Allred et al., 2004). The 

method included geomagnetic surveying, electromagnetic induction, resistivity, and 

Ground Penetrating Radar (GPR) studies which were conducted for fields containing clay 

tile and corrugated plastic tubing drainage pipe. The average effectiveness was found to 

be 81 % in terms of locating the subsurface drainage pipe (Allred et al., 2004). Although 

the techniques were accurate, they were clearly inefficient considering the expanse of the 

problem, total time required and related aspects of how cost ineffective this method could 

be.  In addition, the scale of the problem and the varying response types and system 

patterns pose limitations on the methodology.  

Remote Sensing approaches 

Remote Sensing (RS) and Geographic Information System (GIS) have allowed us to 

develop cost effective tools for the delineation of these tile drains. The process reduces 

the time required for tile drain detection, and a large area can be covered. Tile drain 

mapping using RS is based on the fact that the soil over efficiently draining tiles should 

dry faster than the soil at other locations in the field. This creates a high reflectance in the 

infrared (IR) region of the radiation spectrum. The IR range of the radiation spectrum is 

very sensitive to soil moisture, and these variations in near IR range (0.7-1.3 µm) and 
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mid IR range (1.3 µm) reflectance can be captured and differentiated (Verma et al., 1996).  

Other soil properties affecting the reflectance such as soil texture, the roughness, and the 

presence of organic content allow for narrowing down the area of study. The strong 

relationship between soil texture and reflectance value has been established: coarse, 

sandy soils which are well drained tend to have higher reflectance values than poorly 

drained fine textured soils. Tile drains are primarily found in poorly drained fine textured 

soils. This creates the relative difference in reflectance, which could be used to study the 

locations of tile drain systems.  

 The choice of the wavelength range for remote sensing images depends on the 

response of moisture to light in particular wavelengths and the possibility of ascertaining 

drainage edges from these buried subsurface drainage patterns. Verma et al. (1996) used 

color infrared imagery (CIR) acquired for a larger time period of March to April 1984 at 

a spatial resolution of about 1m.  This CIR based study suggested that the image used by 

Verma et al. (1996) had uniformly light gray tone and indicated drainage stresses more 

efficiently. Varner (2003) used RDACSII multispectral sensor data, and the RDACSH3 

hyperspectral data with 120 bands from 471 to 828nm which was used to simulate 

IKONOS data. The multispectral and simulated data at a spatial resolution of 1m was 

suitable for discerning these drainage features, but limited in temporal scale owing to 

cloud conditions. The study by Naz and Bowling (2008) benefitted from high spatial 

resolution for pan chromatic images between 0.15-1m and aerial color (NAIP) imagery at 

the 1m resolution.  

 The accuracy and efficiency for detection of subsurface tiles relies on remote 

sensing methodologies to be used. Verma et al. (1996) primarily used band 
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transformation and manual digitization for visually delineation of tile drain features. This 

method is no doubt time consuming. Varner (2003) developed four distinct 

methodologies. The first is contrast enhancement followed by Kernel based convolutions 

and filtering using 3 x 3 kernels. The second is a hybrid soil guided methodology 

involving identification of areas with hydric soils, clipping the raster layer based on the 

location of hydric soils and applying a 3 x 3 median filter for non-directional edge 

enhancement. This method benefits by limiting the area of application and thereby 

increasing computational efficiency of detection of these drainage patterns. The third 

method is a combination of PCA application coupled with edge enhancements using 

horizontal, vertical and diagonal filters which were then layer stacked to get better 

response for features of interest; and the PCA methodology allowed for a better result 

with over 77% to 81% accuracy. The last method is to utilize the panchromatic data for 

the delineation. The overall accuracy of these methods reached about 77% though 

application was severely limited by the time frame of the data collected. Among image 

processing and edge detection methods mentioned above, none of the methodologies used 

are truly automatic when it comes to detection and vectorization.  

 When dealing with regular tile systems, Naz and Bowling (2008) applied 

automatic delineation and vectorization to high spatial resolution panchromatic and 

natural color imagery, and resulted in an improved accuracy even with the absence of 

hyperspectral data used by earlier studies (Varner, 2003). In this study, automated 

convolution with varying Kernel sizes was used to convolve the image and edge 

detection. In order to address the displacements between pixels, the Hough 

transformation was used to extract regular features likes lines, circles and ellipses. The 
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Hough transformation is an edge detection algorithm capable of extracting feature 

boundaries (in this case linear features) without losing any continuity and was found to be 

computationally suitable for smaller scale. 

 Although different methods for detection of drainage tiles are available, it is not 

easy to conclusively determine the efficacy of one method over the other owing to the 

difference in the type of datasets and the time period of remote sensing data acquisition.  

Furthermore, multiple points of interest have been excluded from all previous studies, 

such as ignoring large scale irregular tile drain systems and a mixture of both functional 

and nonfunctional tile drain. The edge detection method could benefit in conjunction with 

high resolution digital elevation models (DEM). The earlier work cumulatively shapes 

the outline of the problem but must be augmented by better datasets and methods.  The 

current study aims to carve a way for an effective, automated and adaptable tile drainage 

methodology. 
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OBJECTIVES 

The overall theme of this research is  

• To be able to identify and detect tile drainage pattern in subsurface drainage systems 

predominant in agricultural watersheds, using Remote Sensing and GIS. Specific 

objectives for the same project included the following. 

• To compare and develop user defined techniques along with novel applications of 

image processing including user defined kernel operator, phase congruency detection 

(PCD) and combination of receptive fields (CORF) to tile detection problem. 

• To examine the efficiency and accuracy of predicted models and comparison using 

visual comparison and intersect analysis; and to conduct ground validation data 

assessment and overlay for efficiency analysis of results. 
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METHODOLOGIES 

Study Site 

The study site is located in the Hancock County, Indiana. The county has a total area of 

about 195,200 acres, 686 farms with the total land area being 171,673 acres (USDA 

Agricultural Census, 2007). The location and choice of this county for our study is 

attributed to the fact that the county is primarily agricultural and main producers of corn, 

soybeans and wheat. The study site is a HUC10 (0512020404) watershed called the Little 

Sugar Creek-Sugar Creek Watershed situated within the Driftwood Watershed which has 

an approximate area of about 84751.45 acres lying within the Hancock county and 

covering about 43% of the total area.  The chosen area has a distributed land use and land 

cover (Fig. 2). 

 

Fig. 2 Left: Area of interest Right: Sugar Creek (0512020404) 
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Previous studies were conducted in the study area by USGS for detection of tile drains 

using remote sensing (Fig. 3), and also field verification studies using GPR for validation 

of tile outlets and their point of intersection with regulated tiles (Fig. 4). 

 

 

Fig. 3 Quad tile for Area of interest (CIR 1m resolution DOQQ flight path) overlaid with 

delineated tile drain  

The soil profile for the county dictates the functionality of putting the tiles since the 

placement of tile systems are based on soil saturation and the benefit that can be achieved 
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from subsurface drainage systems. The soils in the county have been classified based on 

their drainage classes for easy understanding of their function and adaptability to 

agricultural practices.  For somewhat poorly drained soil, water is removed slowly so that 

the soil is wet at a shallow depth for significant periods during the growing season. 

Wetness negatively affects the growth of crop plants unless drainage is provided. These 

soils often have a slowly permeable limiting layer; for poorly drained soil, water is 

removed so slowly that the soil is wet at shallow depths periodically during the growing 

season or remains wet for long periods. Most crop plants cannot be grown unless 

artificial drainage is provided; for very poorly drained soil, water is removed so slowly 

that free water remains at or above the ground surface during much of the growing season. 

Most crop plants cannot be grown unless artificial drainage is provided. 

 Based on the assessment of the soil conditions recommendations have been made 

about the drainage characteristics and the improvement from subsurface drainage in these 

poorly drained soil categories. The poorly drained soils in the Hancock county include 

the following 

• Crosby Brookston association 

Deep somewhat poorly drained and very poorly drained formed in glacial till and hence 

impermeable. These is a majority percentage of the soil distribution (72.4% of the county) 

• Miami Crosby Association 

Deep well drained and somewhat poorly drained, nearly level to strongly sloping silt 

loams and clay loams that formed in glacial till, on uplands (16.9% of the county). 
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Remote Sensing Datasets  

For our current work, raster datasets to be used include SPOT images and   color infrared 

imagery(CIR) from both NAIP and DOQQ sources. CIR images were used because of 

their high spatial and temporal resolutions.. 

SPOT 5 

The SPOT 5 satellite consists of a high resolution geometrical instrument (HRG) which 

offers panchromatic imagery anywhere from about 2.5-5m and the multispectral mode in 

10-20 m.  

Table 4. SPOT 5 Panchromatic & Multispectral Image characteristics and resolution 

Dataset Band Wavelength(µm) Spatial Resolution(m) 
SPOT 5 Pan 0.48-0.71 5 

Green 0.50-0.59 10 
 Red 0.61-0.68 

Near IR 0.78-0.89 
Shortwave IR 1.58-1.75 20 

 

SPOT 5 images are highly suitable for tile drain features detection owing to the high 

resolution of its panchromatic band, and the path overlay between LANDSAT derived 

products and SPOT tiles. SPOT 5 data can be used as a standardized imagery with 

substantial amount of data for larger delineation features to be clearly identified. These 

images were obtained from the state USGS office and were georeferenced to the NAD 83 

Datum. 

2005 Indiana Map Color Infrared Orthophotography 

This dataset is consistent of near infrared (NIR) data in conjunction to 3 band RGB bands, 

and has been obtained for the same Digital Ortho Quarter Quads (DOQQ) tiles at 1m 

high resolution for the State of Indiana during March and April leaf-off conditions. This 
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dataset was collected by the Indiana Geographic Information Council (IGIC) and 

projected to State Plane Indiana East and West, NAD83 and provided in MrSid 

compression format. 

Table 5. NAIP Color Infrared Imagery characteristics and resolution 
 

Dataset Band Wavelength(µm) Spatial Resolution(m) 
NAIP(CIR) Blue 0.45-0.52 1 m 

 Green 0.52-0.60 
Red 0.60-0.69 

Near Infrared 0.75-0.90 
 

Color infrared orthophotography was taken during leaf off conditions to eliminate most 

of the crop cover and achieve better delineation of sub surface drainage features. 

Digital Ortho Quarter Quads (DOQQ) 

Aerial Digital Ortho Quarter Quads (DOQQ) was collected for the study area in tiles 

using an infrared sensor and the bands could be used for delineation of allied features. 

Table 6. DOQQ Imagery characteristics and resolution (Source: USGS) 

Platform Band Wavelength(µm) Spatial Resolution(m) 
DOQQ Flight Band 2 0.52 - 0.60 1-2 m 

 Band 3 0.63 - 0.69 
Band 4 0.76 - 0.90 

 

The benefit for this dataset includes the fact that these flights were scheduled post a 

rainfall event and the high spatial resolution which makes it perfectly suitable for our 

study (Verma, 1996; Varner, 2003). The high resolution imagery also allows for better 

delineation as already expected. 

Ground Penetration Radar(GPR) Data 

Ground penetration radar applies radio frequency electromagnetic waves for subsurface 

surveying where the reflectance and return from subsurface layers are received and 
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interpreted for gathering information. GPR data were collected from April 5 to 8th 2004 

as part of the National Water Quality Assessment Program (NAWQA) study to verify the 

locations of drainage tiles identified from aerial infrared red photographs.  

Both 100 and 250 Megahertz (MHz) shielded, monostatic Mala GPR antenna were used 

for the study, and data were collected along eleven transects across corn and soybean 

fields. The data for low pass and high pass were collected and the linear transects were 

then utilized to gather enough information regarding the delineated tile drains for 

comparison. The GPR data are beneficial in flatter lands with small slope undulations and 

are valuable for identifying the edges and edge junctions for the identified tile drains. 

These datasets were obtained from the USGS Indiana Water Science Center and applied 

for our area of interest. 

Composite DEM 

The composite DEM plays an important role in the analysis, allowing us to perform 

hydrological analysis and to understand flow direction and flow accumulation patterns in 

these regions and deriving the soil indices. The natural flow accumulation should 

intersect with areas of maximum tiling and thus the DEM derivatives can also be used for 

measuring minute topological and soil morphological variations owing to the higher 

resolution and owing to relatively flatter terrain of the study area which limits the use of a 

coarser resolution DEM.  The composite DEM was derived from a 10 m resolution DEM 

data and the point mesh data from high resolution LIDAR to create DEM at a spatial 

resolution of 3ft. Indiana has a fairly flat morphology making most coarse resolution 

DEM not able to capture the minute soil morphological features. Also a higher resolution 
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DEM can be utilized to better decision classifier using the flow models. This composite 

DEM was obtained from the County Office at Hancock County. 

LULC DATA (Source: National Agricultural Statistics Service, [NASS]) 

Based on the soil conditions and land use, land classification survey was collected. The 

information on land use and approximate coverage of agricultural area allows for 

understanding the distribution of distribution of crop type and yield. This cultivated crop 

mask data layer has the 30 m spatial resolution, and covers the continental United States. 

It is based on cropland data layers from 2007 through 2011 with plans to update this crop 

mask data layer annually. 

 

 

Fig. 4 30m Resolution NASS LULC and Confidence imagery and 1m CIR and classified 

LULC product 
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The derived LULC dataset allows us to isolate the built up area and other areas which are 

not of primary interest and feeds into the primary classifier system. The CIR derived 

product is utilized as a reference for comparison with the Landsat derived LULC data. 

 

Vector Datasets 

Vector data allow us to understand grid analysis and to overlay features which can be 

utilized for secondary analysis and application. The vector datasets were collected and 

new datasets were to be generated from the analysis for feature segmentation and 

detection (Table 7). Both raster and vector data sets were georeferenced to maintain 

consistency in the analyzed data and the processing which would follows. 

Table 7. Vector Layer with attribute Data for secondary feature analysis 

Source Vector Layer Attribute Data 
HANCOCK Co. Office Regulated Tile Drain Tile Material 

 Tile Length 
 Tile Diameter 

USGS 
 

Indiana Wetland Inventory  Wetland Area 
HUC10 Watershed Outline Drainage Area 

Census County Map County Area & Location 
Baker Tile Grid Tile Length 

GPR Point Validation Point Location 
GPR Outlet validation Point Location 
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Synergistic Analysis of Datasets 

Overview 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Overview of data Analysis and processing 

Fig. 5 provides an overview of analyzing the available datasets for detection of drainage 

tile, where primary classifier was first created for masking out urban and man-made 

structures from remote sensing images and different edge detection methods were then 

applied to masked images. 

 

Primary 

Classifier 

 

Processed Subset 
of Area of Interest Processed Subset of 

Area from Primary 
Classifier 

• 1m CIR 2005 
DOQQ 

• SPOT 5 
Panchromatic 

• SPOT 5  
Multispectral 

• DOQQ Aerial 

 

 

• Linear Edge Detection and 
Vectorization 

• Ground Validation Using 
GPR Transect  

 

NASS/NDVI Derived LULC 

Terrain Ruggedness Index 
(TRI) 

Poor Drainage Classes  
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Primary Classifier 

The primary classifier was derived from a combination of characteristics, which allow us 

to determine a more specific area of interest for tile drain detection. This stems from the 

consideration that the presence of urban or built up areas in agricultural watersheds poses 

limitations on the feature and terrain that can be delineated directly from remote sensing 

images, and that although most of the high resolution images were acquired during the 

leaf off period, the limitations from crop residue could be present. Land cover 

information, soil class data and topography are often used to form a decision 

classification tool (Varner, 2003; Naz, 2008).  In this study, the creation of a primary 

classifier used three data layers: NASS/NDVI derived LULC, terrain ruggedness index 

(TRI), and poor drainage classes. 

NASS/NDVI Derived LULC 

The Land use and Land cover (LULC) data are obtained primarily from the National 

Agricultural Statistics Service (NASS) which generates this layer every year. The derived 

product is selected carefully for only agricultural classes so as to remove most of the 

impacts of built up areas. Since the data are derived from a coarse resolution dataset, the 

results are broadly validated by using a NDVI (Normalized Differential Vegetation Index) 

derived from high resolution CIR imagery. 

Poor Drainage Classes 

This dataset is based on specific soil characteristics which is dependent on the idea that 

poor drainage classes are the most prone to have tile systems installed. Hence the Soil 

Survey Geographic Database (SSURGO) soil data are utilized to extract dominant 
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drainage class in the given area with poorly drained and very poorly drained areas which 

are used for our study. 

Terrain Ruggedness Index (TRI) Layer 

This layer was used to exclude high built up areas and areas of natural depressions such 

as streams and water bodies. It is one of the most critical indices and layers in 

understanding the attribute and the relationships between soil geomorphology and 

primary and secondary characteristics of flow in a given area. Primary attributes which 

are directly generated from elevation data include catchment area and point value 

measurements and also include derived datasets such as slope and aspect, whereas 

secondary attributes are linked with understanding more complex interrelations between 

the primary attributes and the spatial variability of specific processes occurring on the 

landscape. Terrain ruggedness index (TRI) is essentially topographic functions derived 

from primary soil attributes, and is established considering basic soil functions and 

characteristics shape of the terrain over a period of time (Moore et al., 1993).  However, 

derivation of such layers was completed through a complex chain of processes as 

discussed below. 

 For understanding the variation of soil pattern with landform, a catenary 

landscape model called the compound topographic index (CTI) or the steady state 

wetness index, a secondary topographic attribute (Eq. 1) is often calculated from primary 

attributes such as slope (%) and specific catchment area to explore correlations between 

these attributes and the landscape hydrology processes (Gessler et al., 1995). 

                                                      𝐶𝑇𝐼 = 𝑙𝑛 � 𝐴𝑠
tan𝛽

�                                                    (Eq. 1) 
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where As is the specific catchment area(m2 per unit width orthogonal to the flow direction) 

and β is the slope angle calculated in radian from the Digital Elevation Model (DEM).  

Owing to the limitations of CTI based approach for a flatter terrain and the strong 

correlation between CTI and TRI, the TRI layer serves as a more acceptable index for 

generating the primary classifier.  

 Terrain ruggedness index (TRI) is define as the largest inter-cell difference of a 

central pixel elevation to its surrounding cell and allows the segregation of hydrological 

parameters based on terrain relief (Riley et al., 1999).  Here terrain ruggedness index 

(TRI) is computed as the difference between the value of a cell and the mean of an 8-cell 

neighborhood of surrounding cells.  It can be summarized by the following expression 

                                     𝑇𝑅𝐼 =  �|(3𝑥3𝑚𝑎𝑥2 − 3𝑥3𝑚𝑖𝑛2)|                                     (Eq. 2) 

where,  

3x3 max = Focal statistical maximum value calculated using a 3x3 neighborhood 

function. 

3x3 min = Focal statistical minimum value calculated using a 3x3 neighborhood function. 

 CTI and TRI prove to be important predictors and evaluators as they combine the 

contextual and site information along with primary attributes into detecting flow 

characterization and drainage characteristics over the given landscape. TRI can be used 

by extension as a hydrological predictor and marker, and is well validated and supported 

for implementation in the current study. The low ranges of TRI represent areas which are 

relatively flatter or have been modified to an extent such that they are low lying in some 

sense. Hence it is possible to use the TRI to suitably eliminate man made or natural 

depressions of large magnitude such as water bodies. This makes the dataset more 
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applicable to a desired hydrological function and/or soil attribute derived data product, 

and allows the primary classifier to be less segregated and the resultants values are then 

aggregated by polygon aggregation method to generate a more efficient primary classifier. 

TRI thus serves as a more suitable index for analyzing areas of interest with low terrain 

variation (Mukherjee et al., 2012). The current model (Fig. 5) allows for the easy 

delineation of areas of interest in terms of topographical and morphological variations.  

The NASS/NDVI derived LULC is primarily masked over poor drainage class, and the 

intermediate raster image is then overlaid over the extracted TRI layer. This led to the 

creation of the raw primary classifier (Fig. 6 and Fig. 7) which is used as the mask for 

base imagery. 

 

Fig. 6 Compound Topographic Index-Based Primary classifier 
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Fig. 7 Terrain Ruggedness Index-Based Primary classifier 

Since the masked based imagery by the raw primary classifier was processed as a mask 

layer, it was then converted to a feature polygon and aggregated to include holes and 

minimum linear distances. Therefore the final mask was developed from the aggregated 

feature. The CTI derived primary classifier layer is retained for visual comparison with 

the TRI derived classifier mask. 

 The results clearly benefits from such a classifier since it eliminates built up, 

depressions or large water bodies such as the central stream in the given image segment. 

The developed classifier is novel, robust and easily applicable to an area with multiple 

land use classes which has a tendency to skew the results once edge detection 
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methodologies are applied. It is important to understand that this step was quintessential 

in the process since it allowed us to reduce computational load and to improve primary 

edge detection from these sections. 

Edge Detection and Image Segmentation 

The application of edge detection in remote sensing has found a major niche for 

conventional agricultural inventory and for feature detection in major agricultural 

watersheds. Edge detection has been one of the most commonly used methods for such 

studies along with the identification of features, which is now possible owing to high 

resolution imagery. The methodology for edge detection is often dependent on the idea 

that variations in pixel intensity, saturation or color lead to a break in a signal which can 

be identified in an edge. It has been discussed by researchers in the field that remotely 

sensed imagery is a broadly thus a discrete representation of spatio-temporal magnitude 

of reflected energy (Rydberg and Borgefors, 1999). The classic case of edge detection 

using the principle of signal theory identifies an edge as the point where there is rapid 

shift of signal or pixel value between the neighboring cells. A variety of edge detectors 

are developed. Since the sources and the type of imagery are varied, the methodology and 

the efficiency of a detection method vary.  

Kernel Based Edge Detection Techniques 

The basic edge detection algorithms (Roberts, Sobel and Prewitt) consist of matrix or 

kernel based gradient operators. For example, the Roberts filter is a 2x2 matrix operator, 

while the Sobel and Prewitt operators are standard 3x3 gradient edge detectors. In the 

operation of these filters, convolutions are performed primarily on the center cell for the 

convolved matrix of image data (Sun, 2012). The new value of the central pixel replaces 
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the old values, and the filtered image after convolution is then run through a given 

threshold to decide if it is an edge. These gradient based algorithms use kernel operators 

to calculate edge strength along horizontal and vertical direction. The contribution of 

these different components is then combined to give the total value of the edge strength. 

For the Sobel filter, the two kernel matrices are 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 �
1 2 1
0 0 0
−1 −2 −1

� 

and 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 �
1 0 −1
2 0 −2
1 0 −1

� 

The Sobel operator is operated in both directions, and the derived components are added 

to generate the final strength of edges in the imagery. The Sobel filter was applied to CIR, 

natural RGB and DOQQ imagery.  

 Similar to Sobel, the Prewitt operator measures the vertical and horizontal edges 

with kernel function and then gives the intensity differences of the gradient in the current 

pixel. Again in this case the horizontal and vertical matrices are 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 �
1 1 1
0 0 0
−1 −1 −1

� 

and 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 �
−1 0 1
−1 0 1
−1 0 1

� 

Both these methodologies can detect long continuous edges and are sensitive to noise. 

Both Sobel and Prewitt filters were applied to the base image to discern the delineated 

edges and the pattern of detection.  
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The kernel size and the signal to noise ratio in an image play important roles in detection 

efficiency. Smaller kernel size and the noise in the imagery limit the effectiveness of 

these detection techniques. An improved User defined directional kernel in rectangular is 

introduced. This User defined kernel is well suited for area with low variations in 

topography and consists of a 5x7 horizontal convolution matrix and a 7x5 vertical 

convolution matrix. 

Horizontal Matrix 

⎝

⎜
⎜
⎜
⎛

−4 −3 −2 −3 −4
−3 −2 −1 −2 −3
−1 −0.5 −0.25 −0.5 −1
0 0 0 0 0
1 0.5 0.25 0.5 1
3 2 1 2 3
4 3 2 3 4 ⎠

⎟
⎟
⎟
⎞

 

Vertical Matrix        

⎝

⎜
⎛
−4 −3 −2 0 2 3 4
−3 −2 −1 0 1 2 3
−2 −1 −0.5 0 0.5 1 2
−3 −2 −1 0 1 2 3
−4 −3 −2 0 2 3 4⎠

⎟
⎞

 

The horizontal matrix has smaller kernel element step size (0.25), because the finest 

edges are visually detectable along horizontal directions of the image. For this study, the 

process is automated using the Model Maker functionality of ERDAS IMAGINE 

whereby the process can be run for all the masked imagery. Since the visibility of 

detected edges requires the scale of the image to be smaller means, a scaled or zoomed in 

subset of the main imagery can be utilized to show the actual edges that have been 

delineated. The filtered image is then run through an ISODATA unsupervised classifier. 

In this process where an arbitrary initial class is assigned followed by classification of 

each pixel to the closest pixel until a user defined threshold value is reached. In the 

current case, the threshold generally refers to percent refinement by splitting and merging 

of clusters and to retain the number of classes for the unsupervised classification. The 
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method creates cluster for edges which can then be converted into vector data using 

ArcGIS based vectorization. These vector layers are used for intersect analysis.  

Combination of Receptive Fields (CORF) 

The idea of understanding image segmentation as a function of the visual field called the 

receptive field has been explored for quite some time. It is based on the fact that a neuron 

would respond to an edge or a line of a given orientation in a given area which is the 

receptive field (RF). The human cortex visualizes multiple fields in an image while 

differentiating edges and segmenting object. The human visual cortex benefits from 3 

dimensional field of view compared to the 2D image segmentation in natural vision, and 

are also dependent; not only on contrast response but also the effect of optimally oriented 

stimulus. The CORF model allows the user to incorporate and exhibit cross orientation 

suppression, contrast invariant orientation tuning and also response saturation (Azzopardi 

and Petkov, 2012).  

 Since functioning as a contrast and edge delineator for field cells or neurons, 

CORF is an excellent method for delineating natural contours that exist in imagery. The 

procedure includes edge thinning by non-maxima suppression followed by binarization 

using hysteresis thresholding. However the growth of the detection sensitivity to the 

stimulus contrast is not proportional, meaning there is the response saturation when it 

comes to edge detection in imagery. The CORF orientation model allows for the response 

saturation which is more realistic to real simple cells. The CORF model has a good 

response to natural contour characteristics. 

 A MATLAB code has been adapted for this purpose and was run on all of the 

images for a comparison with the other edge detection methodology and to understand 
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the limitations of such algorithm. The images are resized owing to the limitations in the 

memory that is used by the program. A section of the imagery has been enlarged and 

resized to understand the effect of using imagery at different scale and the capability of 

the algorithm in resolving edges at varied scales. 

 As already discussed the CORF based detection is also dependent on 

characterization of texture and natural contours of neurons apart from simply differences 

in intensity and thus is beneficial in some sense to the proposed problem. CORF has 

limitations to discern finer details and only delineates the external boundary of major 

natural contours. This method works better on smaller scale edges owing to the thinning 

algorithm. The limitation of CORF can also be caused by the fact that the imagery has 

crop cover and other regular pattern which induce extra interference for edge detection. 

Phase Congruency Detection (PCD) 

Phase congruency detection (PCD) is a corner and edge detection operator which uses the 

principal moments of the phase congruency information to determine the corner and edge.  

The edge detection technique inculcates the fact that the results of edge detection are 

highly localized and thus are invariant to image contrast (Kovesi, 2003).  The method 

isolates both edges and corners, and benefits from the fact that the corner map is a subset 

of the edge map.  

 A corner for PCD is defined as the location in the image where there are distinct 

peaks for the local autocorrelation. Most corner detection algorithms are sensitive to 

image contrast which increases if the sequence of images or the area covered by the 

images is large. The change in image contrast limits the setting of a threshold for the 
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same image. The corner detection is also impacted by the fact that most smoothening 

algorithms such as Gaussian smoothing corrupt the location of corner (Kovesi, 2003). 

It has been found early on that for any wave form, the highest peak or corner is where the 

Fourier components lie exactly in phase in the phase congruency model, and that while 

the shape of the waveform is not always known, we can simply look for the point with 

high degree or arrangement/order in the Fourier domain.  Locating phase congruency is 

complex but this can be done by locating the peaks in the local energy function (Eq. 3). 

The local energy function is defined for a one dimensional luminance profile, F(x) as  

                                            𝐸(𝑥) = �𝐹2(𝑥) + 𝐻2(𝑥)                                               (Eq. 3) 

where, H(x) is the Hilbert transform of F(x) (a 90 degree phase shift of F(x)) 

It can be shown that energy is equivalent to phase congruency which has been scaled by 

the sum of the Fourier amplitudes (Eq. 4) 

                                                 𝐸(𝑥) = 𝑃𝐶(𝑥)∑ 𝐴𝑛𝑛                                                    (Eq. 4) 

Since the local energy function is proportional to the phase congruency function, the 

peaks in local energy could thus be related to phase congruency. As a result the local 

energy could be calculated by convolving the signal with a pair of filters in quadrature 

(Venkatesh and Owens, 1989; Kovesi, 2003).  For the purpose of our work, the complex 

valued Gabor function is used with has a sine and a cosine wave modulated by a 

Gaussian function.  

 A MATLAB code was adapted for this purpose and has been run on all of the 

images for a comparison and to realize the importance of image scale and limitations of 

using such a process. Owing to the limitations in processing memory required by 

MATLAB, the images were resized and rescaled.  PCD performs differently for images 
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at different scales owing to change in the energy function at different scales. Sections of 

the imagery were selected similar to the CORF model for running the detection and for 

resolving edges and corners.  

Ground Validation and GPR data analysis 

The GPR dataset provides important information on the location of tile outlets in addition 

to the Baker tile clip and was available to us in terms of point transect data for the GPR 

transects and as polyline features for the Baker tile clip. The GPR transects are used to 

validate and assess the usability of the defined processes for the tile drain detection. The 

area of interest with the GPR point transects is thus scaled, and major comparisons are 

made both visually and with the help of intersect analysis between the point & polygon 

outlet layer along with the delineated drainage vector layer. 
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RESULTS AND DISCUSSION 

The current study results are categorized based on the type of imagery and the 

methodology. The variation of data types occurs along two distinct domains, the spatial 

and temporal resolutions of the images being used. The spatial resolution is important 

because the features can only be delineated if they are within a given range, and the 

temporal resolution is relevant to the time period after rainfall during which the image is 

collected and to the interference with the tile detection of the crop residue that might be 

left on the field.  

 

SPOT 5 (Pan Chromatic and Multispectral) 

The SPOT 5 dataset consists of the pan chromatic data with the highest resolution in the 

dataset of about 5m and the multispectral data with a spatial resolution between 10-20m. 

Both panchromatic and multispectral data were analyzed using Robert, Sobel and Perwitt 

and a user defined kernel. The SPOT 5 imagery did not produce viable results for Roberts 

or Perwitt methodology, but produced discernible results for Sobel filter. The image 

symbology was changed and the darker shades of green and brown indicated the detected 

edges and are blurred similar to optical aberrations for both panchromatic and 

multispectral datasets (Fig. 8 and Fig. 9).   

 Similarly, the user defined filter could not improve the quality of the edge 

detection, which is expected since the artifacts and the noise to signal ratio are high.  

Therefore both panchromatic and multispectral SPOT 5 datasets were not suited owing to 

the fact that major feature sets were not discernible.   
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Fig. 8 Panchromatic SPOT 5 Processed through Sobel Filter 

 

Fig. 9 Multispectral Spot 5 imagery processed through Sobel filter 
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CORF and PCD which rescale the data, average the pixel intensity and contrast further, 

degrade the actual pixel value and produce less than average results when applied to 

SPOT datasets, which were modified by the primary classifier. Most of the kernel-based 

methods did not perform very well for the SPOT images  owing to a large noise to signal 

ratio and the smaller kernel sizes. Since a lot of these images have existing noise and crop 

cover residue that existed for the region, understanding and implementing an appropriate 

kernel for filtering was complex. 

Color Infrared Imagery 

Color infrared imagery has 1m spatial resolution and was expected to perform better than 

the SPOT 5 datasets. The best results are obtained from the Sobel filter (Fig. 10) for the 

standard kernel edge detection and by using the user defined kernel (Fig. 11).  

 

Fig. 10 CIR Scaled subset area using Sobel filter 
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As shown in Fig. 10, the Sobel filter is effective in detecting large variations in intensity 

and is capable of resolving the edges. However, the detected edges along the drainage 

patterns seem to be patchy and segmented. This is due to the crop cover residue as well as 

soil moisture content which tend to skew the detection. The user defined kernel filter was 

able to get rid of minute artifacts present in the imagery and produced more refined 

results for the same scaled subset data. 

 

Fig. 11 CIR Scaled subset area using user defined kernel filter 

Digital Orthophoto Quarter Quads   

The DOQQ imagery represents one of the best combinations of high spatial and temporal 

resolution. The imagery was collected from airborne sensors and had an average 

resolution of about 1m which is aptly suitable for the detection of our current tile features. 

The dataset is also known to have been collected after a major rainfall event and had 

hence benefitted the current analysis. For this data, the best standard kernel methodology 



37 
 

was available from the Sobel filter whereas better results were obtained from the user 

defined kernel (Fig. 12).  Additionally, distinctly better results were obtained by PCD and 

CORF. The results obtained clearly elucidate the importance in the choice of image 

datasets in conjunction with the appropriate methodology. 

 

Fig. 12 DOQQ Scaled subset area using user defined kernel filter 

Since the best results were obtained for the DOQQ imagery, it is necessary to provide an 

insight into the output for this image input. To achieve this, the results for this dataset 

were compared for the efficiency of the different methodologies. The comparison is 

based on the ground GPR validation data provided by USGS. Two clips are compared for 

the given area of interest, the Baker tile clip which is clipped to a polygon consists of 

ground validated tile drain features which are polyline features. This can be referred to as 

polyline validation clip and the next clip which consists of point GPR tile outlets are 

referred to as point validation clip. Both polyline and point validation clips were chosen 
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to keep into consideration the availability of the tile features for comparisons along with 

the ground validation data.    

 For the proposed method, a primary classifier mask was used to create an 

aggregated subset area which was scaled and used as the standard area for comparison of 

the performances of the standard detection methodologies and the overlay with the Baker 

tile clip for the same area was assessed. The standard kernel methodologies as discussed 

earlier included Roberts, Perwitt and Sobel.  

 The Roberts filter seems to produce minutely discernible filtered edges and is not 

beneficial for detection of tile features. It used a 2x2 matrix which was not optimal since 

it relied on the continuous gradient at the interpolated point. It was not as an effective 

edge detection filter since natural imagery consists of irregular edgings and has a 

tendency to contain a large amount of noise coupled with image artifacts. However, both 

Sobel and Perwitt consist of a 3x3 matrix directional filter, which are effectively better 

than the results from smaller matrix sizes.  

 Because of the constant step or operator element for Perwitt, it does not provide 

an emphasis on the central pixel in the same way as the Sobel filter and the former did 

not generated as good results as those from the latter.  Sobel allowed for the removal of 

minute artifacts in the images, thus improving edge detection. The interpreted tile was 

digitized and overlaid (Fig. 13) while an intersect analysis provided the overlay length 

percentage (Table 8). This reiterates the fact that edge detection by Sobel was not 

automated, and manual digitization was performed to delineate edges from the filtered 

image. It is expected that the user has a tendency to introduce his/her interpretation and 
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bias for a specific feature. The scaled clip was also utilized for other developed 

methodologies and this will be discussed sequentially in the succeeding paragraphs.  

 

Fig. 13 Sobel interpreted tiles with USGS Baker tile overlay 

An overlay accuracy of only 18.28% resulting from Sobel has been used as a 

representative accuracy (Table 8) for the performance of 3x3 operators for edge detection, 

and Sobel had a low commission error (4.22%) but an extremely high omission error of 

about 81.77%. This clearly represents the fact that the Sobel derived results were not 

suitable in capturing majority of existing tile network and Sobel is hence not an optimal 

method for tile drain detection. 
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Table 8. Tile Overlay (% overlay of tile length) & error estimation  

Length Total 
Length(m) 

Intersect 
Length(m) 

Overlay 
(%) 

Commission 
Error 

Omission 
Error 

User Defined 
Intersect 

13322 13322 81.68 0 18.31 

PCD Intersect 43961 11487 70.43 199.11 29.56 
CORF Intersect 19490 6778 41.55 77.94 58.44 

Sobel Interpreted 3671 2982 18.28 4.22 81.71 
Baker Tile Clip 16309     

 

 

The results for the standard kernel filters depicted and strengthened the fact that spatial 

heterogeneity of the given landscape and natural profiles create a complex environment 

for analysis (Sun, 2013). The limitations in the kernel size of the standard filters and the 

complexity of the natural landscape and features emphasize the development for a user 

defined kernel. A user defined kernel performs with higher efficiency for the same given 

area.  The overall overlay percentage of over 81% indicates (Table 8) that the user 

defined kernel serves as the most efficient edge detection technique and is independent of 

user bias during digitization.  The user defined kernel benefits from its rectangular kernel, 

which allows edge detection to be more prominently extended in a particular filtering 

direction. The user defined kernel uses smaller step difference within the kernel elements, 

which allows for capturing minute variations in edges efficiently along both horizontal 

and vertical direction and provides better functionality in flatter topography. 
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Fig. 14 User defined filter with USGS Baker tile overlay 

As expected the user defined kernel had negligible commission error and lowest omission 

error of about 18.31% (Table 8). This clearly justifies using this methodology for edge 

detection and tile layout delineation, and establishes itself as the most efficient among all 

applied methodologies described so far. 

 While the limitations in the standard kernel based filters (both gradient and non-

gradient based filters) emphasized the development of a better kernel methodology, the 

limitations also motivated the development of certain natural vision based edge detection 

methodologies that were suitable for interpretation of edges in natural imagery.  As 

mentioned in section Edge Detection and Image Segmentation, CORF is an image 

detection and filtering methodology based on natural feature detection mimics properties 

with real simple cells in vision. The model allows for detection of features such as cross 
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orientation suppression and response saturation and works better in terms of detection of 

saturation invariant responses.  

 

 

Fig. 15 CORF and PCD edge extract for Scaled clip 
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Fig. 16 CORF and PCD extracted tiles with existing tile layer overlay 

As shown in Fig. 15, results for both CORF and PCD were dependent on intensity and 

contrast variations in imagery, coupled with both edge as well as corner detection. The 

overlay results for PCD and CORF are shown in Fig. 16.  The results demonstrate that 

although CORF, a contrast dependent methodology, was not well suited for detection of 

weak edges in the imagery, the result has an accuracy of over 42% better than the 

existing standard kernel methodologies (Table 8). The computational limitation to CORF 

for handling large images requires rescaling, and the rescaling step reduces the number of 

sharper contrast variations and the intensity that creates the stronger and weaker edges. 

The CORF results also had a commission error of 77.94% meaning a large segment of the 

detected result did not overlay with the Baker clip; the omission error of about 58. 44% 

(Table 8) for this method also emphasizes the failure to capture a large part of the tile 
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layout network. While thinner and stronger edges are detected more accurately, it does 

not work well with low intensity weaker edges or with low contrast variations in the 

edges.  Nonetheless, the current work is one of the preliminary applications of natural 

vision based edge detection in remote sensing and serves as an outline for further work to 

be continued which could include intensity variance along with contrast variances in both 

small scale and large scale imagery. 

 Phase congruency detection (PCD) is another adaptive methodology which 

generated a higher efficiency of over 71% and captured both weak and strong edges. The 

result for PCD also shows that its weak edge detection capacity (Fig. 15) leads to over 

detection of edges. Therefore PCD had a large commission error of over 199.11. An 

omission error of 29.56% however ascertains that the method does capture in some sense 

most of the tile segments from the Baker clip indicating that it is more efficient (Table 8) 

and better than CORF.  

 However, PCD’s dependency on the analysis window contributes to the local 

frequency components to be present and analyzed. This limits the functionality of the 

PCD detection which is based on the scale of the imagery and the analysis window in 

conjunction to their surrounding features/environment (Kovesi, 2003). Kovesi (2003) 

suggested that a smaller analysis window could contain multiple features with a great 

degree of independence from other features and hence each feature was perceived to be 

more important locally with a better response. In our case the feature sets being detected 

are fine resolution datasets and hence their detection over a smaller spatial scale allows 

the PCD to perform with higher output. Thus the performance of PCD is image scale 

dependent and the result could be better when the feature of interest and the scale of the 



45 
 

imagery are closely related. Thus both CORF and PCD have functional limitations which 

can be improved further as the methodology is better adapted for the given type of 

imagery. 

GPR Validation 

The Baker clip overlay, over the polyline validation clip with an overlay analysis 

ascertained the efficiency of a developed kernel and natural vision based methods. The 

GPR outlet transect points were used to validate the placement of tiles (Fig. 17) which 

drain into the outlets and can be interpreted by the overlay. The GPR point outlets in the 

point validation clip were overlaid for section of the imagery and the PCD, CORF and 

user defined kernel results were evaluated for their overlay (Fig. 18).  

 

Fig. 17 User defined filter aggregated with GPR outlet overlay 
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Fig. 18 CORF and PCD tile overlay with GPR outlet overlay 

 

Optimal combinations of methods with datasets 

Our current work explores the extraction of tile drain systems keeping in mind the 

limitations of both the datasets used and the methodology. Understanding optimal 

combination of the datasets along with the methodology used provides an insight and a 

guideline into tile drain detection. The entire study focuses on determination of the 

characteristic combination of the data type used and the methodology that has been 

applied which is summarized in the table below (Table 9).  

 It is clearly depicted from the results that spatial resolution of the imagery plays 

an important role in feature detection. This is because of the fact that finer features such 

as tile drains are only discernible in high resolution imagery. The SPOT imagery had 

varying spatial resolution from 5m for panchromatic and 10-20m for multispectral image. 
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As expected at this resolution application of kernel methods and even user defined kernel 

and vision based methodology do not function well.  

Table 9. Image and methodology selection for edge detection analysis 

 Spatial 
Resolution 

Kernel Based 
Methodologies 

User Defined 
Filter 

CORF & PCD 

SPOT 5  
Pan & 
Multispectral 

5m 
10-20m 

Sub Optimal results, low 
spatial resolution 

Sub Optimal 
results, edges 

blurred 

Rescaled, 
results sub 

optimal 
CIR 1m Sub Optimal results with 

high crop cover residue 
Sub optimal 
results with 

over detection 
of edges & 

artifacts  

Rescaled, 
results 

suboptimal 
with over 

detection of 
edges 

DOQQ 1m High spatio-temporal 
resolution, over 

detection of noise 

Best Optimal 
solution, 
suited for 

removal of 
noise 

Fairly optimal 
results with 
variability 

with weak & 
strong edge 
detection 

results 
 

The choice of spatial resolution was hence stressed in the next pair of imagery which 

were CIR imagery from NAIP and the CIR imagery from USGS aerial photography. Both 

of the images had high spatial resolution of about 1m and were expected to generate 

better results. The CIR imagery from NAIP even with high spatial resolution had large 

crop residue owing to the time period or temporal resolution of the imagery. The crop 

residue makes the reflectance from these tile drain non discernible and hence the NAIP 

CIR imagery even with its high spatial resolution could not function very well with the 

available filtering methods. The crop residue also generated artifacts and makes the 

image noisy and unsuitable for filtering operations. As expected the Sobel filter 
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performed the best among known filtering kernels while the user defined kernel, CORF 

and PCD had a tendency to over detect false edges owing to the image characteristics. 

 The choice of imagery has thus been a optimal balance between the spatial and 

temporal resolution by itself. The best choice of imagery for such a study would include 

high spatial resolution 1m or less and should be taken post a rainfall or a storm event 

allowing tile drains to be activated and the drainage patterns to clearly appear in the 

imagery. As expected the temporal resolution of the imagery plays a crucial role in the 

visibility of activated tile drains and the data might hence vary with varying intensity of 

rainfall and the drainage period. In our case the DOQQ as expected performed crucially 

well fitting into both the spatial and temporal domains that were necessary and was hence 

chosen as the base imagery.  

 The next step in understanding optimality condition includes understanding the 

combination of the image type with the edge detecting algorithm. The DOQQ imagery 

obtained from USGS was used for the benefits in terms of lesser noise and high spatial 

and temporal resolution. The DOQQ imagery works sub optimal with the existing kernel 

methods such as Roberts, Sobel and Prewitt. As discussed earlier the smaller kernel size 

limits the performance of edge detection and hence course resolution imagery (SPOT 5) 

as well as high spatial resolution imagery such as NAIP CIR and DOQQ do not perform 

well. The combination of DOQQ performs best with user defined kernel, which is the 

optimal combination since it allowed for detection of finer edges and reduced noise. 

CORF and PCD on the other hand work fairly optimal but have reduced efficiency in 

terms of commission and omission errors that they encounter.  
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Having an optimal solution however raises questions about the existing limitations in 

methodology, making a given solution a robust best solution apart from being locally 

optimal.   

 

CONCLUSIONS 

The subsurface drainage structure existing in the Little Sugar Creek-Sugar Creek 

watershed has been the target for testing the efficiency of different tile detection and 

layout methodologies. Differing from previous studies, the work moves from 

understanding the layout of regular and irregular tile drain systems and focuses on the 

limitations of earlier methodologies. A primary classifier system was developed which 

takes into consideration topography in terms of TRI, the vegetated area from the LULC 

and the soil classification layer. The classifier allows us to extract only the area of interest 

and to effectively mask out the remaining area. The step allows an overall improvement 

in computational resource for the study while preventing the results to get skewed. 

Several filters and operators were compared including Roberts, Perwitt and Sobel along 

with a user defined filter and CORF and PCD methodology. 

 The limitations in kernel size causing high noise to signal ratio was resolved with 

the development of a novel user defined kernel. The developed kernel included a 

rectangular kernel size which was more suitable for directional edges and smaller element 

size step was chosen to be able to filter out weaker as well as stronger edges. As a result 

the user defined kernel produced the best optimal results with extremely low omission 

error and seems to be promising being an automated methodology. The motivation for 

natural vision based edge detection was drawn from observing how corner and edge 
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detection by natural vision is more efficient and is independent of orientation. Both 

CORF and PCD produced fairly optimal results with issues of weaker and stronger edge 

detection attributed to image rescaling. This was the first time that these methods had 

been adopted to the domain of remote sensing dataset analysis and substantial 

improvements can be expected in analysis methodology. 

 Optimal dataset and methodologies were compared and tabulated for the efficient 

use of applied edge detection algorithm. The user defined filter benefited the results 

largely owing to its large kernel size and smaller kernel element step. The results also 

pointed out that the low omission and commission error were preferable for this situation. 

The CORF methodology on the other hand was found to be effective only for stronger 

edges and were limited by the rescaled image. Since the rescaling cause loss of image 

intensity and contrast differentiation there is loss of actual edges that could be discerned. 

Thus CORF produced fairly optimal results for tile drains with stronger edges. PCD was 

a more efficient natural vision based methodology but owing to sensitivity to both strong 

and weak intensity and contrast, over detection was seen in the imagery.  

 The novel user defined kernel along with CORF and PCD suffer from limitations 

of existing operator systems that are used for edge detection. The input resolution and the 

time period of the imagery were identified as important factors which were evaluated for 

determining actual edge detection efficiency.  

 The comparison of user defined kernel, CORF and the PCD methodology 

elucidate and focus on the following points and can be summarized.   

• Both CORF and PCD owing to the limitation to image size can benefit from smaller 

subsets which are processed sequentially and then mosaicked for the area of interest.  
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• The idea of automation to the tile detection is important and can be achieved easily 

from all of the methods there were developed and adapted for the current study. 

The developed methods along with CORF and PCD are more flexible in terms of area of 

application and should benefit the tile layout and detection efficiency further. The study 

thus deals with the problem of suggesting techniques for tile layout detection which are 

easily adaptable and highly efficient for our given situation. 

 

FUTURE WORK 

The best tile detection scenario inculcated optimal combination of both datasets and the 

used edge detection methodology. Limitations in accessibility of the aforementioned data 

and the related time frame in which the data is obtained results in a fairly narrow window. 

The frequency of data collected after a rainfall event of varying intensity could allow us 

to cross validate the same tile systems. This will also create a continuous data segment 

which can be recorded during the rainfall seasons to map functioning of tile drains. For 

an efficient edge detection this must be in combination with the methodology that is 

being used, in our case the user defined filter performed best and needs to be tested for 

establishing a robust methodology over the given area of interest.  

 There is a need for periodical data for an analysis of this nature; which will allow 

the analysis to pose solutions to existing limitations and to be able to generate a more 

efficient detection tool. Secondary aspects of tile drain detection also include the aspect 

of tile intensity (no of tiles/area) and the tile incision depth which correlate to the 

productivity in some sense. A predictor system can thus be developed further as the 
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quality and time period of collected data increases, allowing prediction models to 

comment on increase in productivity along with efficient tile drain placement. 

 Though there are clear limitations in terms of spatial and temporal resolution of 

the datasets, the developed methods and workflow allow for automatic delineation of the 

tile drain patterns which was our primary objective.  The CORF and PCD methodologies 

need to be modified with more computational capability, for larger dataset while 

preserving the geo-referencing information. The future work must also resolve the 

problem with over detected and under detected edges and must allow for secondary 

analysis such as continuity analysis or junction analysis for such a connected network. .  

Integrating spacing between tiles and junction analysis could be utilized for eliminating 

false edges. An effective study keeping in mind the multiple criterions that enter into the 

detection and delineation of layout is complex and can be improved with improvement in 

datasets and the methodologies developed further. 
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