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ABSTRACT 

Shuangshuang Xie 

 

 

REMOTE SENSING DATA ASSIMILATION IN WATER QUALITY NUMERICAL 

MODELS FOR SIMULATING WATER COLUMN TEMPERATUER 

 

 

Numerical models are important tools for simulating processes within complex 

natural systems, such as hydrodynamics and water quality processes within a water body. 

From decision makers‟ perspectives, such models also serve as useful tools for predicting 

the impacts of water quality problems or develop early warning systems. However, 

accuracy of a numerical model developed for a specific site is dependent on multiple 

model parameters and variables whose values are attained via calibration processes 

and/or expert knowledge. Real time variations in the actual aquatic system at a site 

necessitate continuous monitoring of the system so that model parameters and variables 

are regularly updated to reflect accurate conditions. Multiple sources of observations can 

help adjust the model better by providing benefits of individual monitoring technology 

within the model updating process. For example, remote sensing data provide a spatially 

dense dataset of model variables at the surface of a water body, while in-situ monitoring 

technologies can provide data at multiple depths and at more frequent time intervals than 

remote sensing technologies. This research aims to present an overview of an integrated 

modeling and data assimilation framework that combines three-dimensional numerical 

model with multiple sources of observations to simulate water column temperature in a 

eutrophic reservoir in central Indiana. A variational data assimilation approach is 

investigated for incorporating spatially continuous remote sensing observations and 



vi 

 

spatially discrete in-situ observations to change initial conditions of the numerical model. 

This research addresses the challenge of improving the model performance by combining 

water temperature from multi-spectral remote sensing analysis and in-situ measurements. 

Results of the approach on a eutrophic reservoir in Central Indiana show that with four 

images of multi-spectral remote sensing data assimilated, the model results oscillate more 

from the in-situ measurements during the data assimilation period. For validation, the 

data assimilation has negative impacts on the root mean square error. According to 

quantitative analysis, more significant water temperature stratification leads to larger 

deviations. Sampling depth differences for remote sensing technology, in-situ 

measurements and model output are considered as possible error source.    
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1 INTRODUCTION 

In recent years, deterioration of water quality in reservoirs that serve as drinking 

water sources has become one of the major sources of human health risks. Numerical 

models have been successfully used to simulate the physical, chemical and biological 

processes within reservoir systems, and predict the risks of contamination (USEPA, 2002; 

Jin and Ji, 2004; Khangaonkar et al., 2005; Tetra Tech, 2009). Among all the contributing 

factors that influence the water quality condition in a reservoir system, water column 

temperature has significant impacts on the distribution, transportation, and interaction of 

multiple contaminants such as nutrients, micro-algae, etc. This research focuses on 

modeling hydrodynamics and water column temperature in Eagle Creek Reservoir 

(ECR), IN, and investigates data assimilation strategies that can incorporate remote 

sensing and in-situ field measurement data for real time model updates of water 

temperature.  

The research uses the Environmental Fluid Dynamics Code (EFDC) as the main 

modeling framework for simulating hydrodynamic and water quality in ECR. Although 

EFDC provides the 3-dimensional simulation of underlying physical, chemical, and 

biological processes in continuous time scale, there can exist discrepancies between the 

model output and observations (obtained via remote sensing technology or via in-situ 

measurements). These errors in the model predictions can arise from inaccurate input, 

inaccurate model parameters, numerical errors during the computation processes, and 

real-time variations in the system that are not incorporated in the original calibrated 

model. A data assimilation procedure can, however, provide means for integrating real-

time observed data from variety of monitoring sources to improve a model‟s prediction 
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accuracy via changes in state variables, model inputs, parameter updates, and/or bias 

correction (Moradkhani, 2008). Numerous studies have investigated remotely sensed 

datasets to improve predictions of soil moisture (Li et al., 2004; Boussetta et al., 2008; 

Zhu et al., 2009), subsurface soil temperature (Olioso et al., 1999), snow cover (Slater 

and Clark, 2006) via land surface models, and surface water distributions via 

hydrodynamic and water quality numerical models. Study focuses include river 

sediments, hydro-meteorological, water quality and sea circulation (Yang and LeDimet, 

1998; Seo et al., 2003; Madsen, 2006; Panteleev et al., 2007; Voutilainen et al., 2007; 

ADEM/Water Quality Branch, 2008).  

Existing methods of data assimilation are based on two types of approaches for 

finding the best estimates of state variables, input variables and boundary conditions from 

(noisy) observations given a (noisy) model (Walker, 2005). The first approach uses a 

“direct observer” and provides a four-dimensional data assimilation scheme, whereas the 

second approach uses a “dynamic observer” and provides a sequential data assimilation 

scheme. The commonly used direct observer data assimilation approaches include Direct 

Insertion (Houser et al., 1998; Robinson and Lermusiaux, 2000), Statistical Correction 

(Houser et al., 1998), Nudging (Rizzoli and Young, 1995; Houser et al., 1998), and 

Kalman Filter related methods. These “direct observer” methods adjust the model by 

continuous update according to the observation in the previous time step. However, most 

of these studies assume availability of continuous and sequential measurements, which 

might not be easily possible for most water resources problems that use irregularly 

available in-situ and/or remote sensing data.  
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The “dynamic observer” data assimilation approaches adjust the state variables at 

the beginning of each assimilation window so that model predictions over that time 

period correspond with the observations. Hence, “dynamic observer” techniques can be 

posed as optimization problems with strong constraints (variational methods) or weak 

constraints (dual variational or representer methods). For example, Dente et al. (2008) 

successfully used a variational method to assimilate ASAR and MERIS satellite data into 

a wheat model and improved the wheat yield mapping. A cost function is defined to 

measure the error between model outputs and observations. In order to search for the 

optimal configuration of the model initial condition and minimizing the cost function, 

constraints on the variability of initial parameters were set as Gaussian distributed within 

reasonable ranges. Then the model was reinitialized within this set of initial conditions 

and the optimum model simulation of wheat yield was obtained. In the research done by 

(Ines et al., 2006), remote sensing data from two Landsat-5 Enhanced Thermatic Mapper 

Plus (ETM+) band 6 images were assimilated into a soil-water-atmosphere-plant model 

using variational data assimilation method. A genetic algorithm (GA) was used in data 

assimilation to modify model initial conditions and water management optimizations. A 

variational data assimilation method has also been used to assimilate a sequence of 

satellite images into a simple transport-diffusion model to simulate the ocean surface 

current (Korotaev et al., 2008). These approaches are especially useful when observations 

are available at irregular time intervals, and/or at only specific spatial locations. 

Although data assimilation algorithms have been widely applied in environmental 

studies, few studies related to surface water systems (Panteleev et al., 2007; Korotaev et 

al., 2008) have used “dynamic observer” data assimilation approaches into the 
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hydrodynamic models. Among these researches, for example, (Panteleev et al., 2007) 

assimilated regular observations of flow velocity in the Kara Sea from ADCP 

instruments. Few previous investigations have been applied with respect of assimilating 

remote sensing data into numerical models. 

The specific goals of this study are: 

(1) To develop a 3-Dimensional finite difference numerical model for simulating 

hydrodynamic processes in ECR in Central Indiana. 

(2) To assimilate water surface temperature retrieved from multi-spectral Landsat-5 

ETM+ band 6 images into the hydrodynamic model and adjust the model‟s initial 

conditions via optimization-based variational data assimilation approach. 

(3)  To validate the hydrodynamic model by comparing the model results with remote 

sensing observations, and test the data assimilation efficiency. 
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2 METHODOLOGY 

2.1 Study Area and Data Collection  

 
 

Figure 1: Geographic location of ECR. 

 

Eagle Creek Reservoir (ECR) is located about 16 km (10 miles) northwest of 

Indianapolis, Indiana (Figure 1). It was constructed in 1967 by the city of Indianapolis 

and was initially used for flood mitigation. A water treatment plant was later constructed 

and put into service in 1976. The treatment plant takes water directly from the reservoir 

(approximately 10 MGD) and serves primarily as a source of drinking water supply. ECR 

is a small and shallow reservoir with normal pool surface area 5.1 km
2
 and mean depth 

5.7 m. It can be separated into three functional areas: the quarry, the northern basin, and 

the southern basin. The reservoir‟s northern and southern basins are separated by a land 
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bridge causeway under 56
th

 street, which allows limited water exchange through an 

approximately 50 meter opening. The quarry doesn‟t have a direct connection with the 

other two basins in ECR and is considered as an isolate feature. Flow in ECR is supplied 

by tributaries from the upstream Eagle Creek watershed (426 km
2
). Four main streams 

flowing into the reservoir are Eagle Creek, Bush Creek, Fishback Creek and School 

Branch, with Eagle Creek (mean discharge 4.2m
3
/s) being the major contributor of the 

flow.  

Seasonal and short-term temperature changes can lead to the thermal stratification 

of the reservoir water. Distinct thermoclines that separate the reservoir into warm and 

cold water zones will prevent the water from mixing. In this case, contaminants tend to 

accumulate instead of circulating. For example, chlorine tends to accumulate at the 

bottom of warm water thermoclines (USEPA, 1999). Also, a lack of rainfall with 

inadequate mixing of fresh and stagnant water, increased algae growth, deterioration of 

organic matter as the water warms up, and low wind conditions, can call contribute to 

depletion of DO levels. If a reservoir becomes stratified as a function of temperature, the 

bottom layer can become deficient in dissolved oxygen (Goodin, 1995). Concentrations 

of phosphorous, ammonia, iron and manganese, however, are greatly influenced by the 

presence of oxygen (APEC, 2010). 

Bathymetry data for ECR was measured by Center for Earth and Environmental 

Sciences (CEES), IUPUI. The bottom elevation varied from 223.8m to 240.5m above the 

sea level. Since there were no existing flow monitoring stations on the major tributaries 

just north of the reservoir, inflow discharges into the reservoir from the watershed were 

obtained from a watershed model – Soil and Water Assessment Tool (SWAT) – in this 
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study. The outflow from the dam was measured at a United States Geological Survey 

(USGS) gauge Station #03353460 at Clermont (1 km downstream from reservoir). 

Hourly atmospheric data was obtained from National Climatic Data Center 

(http://www.ncdc.noaa.gov/). Observations from Eagle Creek Airpark/Airport (53842) 

station were used for this reservoir region. Hourly solar radiation for 2008 was obtained 

from Indiana State Climate Office (http://climate.agry.purdue.edu/climate/). The closest 

station - Throckmorton-Purdue Agricultural Center (TPAC) - reporting solar radiation is 

located in Lafayette, Tippecanoe County, IN which is 63 miles Northwest from 

Indianapolis. The evaporation in ECR was not known. However, the local water utility 

company measured daily evaporation at Carmel, 27 km (17 miles) east of ECR. Data 

collected by the company indicated an average evaporation value of approximately 5.50 

mm/day from June to October, and an average of 4.01 mm/day from November to May 

(Lobligeois, 2009). Daily pool elevation data for 2008 was obtained from USGS gauge 

Station #03353450 at ECR located to the east of the dam.  

 

2.2 Simulation Model  

Environmental Fluid Dynamics Code (EFDC) (USEPA, 2010) is a public domain, 

open source, surface water numerical modeling system for simulating hydrodynamics, 

and water quality in open-surface water bodies. EFDC has been applied to over 100 water 

bodies in support of environmental assessment and management and regulatory 

requirements. The EFDC model solves the three-dimensional, vertically hydrostatic, free 

surface, turbulent averaged equations of motions for a variable density fluid. The model 

uses a stretched or sigma vertical coordinate and Cartesian or curvilinear, orthogonal 

http://www.ncdc.noaa.gov/
http://climate.agry.purdue.edu/climate/
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horizontal coordinates. The hydrodynamic model also solves dynamically coupled 

transport equations for turbulent kinetic energy, turbulent length scale, salinity, and 

temperature.  

The 3-D stretched sigma grids implemented with the EFDC use the following 

transforming function to calculate an adjusted vertical coordinate, Z, from the bottom 

elevation and water surface elevation: 

  
        

                                                                                                                          

In Equation 1, Z* = original physical vertical coordinate, h = bottom elevation 

and   = water surface elevation. After the physical vertical coordinate system is stretched, 

the total depth is evenly distributed into equal depths of individual layers, for all the X-Y 

grid locations within the research domain. 

The continuity equation used in EFDC is given by Equation 2, in which H = 

water depth, u and v = horizontal velocity components in x and y direction respectively, 

w = vertical velocity component in z direction; QH = the volumetric source and sink term 

concerning rainfall, evaporation and infiltration. The conservation of momentum 

equations are given in Equations 3 and 4, in which f = Coriolis factor, p = the water 

column hydrostatic pressure; patm = the kinematic atmospheric pressure; Av = vertical 

turbulent momentum diffusion coefficients, and Qu and Qv = momentum source-sink 

terms.  
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In the transport equations for salinity and temperature (Equations 5 and 6) the 

source and sink terms are given by QS and QT, which consist of subgrid scale horizontal 

diffusion and thermal sources and sinks, and Aw is the vertical turbulent diffusivity.   

                                    
                                                    

 

                                    
                                                 

The water surface and bed boundary conditions for heat transport are given by 

Equations 7 and 8: 

For water surface: 

 
  

 
      

          

    
                                                                                                           

For bed: 

         
  
  

    

    

     

     
     

  
 

                                                                        

Short wave solar radiation at the bed is defined as: 

  
  

                                                                                                                             

where Jb = net long-wave back radiation; Jc = convective heat transfer; Je = evaporation 

heat transfer; Cpw = specific heat of water; Hb = active thermal thickness of the bed; Tb = 

bed temperature; Ib = short-wave solar radiation at the bed; ρb = bed density; Cpb = 

specific heat of the water-solid bed mixture; Chb = dimensionless convective heat 

exchange coefficient; Tbl = bottom layer water temperature; Is = solar radiation at the 
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water surface, r = distribution factor; βf and βs = fast and slow-scale attenuation 

coefficients (Caliskan, 2008). 

Eight equations (2-9) provide a closed system for the variables u, v, w, p, , , S, 

and T. The vertical turbulent viscosity and diffusivity and the source and sink terms are 

also specified (Hamerick, 1992).  

 

2.3 EFDC Grid Generation 

Multiple grid sizes and time steps (Appendix C) for representing the physical 

system were explored in the study assure the accuracy of model results as well as the 

efficiency of the model. The preliminary condition for 3- time- level numerical scheme is 

that the model grid size and time step should meet the Courant-Friedrichs-levy condition 

(CFL condition) which is a necessary condition for convergence while solving certain 

partial differential equations (usually hyperbolic PDEs). CFL condition is expressed as 

Equation 10:                                                   

   
  

  
                                                                                                                                             

where U = velocity, ∆t = time step, ∆x = cell size. The necessary restriction for grid size 

and time step to ensure numerical convergence and stability is γ <1. 

The final grid setup for the numerical model consisted of expanding grids with 

minimum grid size 40m to maximum 60m are used. The expanding factor of 1.005 was 

chosen to expand grid sizes from the focal point, which was the water intake. This 

location was chosen to accurately simulate the most complex flow condition happening 

close to the causeway under the 56
th

 Street land bridge, and the drinking water intake. A 

total of 2401 grid cells were developed to represent the physical domain in the modeling 
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domain. This grid best represented the shape of the reservoir shoreline compared to other 

grids. Since EFDC only recognizes flow through cell faces, cells connecting with each 

other by corners do not exchange any mass or momentum across the corners (Figure 2). 

For this grid system, the time step of the finite difference model was set up to two 

seconds considering the model stability and the computational burdens.  

 

 

Figure 2: ECR morphological conditions (left) and final grid system with 2008 sampling 

locations (right).  
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2.4 Initial/Boundary Conditions 

The depth of water through the reservoir was measured by CEES (Center for 

Earth and Environmental Science, IUPUI) based on in-situ measurements with sonar 

equipments. Bottom elevation was based on the bathymetry data, and the initial water 

surface elevation (or pool elevation (PE)) for the model was chosen to be 240.56 m 

according to USGS (station near the dam) measurement on January 1
st
, 2008. A uniform 

initial water temperature of 3.4˚C throughout the reservoir was assumed for the model, 

based on the measurements at Mill Creek USGS gauge station near Manhattan, IN on 

January 1, 2008.  

Hydrodynamic boundary conditions of ECR included (a) time-series inflow 

discharge from twelve tributaries of Eagle Creek simulated by the Soil and Water 

Assessment Tool - based watershed model (Figure 3), (b) outflow discharge through the 

water intake and ECR dam, (c) wind speed and direction, and (d) atmospheric data 

including precipitation and evaporation. All data were appropriately formatted and 

imported into the EFDC modeling system. Figure 3 (right) shows the boundary where the 

watershed tributaries join the EFDC modeling grid for ECR. 
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Figure 3: Eagle Creek Watershed tributaries that interface with the numerical modeling 

grid of ECR. 

 

2.5 Data Assimilation Algorithms 

The overview of the data assimilation process is shown schematically in Figure 4. 

The main objective of the data assimilation process was to change the values of initial 

conditions of temperature in the reservoir at the beginning of the simulation, so that there 

was minimum error between model predictions of temperature and observations at a 

future time. The EFDC model used the set of assumed initial conditions, monitored and 

modeled (e.g., those from the SWAT hydrologic model) boundary conditions, and 

calibrated model parameters to predict the 3-D spatial and temporal distribution of 
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modeled physical variables. A cost function that estimates the error between predictions 

and observations at specific time periods when observations were obtained was then used 

to direct an optimization algorithm to modify the assumed initial conditions on the 

reservoir, until an optimum set of initial conditions are obtained.  

 

 Figure 4: General scheme of remote sensing data assimilation. 

 

Since the main objective of this study was to examine the advantages of using 

remote sensing observations for updating hydrodynamic and water quality numerical 

models, multispectral data were obtained from the Landsat 5 satellite. The spatial 

resolution for ETM+ band 6 images was re-sampled from 120m * 120m to 30m * 30m. 

Four of the ETM+ band 6 images obtained from the satellite were used to convert 

spectral radiance to water surface temperature based on the Planck‟s law (Equation 11). 

In Planck‟s law, the longwave radiation emitted from the land surface was in proportion 

to its temperature as: 
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where   is the wave length; K1 and K2 are the calibration constants as 607.76 Watts/(m
2  

* 

ster * μm) and 1260.56 Kelvin respectively (Goodin, 1995; NASA, 2009); L is the 

spectral radiance in watts/(m
2  

* ster * μm). These pre-launch calibration constants from 

the empirical models are used under the assumption that the downwelling radiance and 

atmospheric transmissivity are constant in space throughout the study area, and thus are 

applied to calculate surface temperature for each image pixel (Quattrochi, 2004). Studies 

using this method found the RMSE in water surface temperature to be less than 1K of 

retrieving land surface temperature (Sobrino et al., 2004). This error is even smaller for 

surface water systems because of their better homogeneity in temperature. 

To assimilate data obtained from the Landsat ETM+ images, 300 random 

locations were identified in the reservoir (Figure 5), where the model results and optical 

observations were used to evaluate the model performance.  

 

Figure 5: Random locations identified in the reservoir with ETM+ image on Aug 7, 2008. 
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The finite difference model computed and generated results in 2401 cells 

distributed over five vertical layers within ECR. Since the remotely sensed observations 

are most applicable to the water surface conditions, the very top layer of the finite 

difference grids were chosen for comparing model predictions to the corresponding 

remote sensing results.  

A variational observer data assimilation algorithm (Figure 6) was used in this 

study to incorporate the remote sensing observations within the simulation model. The 

error term from observations was omitted under the assumption (1) Gaussian distribution 

of observation errors; (2) The EFDC model and the remote sensing data retrieving 

algorithm were not biased (Dente et al., 2008). The data assimilation window was defined 

as the time period from the initial condition to the last observation time (Figure 6). The 

cost function (Figure 4) was estimated using the relative root mean square error 

(RRMSE) calculated from both remote sensing outputs and model outputs in the topmost 

layer of all 300 random locations (Equation 12). RRMSE calculated for each of the four 

observation days was then equally weighted and summed to obtain an overall RRMSE 

for the cost function (Equation 13).  

        
           

   
 

  
   

                                                                                                    

              
       

 
 

 
                                                                                                       

Where Xo is values of the field observed model parameter; Xm is the model 

outputs; n is the number of observations;   
    is the mean value of the field observations; j 

is the number of remote sensing observations.
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 Figure 6: Scheme of time series evolutionary data assimilation process. 

A single objective genetic algorithm (Goldberg, 1989) was used in this study for 

minimizing the cost function (Equation 12). The decision variables were defined as the 

percentage change in the initial conditions for each vertical layer. The first remote 

sensing image came at 219
th

 day (August 7
th

) of 2008. The data assimilation window was 

started from 213
th

 (August 1
st
) day to allow a warm-up period for EFDC. In the first GA 

loop, the initial range of percentage change in water temperature for all the five vertical 

layers was defined within -20 to 20. In the following loops, this range was further 

changed for each vertical layer according to the best cost function results in the previous 

loop. In total five loops were implemented to the GA algorithm with nine possible values 

of decision variable evenly taken within the decision variable ranges (Table 1). The 

population size was set to be 16; the crossover and mutation rate were 0.90 and 0.05 

respectively. The GA code was run for 10 generations. 
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Table 1: GA decision variable setup ranges for optimization. 

 Layer1 Layer2 Layer3 Layer4 Layer5 

Loop1 (-20,20) (-20,20) (-20,20) (-20,20) (-20,20) 

Loop2 (-15,5) (-20,0) (-20,0) (-20,0) (-15,5) 

Loop3 (-20,0) (-25,0) (-25,0) (-25,0) (-20,0) 

Loop4 (-30,-15) (-30,-15) (-35,-20) (-35,-20) (-30,-15) 

Loop5 (-55,-25) (-60,-30) (-60,-30) (-60,-30) (-55,-25) 
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3 MODEL APPLICATION AND RESULTS 

3.1 Model Calibration 

3.1.1 Water surface elevation and mass balance 

The period January 1
st
, 2008 to July 31

st
, 2008 were used for the calibration 

process, just before the first set of remote sensing observations were available. Figure 7 

shows the discrepancy between measured pool elevation in the reservoir for the year 

2008 and the pool elevation calculated via mass balance of SWAT-modeled tributaries 

inflows, monitored water intake and dam outflow. The root mean square error (RMSE) 

for the calculated pool elevation in Figure 7 was estimated to be 1.036 meters.  

 

Figure 7: Field measurements vs. SWAT calibrated water surface elevation in 2008. 

These discrepancies arose due to errors in the estimated tributaries inflows, which 

indicated need for further adjustment of inflows in order to better match the observed 

pool elevation. Also, since such large discrepancies in water surface elevation could lead 

to significant mismatches in water column temperature vertical profiles, a further 

adjustment in SWAT model outputs of flow discharges was made in two phases. 
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Phase I – Adjustment of SWAT-modeled discharge in tributaries 

The first step in adjusting the SWAT inflows used for the EFDC model included 

calculation of daily net storage in the reservoir from the inflow and outflows based on the 

following mass balance equation 14:  

 

Daily net storage in reservoir at the end of the day i = Total daily inflows 

from the tributaries on day i – daily outflow in the water intake on day i – daily 

outflow in the dam on day i                       (14) 

 
Once the daily net storage was estimated, it was added to the volume of the water 

in the reservoir to estimate the volume of the reservoir at the beginning of the next day 

(Equation 15). 

 

Volume in reservoir on day i+1 = Volume in reservoir on day i + Daily net 

storage in reservoir at the end of the day i                       (15) 

 
A rating curve (Appendix E) was then developed using the bathymetry data, to 

estimate relationships between reservoir volume and pool elevation. This rating curve 

provided means to estimate the reservoir volume at any day based on the pool elevation 

measured on that day. The difference between the calculated and measured water volume 

in the reservoir was weighted according to the tributary discharge for that day, and was 

subtracted from the daily tributary inflows (Equation 16).  

 

Adjusted discharge for tributary k on day i= Original discharge for tributary 

k – |calculated water volume – measured water volume| on day i * discharge weight 

for tributary k                                                                                                                               (16) 
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After tributary inflows were adjusted, the new net storage of water within the 

reservoir and the corrected total volume on day i were calculated. At the beginning of day 

i+1, the initial volume was the summation of corrected water volume in the day i and the 

net storage from inflow and outflow. The total difference between measured and 

calculated water volume was again going through the same correction step, generating 

the corresponding tributary flows for day i+1. This adjustment was applied to all daily 

inflows until the end of the model simulation period. The schematic procedure of 

computation is shown in Figure 8. Though this adjustment produced the water surface 

pool elevation identical to the measured data (Figure 9), it also resulted in some negative 

values in the adjusted tributary flows that were corrected in the next step. 

 

Figure 8: Water surface elevation as a result of flow adjustment. (The bottom figure is an 

enlarged sub-section of the top figure) 
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Figure 9: Results of adjustment in water surface elevation. 

 

Phase II – Correction of flows 

In order to avoid the negative tributary flows, all the negative flows were replaced 

by a very small positive discharge of 0.00001m
3
/s. This resulted in a small discrepancy 

with 0.07m RMSE between the adjusted and measured water surface elevation (Figure 

10). This error after flow correction was within the reasonable range in scale. 

 

Figure 10: Results of water surface elevation after negative flow correction. 
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Phase III –Pool elevation simulation using calibrated SWAT flow  

The adjusted and corrected SWAT tributary inflows were then used as inputs into 

the reservoir model (EFDC) and the model was run for the period from January 1
st
, 2008 

till July 31
st
, 2008. Figure 11 compares the EFDC simulated water surface elevation with 

the measured pool elevation. Since, EFDC simulates at much small time step than the 

daily time-step SWAT model, the EFDC output at the end of each day was taken as the 

corresponding simulated value for the water surface elevation on that day in Figure 11. 

Comparison of the modeled results and the field measurements during the first seven 

months in 2008 produced a root mean square error (RMSE) of 0.0287 meter, which was 

0.087 meter over the 0.2 meter instrumental accuracy in measuring the bathymetry 

(Lobligeois, 2009). 

 

Figure 11: Calibrated water surface elevation (purple) based on adjusted flows from 

SWAT. 
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3.1.2 Water column temperature  

Other than water surface elevation, water column temperature was calibrated in 

full hydrodynamics. The in-situ measurements were collected at 54 different (X, Y) 

locations throughout the reservoir with multiple measurements in several depths at each 

location in 2008. The YSI probes which were used to measure the water column 

temperature at these sampling locations reported an instrumental error of ±0.15 ⁰C (YSI, 

2011). These measurements were used for model calibration and validation. During the 

model calibration period, a series of calibration parameters were adjusted using EFDC to 

achieve the best agreement with the in-situ measurements of water column temperature 

(Table 2). In this research, water temperature calibration took 23 sampling events 

between May 22, 2008 and July 30, 2008.  

Table 2: Water temperature calibration parameters. 

 

 

Water temperature Calibrated Value 

Clear water light extinction coefficient (1/m) 7 

Solar radiation input/internally computed False 

Heat transfer coefficient between bed and water column 0.0000005 

Evaporation transfer coefficient 0 

Min fraction of solar radiation absorbed in the top layer 1 

Initial bed temperature (⁰C) 10 
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Figure 12 (a): Calibrated temperature vertical profiles for ECR. 
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Figure 12 (b): Calibrated temperature vertical profiles for ECR. 
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Figure 12 (c): Calibrated temperature vertical profiles for ECR. 

The temperature calibration results are shown in Figure 12 (a-c). The densely 

dashed lateral lines show the water surface elevation of each corresponding water 

column; the solid lateral lines represent the bottom elevation. It indicates very good 

correlation between the measured (dotted curves) and the modeled (smoothed curves) for 

water column temperature. Statistical analysis shows an overall RMSE of 1.279 ⁰C, 

which is within the satisfaction range for water temperature simulation using EFDC 

(Table 3). From the statistical view, the water temperature simulation has the most 

significant percentage error at monitoring Station ECRAT_A4. This phenomenon can be 

explained because this station is located at the upstream riverine area of ECR, and at the 

downstream of the confluence of an unnamed tributary with the reservoir. In summer, it 
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is assumed that water around this shallow region of the reservoir has higher temperature 

than nearby tributary flows from the watershed. The tributary flows bring cooler water 

from the watershed into this area, where more stable and warmer water conditions have 

been created. However, due to the lack of data from the watershed model, the reservoir 

boundary condition for water temperature was determined based on the USGS gauge 

station #03354000 at White River near Centerton, IN (approximately 25 miles south from 

ECR). Therefore, the modeled temperature has high deviation from measured 

temperature at this station. 

Table 3: Statistical review of water column temperature calibration results. 

Station ID Date/Time # Pairs RMSE (⁰C) 

ECRAT-A1 22-May-08 9 0.574 

ECRAT-A2 22-May-08 8 0.955 

ECRAT-A3 22-May-08 6 1.175 

ECRAT-A4 22-May-08 5 3.931 

ECRAT-B1 5-Jun-08 11 2.176 

ECRAT-B2 5-Jun-08 10 0.881 

ECRAT-B3 5-Jun-08 7 0.701 

ECRAT-B4 5-Jun-08 5 0.303 

ECRAT-C1 17-Jun-08 5 1.807 

ECRAT-C2 17-Jun-08 5 2.368 

ECRAT-C3 17-Jun-08 8 2.441 

ECRAT-C4 17-Jun-08 13 0.918 

ECRAT-D1 8-Jul-08 13 2.099 

ECRAT-D2 8-Jul-08 9 0.564 

ECRAT-D3 8-Jul-08 5 1.101 

ECRAT-D4 8-Jul-08 4 0.401 

ECRAT-E1 16-Jul-08 12 0.892 

ECRAT-E2 16-Jul-08 7 1.249 

ECRAT-E3 16-Jul-08 7 1.114 

ECRAT-E4 16-Jul-08 3 1.143 

ECRAT-F1 30-Jul-08 14 0.990 

ECRAT-F2 30-Jul-08 9 1.156 

ECRAT-F3 30-Jul-08 6 1.024 

 Composite Statistics 185 (sum) 1.279 (average) 
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With the calibrated water column temperature provided by EFDC calibrated water 

column temperature, a remote sensing data assimilation approach was implemented 

during the simulation time period from August 1
st
 to October 10

th
, 2008. 

 

3.2 Remote Sensing Data Assimilation 

Before data assimilation process was applied, three assumptions are made: (1) 

during the data assimilation procedure, only two sets of data were known - the model 

outputs and the remotely sensed images; (2) the in-situ measurements was considered as 

the natural “truth”; (3) the remotely sensed data sets performed in better accuracy than 

the model outputs, compared with the “truth” (i.e. in-situ measurements). The error was 

minimized between the remote sensing and model results, and the data assimilation 

results were evaluated in comparison with in-situ measurements. In total four remote 

sensing images during 2008 (August 7
th

, August 23
rd

, September 24
th

, October 10
th

) were 

applied in data assimilation for water temperature concentration.  

During the remote sensing data assimilation processes, EFDC was set up in a 

restart mode with the restarting time at August 1
st
, which was the 213

th
 day of the 

simulation time period. The EFDC model was reinitialized with the water temperature 

initial condition adjusted at 213
rd

 day of 2008. During this process of reducing the 

variational range of the decision variables, it was discovered that the decreasing water 

temperature values in initial condition provide better results, which were closer to the 

remote sensing observations. Also, the improvements in model performance with 

adjusting the model initial conditions reduced rapidly with model time-series propagation 

within the assimilation window. 
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The results in assimilating water temperature data from the TM images 

successfully reduced the error fitness function from 20.979% to 18.568%. Figure 13 

shows comparison between the model computed surface layer water temperature at 300 

random locations (circles) and the value retrieved from Landsat ETM+ images, on the 

four observation days in 2008. The temperature outputs after data assimilation application 

showed better consistency with remote sensed observations. These results indicated the 

well performance of the evolutionary optimization scheme in the data assimilation 

process.  

 

Figure 13: Water temperature data assimilation results: Circles - EFDC generated temp at 

300 points without DA adjust; triangles - DA adjusted tempt at 300 points. 



31 

 

The errors were tested between modeled and in-situ measurements before and 

after data assimilation. The run with error fitness function as 18.568% from GA 

computation had decision variables as (-25, -25, -25, -12.5, -2.5) for layer one to five (i.e. 

bottom to surface layer). The comparisons are shown in Table 4.  

Table 4: Statistical review of remote sensing data assimilation resulting on water column 

temperature. 

Station Date/Time        # Pairs 
RMSE (⁰C) 

EFDC 
calibrated 

DA  
generated 

ECRAT-G1 14-Aug-08 11 0.925 3.420 

ECRAT-G2 14-Aug-08 8 1.158 3.081 

ECRAT-G3 14-Aug-08 6 1.150 0.897 

ECRAT-H1 20-Aug-08 12 2.440 4.628 

ECRAT-H2 20-Aug-08 7 2.325 3.913 

ECRAT-H3 20-Aug-08 6 2.528 3.383 

ECRAT-H4 20-Aug-08 4 2.056 2.605 

ECRAT-I1 27-Aug-08 14 2.043 3.872 

ECRAT-I2 27-Aug-08 8 1.861 2.900 

ECRAT-I3 27-Aug-08 7 1.581 1.576 

ECRAT-I4 27-Aug-08 5 4.380 3.994 

ECRAT-J1 3-Sep-08 7 2.247 2.261 

ECRAT-J2 3-Sep-08 8 1.570 1.862 

ECRAT-J3 27-Aug-08 7 2.201 1.653 

ECRAT-J4 3-Sep-08 16 2.595 4.024 

ECRAT-K1 16-Sep-08 13 1.641 2.677 

ECRAT-K2 16-Sep-08 7 0.493 1.043 

ECRAT-K3 16-Sep-08 6 0.157 0.490 

ECRAT-K4 16-Sep-08 4 1.108 0.936 

ECRAT-L1 30-Sep-08 11 1.788 2.505 

ECRAT-L2 30-Sep-08 8 0.659 1.089 

ECRAT-L3 30-Sep-08 6 1.131 1.028 

ECRAT-L4 30-Sep-08 4 2.672 2.617 

Composite statistics 185(sum) 1.781(average) 2.692(average) 

 

 



32 

 

As the genetic algorithm propagated after a number of generations, the value of 

error fitness function keeps reducing. Four „individuals‟ with their error fitness function 

results were picked up to indicate the error propagation between the genetic algorithm 

optimized water column temperatures and the in-situ measurements (Table 5). An 

increase in the error between the data assimilated model results and in-situ measurements 

was observed while the error between remotely sensed and model results was reducing. 

This trend indicates that the remote sensing retrieved water temperature is forcing the 

model farther away from the in-situ measurements, which is assumed to be the “truth”. 

Table 5: Optimization results versus corresponding model accuracy in simulating in-situ 

conditions. 

 
RS vs.model       model vs. in-situ measurements 

 
RRMSE RelError (%) RMSE (⁰C) 

Original: 0.210 6.637 1.781 

After DA: 

0.196 9.017 2.421 

0.193 9.143 2.451 

0.188 9.765 2.614 

0.187 10.065 2.692 

 

 

3.3 Model Validation and Statistical Analysis  

The final phase involved model validation using calibrated model and in-situ 

water column data for the period of October 10
th

, 2008 to December 31
st
, 2008. The main 

objective of validation phase was to test the model performance for water surface 

elevation and water temperature predictions with model parameters adjusted through 

calibration. A statistical comparison between model prediction and measured parameters 



33 

 

in 2008 was implemented after validation. This comparison would serve for quantitative 

analysis of model accuracy in the research domain of ECR, Indiana.  

The water surface elevation validation results is shown in Figure 14. Statistical 

results indicate that EFDC successfully predict the water surface elevation with an RMSE 

of 0.085 meters between the modeled and USGS measurements. The validation showed 

good correlation between these two set of data with an R
2
 of 0.97. 

 

Figure 14: EFDC water surface elevation validation results. 

Meanwhile, the model was validated based on the adjustments that are 

implemented during the data assimilation period. This validation results are compared 

with those without data assimilation algorithm is applied. The effects of water column 

temperature data assimilation on the model prediction capability are tested for this study 

case. It is shown in Table 6 that the RMSE between model outputs and the in-situ 

measurements increased from 0.960 ⁰C to 0.962 ⁰C after data assimilation is applied. 
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Table 6: Statistical review of water column temperature validation. 

   
RMSE (⁰C) 

Station ID Date/Time # Pairs EFDC outputs DA generated 

ECRAT-M1 16-Oct-08 10 1.176 0.891 

ECRAT-M2 16-Oct-08 6 0.441 0.532 

ECRAT-M3 16-Oct-08 4 0.827 0.731 

ECRAT-M4 16-Oct-08 3 0.408 0.342 

ECRAT-N1 28-Oct-08 10 1.354 1.466 

ECRAT-N2 28-Oct-08 6 0.755 0.857 

ECRAT-N3 28-Oct-08 4 0.881 0.936 

ECRAT-N4 28-Oct-08 2 1.701 1.801 

Composite Statistics 45 (sum) 0.960 (average) 0.962 (average) 

 

 

3.4 Comparison between Remote Sensing Data and In-situ Measurements 

The preliminary data assimilation results proved that there exist significant 

distances between the in-situ measurements and the remote sensing data, whose values 

were generally higher and lower than the model predictions respectively. These 

differences might come from random or unknown human error, which could not be easily 

estimated. Considering the difficulty of comparing the two sets of data which were taken 

at different time snapshots, four physical regions were identified within the reservoir. A 

number of in-situ sampling stations were concentrated within each region, and different 

regions were significantly apart from each other. Region A and B were located in the 

northern basin of the reservoir, and Region C and D were located in the southern basin 

(Figure 15). Remote sensing data within these four regions were spatially averaged for 

each of the four observation times. The results were compared in time series considering 

the uncertainty from both in-situ instrumental error and remote sensing temperature 

retrieving algorithm. 
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Figure 15: Four geographical sampling regions in ECR. 

In Figure 16 (a-d), four remote sensing observations were interpolated using a 

third order polynomial, with the trend line very well following the change of observations 

in time series. New datum was computed with ±1 ⁰C interval for remote sensing data and 

±0.15 ⁰C interval for in-situ measurements. When the computed datum was within this 

interval, the difference was considered to be zero; otherwise, the smaller RMSE of the 

computed datum was taken. Statistical results indicated the minimum RMSE between 

remote sensing data and in-situ measurements as 2.47 ⁰C, 3.39 ⁰C, 3.50 ⁰C and 3.95 ⁰C 

for each remote sensing day respectively. An average of 3.33 ⁰C was computed as the 

overall discrepancy with CEES observations obviously higher than remote sensing data. 
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This value should be taken into account in the future work to reduce the discrepancy and 

to match the accuracy level of two data sets before remote sensing data assimilation is 

applied. 

 

 

Figure 16 (a): Comparison between CEES measurements and remotely derived 

temperature - Region A. 

 

 

Figure 16 (b): Comparison between CEES measurements and remotely derived 

temperature - Region B. 
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Figure 16 (c): Comparison between CEES measurements and remotely derived 

temperature - Region C. 

 

 

Figure 16 (d): Comparison between CEES measurements and remotely derived 

temperature - Region D. 
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4 CONCLUSION AND DISCUSSIONS   

This research explored the possible remote sensing data assimilation methods 

applied in a finite difference hydrodynamic model in order to improve the model 

capability of simulating real-time variations from multiple data sources. To model the 

three-dimensional hydrodynamic process within Eagle Creek Reservoir (ECR), Central 

Indiana, Environmental Fluid Dynamics Code (EFDC) was used. Four remote sensing 

images obtained from Landsat-5 ETM+ band 6 provided water temperature data, which 

were assimilated into the EFDC hydrodynamic model. A variational data assimilation 

approach was applied with continuous adjusting the model initial conditions of the 

assimilation window. The model was reinitialized and optimized through a genetic 

algorithm to minimize the difference between the model outputs and the remote sensing 

observation. The ECR water surface elevation calibration introduced a correction to the 

watershed model (SWAT) output discharge. The water surface calibration provided an 

RMSE as 0.029 meter between the model outputs and the USGS measurements. The 

calibration of water column temperature resulted in an RMSE as 1.279 ⁰C compared with 

the in-situ measurements. From the model results, EFDC water surface elevation and 

water column temperature calibration in ECR was fairly proved with model capability of 

simulating physical parameters within satisfactory bounds of accuracy during the first 

seven months of 2008. 

During the procedure of data assimilation, the genetic algorithm successfully 

generated model initial conditions which reduce the difference between the model 

outputs and the remote sensing observations. The final result of data assimilation was 

determined based on Data Assimilation Efficiency (DAE). The corresponding percentage 
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changes in model initial conditions provided a RRMSE as 0.192 and RMSE as 2.332 ⁰C 

between the model outputs and remote sensing retrieved data. After data assimilation, as 

the background model was adjusted to provide outputs which are closer to the remote 

sensing observations, its outputs had increasing difference with the in-situ measurements. 

Therefore, the assumption that the remote sensing data consists better with the field 

measurements compared with model outputs was rejected. This result could possibly be 

explained from the view of the water depth that remote sensing signal can penetrate into. 

With the limitation of EFDC, only evenly distributed vertical layer depth could be 

generated. It means that the surface layer outputs from the numerical model represent 

properties with water depths which are varying with total depth. However, the remote 

sensing technology only measures the water skin temperature. Thus, this comparison 

between model outputs and remote sensing data might introduce errors in data 

assimilation process. Other than this, every observation has its systematic and random 

errors. With the systematic error estimated from both remote sensing retrieving algorithm 

and instrumental measurements, the difference between these two sets of data was 

computed to estimate the offsets. The results showed an average of 3.33 ⁰C RMSE. In the 

future work, the error estimation of observations and conceptual models is going to be 

taken into evaluating the data assimilation performance. It is ideal to take both 

observation and numerical model errors into the data assimilation procedure. 

After data assimilation was applied, it was discovered that the variational data 

assimilation algorithm has some limitations in this case study. By defining the 

assimilation window as covering all of the four observations and adjusting the initial 

conditions, the data assimilation effects were reduced as time propagates in assimilation 
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window. It was indicated that the initial condition as model adjustment factor had limited 

effects on model performance with its propagation. Comparatively, the regular input 

model boundary conditions adjusted the model with boundary inputs and might have 

more significant influence on the model outputs at every time step. In addition, the 

variational data assimilation algorithm required significant computational resources 

considering the finite difference model propagation.  

EFDC validation for water surface elevation indicated an RMSE as 0.085 meters 

between the modeled and USGS measurements. Model validation of water column 

temperature was carried out for model performance before and after remote sensing data 

assimilation is applied. The RMSE between model outputs and CEES in-situ 

measurements for water temperature increased slightly from 0.960 ⁰C to 0.962 ⁰C after 

data assimilation. However, this value was significantly lower than the model error 

during calibration and data assimilation period, where the RMSE was 1.279 ⁰C. The 

validation results indicated the fairly accurate capability of model predictions.  

This research addressed the challenge of bringing model outputs, remote sensing 

data and in-situ measurements into the same spatial-temporal scale. To solve this 

challenge, a number of assumptions were made. And the possible error sources were 

explained as follows: 

1) The data assimilation algorithm was performed based on model outputs 

and remote sensed ETM+ images. Horizontally, it was assumed that each random 

location was fully representative of the area round within one 30m*30m remote sensing 

pixel and model grid. Since the spatial resolution is smaller for ETM+ images than for 

model grid system, the unit pixel for each data set would be mismatched in spatial scale. 
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For example, when two data sets were overlapped with each other, there would be more 

than one pixel lain over the single model grid. When the random locations were picked 

up by points, the corresponding value extracted from the ETM+ images would not 

necessarily be the dominant pixel value located within its model grid size. Similarly, 

when identifying the in-situ measurement locations, the corresponding values would not 

necessarily be dominant pixel value located within its model grid size from the ETM+ 

image. Thus assimilating corresponding remote sensed water temperature into the model 

grids would introduce errors during the horizontal integrating process.  

2) Vertically, the remote sensing signal received by the satellite sensor has 

the dominant information from the water skin temperature, which is less than 0.05 meter. 

It was assumed that the integrated first layer outputs from the numerical model were fully 

representative of the skin temperature at water surface. However, due to the limitation of 

model grid generation, the first layer depths vary according to the total water depth in 

different regions. Thus assimilating the water skin temperature to adjust the 3-D model 

might possibly introduce errors. 

3) When comparing the remote sensing data with in-situ measurements, it 

was assumed that the measurements at 0.25 meter depth were able to be compared with 

remote sensed water surface temperature. However, as the remote sensing technology can 

only represent the top surface of the water column, the difference between the water 

temperature on the skin and that at 0.25 meter depth was omitted. This difference should 

be examined according to the temperature gradient at the time of in-situ measurements to 

avoid the influence cause by water depth. 
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Proposed method to improve the current research is shown as follows: 

1)  To avoid calibrating and improving the model for the first three seasons 

(spring, summer and fall), and validating for winter season, it is proposed that only three 

TM images are used for data assimilation instead of four. One remote sensing event and 

all the in-situ measurements during September 24
th

 and October 10
th

 will be included into 

the model validation. The model will continuously be validated with in-situ 

measurements from October 10
th

 to December 31
st
, 2008. 

2)  Since currently there is no proof of the systematic and random human 

error source from either remote sensing or in-situ measurements, assimilating only 

remote sensing data with the “truth” assumed to be the in-situ measurements will 

possibly result in the bias estimation of data assimilation performance. In addition, using 

only remote sensing data, the numerical model was adjusted according to the surface 

layer condition. However, the in-situ measurements provide observations from a three-

dimensional view of water column parameters. Therefore it is proposed that both remote 

sensing and in-situ measurements can be assimilated at the same time during the data 

assimilation period. In this case, a multi-objective Non-dominated Sorting Genetic 

Algorithm (NSGAII) will be applied as the optimization scheme. The two objectives 

include the difference between model outputs and remote sensing observations, and the 

difference between model outputs and in-situ measurements. NSGAII continues to seek 

from both objectives the combination of individuals, which lie on the Pareto front. Thus 

the Pareto-optimal solutions will be determined based on the appropriate weights 

respectively given to the objectives. Meanwhile, a single objective genetic algorithm is 

going to be applied with only remote sensing data assimilated into the EFDC. The data 
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assimilation performance will be evaluated with results given by multi-objective NSGAII 

and single-objective genetic algorithm using the validation data from September 24
th 

to 

December 31
st
, 2008. 
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APPENDICES 

Appendix A. Supplementary literature review of EFDC 

In recent years, Environmental Fluid Dynamics Code (EFDC) has been widely 

used for hydrodynamic and water quality modeling. For study cases with complex 

hydrodynamic processes, a 3-D model can provide precise dynamic simulations of flow, 

contaminant fate and transport, and biochemical interactions. Multiple applications of 

EFDC currently exist in the literature. These applications have investigated 

hydrodynamic and/or water quality simulations in rivers (Ji et al., 2002; U. S. Army 

Corps of Engineers, 2004b; U. S. Army Corps of Engineers, 2004a; Tetra Tech, 2005; 

Tetra Tech, 2007a), lakes (USEPA, 2002; Scientifc Environmental Applications, 2003; 

Jin and Ji, 2004; Zou et al., 2006; Tetra Tech, 2009), reservoirs (Khangaonkar et al., 

2005), estuaries (Shen et al., 1999; Tetra Tech, 2001; Wool et al., 2003; Tuckey et al., 

2006) and coastal areas (Tetra Tech, 2006; Tetra Tech, 2007b).  
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Appendix B. Detailed applications of direct and dynamic observer data assimilation 

methods. 

Among direct observer data assimilation algorithms, most applied Kalman Filter 

related methods including traditional Kalman Filter, Extended Kalman Filter and 

Ensemble Kalman Filter have been widely used for data assimilations in environmental 

models. Different application objectives include surface water (Madsen, 2006; 

Voutilainen et al., 2007), land surface (Launay and Guerif, 2005; Ines et al., 2006; 

Moradkhani, 2008; Shen et al., 2009), air quality (Vijayaraghavan et al., 2008) and 

ecosystem (Chemin et al., 2004; Mo et al., 2008; Bouarifi and Alaa, 2010). However, for 

most of the study cases using direct observer method, regular in-situ measurements were 

assimilated. A typical case where the extended Kalman Filter is applied aimed to forecast 

algal bloom dynamics combining with an ecosystem model (Mao et al., 2009). In this 

study, high frequency field observations (sampling interval Δt =1 day, 2h, 1h 

respectively) and bi-weekly nutrient data are assimilated into the model to produce 

combined state estimates. (Allen et al., 2003) used an Ensemble Kalman Filter (EnKF) to 

assimilate long time series of in-situ Chlorophyll taken from a data buoy in the Cretan 

Sea. The results show a significant improvement in the ecosystem model to forecast 

chlorophyll concentration.  

In recent studies, most of dynamic observer (variational) data assimilation 

methods have been applied in research of land surface vegetations. (Ines et al., 2006) 

characterized a typical irrigated agriculture system using a variational remote sensing 

data assimilation. A modified genetic algorithm was used in data assimilation and water 

management optimizations. In another study by (Dente et al., 2008), the Leaf Area Index 
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was retrieved from ENVISAT ASAR and MERIS data and was assimilated into CERES-

Wheat crop growth model through a variational method. The model was continuously 

reinitialized with the optimal input parameters to achieve a pixel by pixel agreement 

between the modeled and remotely sensed observations. Recent research in assimilating 

Normalized Difference Vegetation Index (NDVI), satellite radar back scattering 

coefficient (Mangiarotti et al., 2008) also searched for model‟s initial conditions to 

minimize their difference to the observed values. The optimization process was realized 

by introducing an evolutionary strategy. (Boussetta et al., 2008) also proposed a coupled 

land-atmosphere satellite data assimilation system for a land surface model to provide 

optimized initial conditions for the atmospheric model.  

Beside the land surface parameters, variation data assimilation method was also 

applied in a number of studies in surface water dynamic processes. Among these studies, 

in-situ observations were mainly assimilated such as streamflow, precipitation, potential 

evaporation (Seo, 2001) to explore the hydrologic forecasting and velocities for 

simulating sea circulation (Panteleev et al., 2007). An adjoined model of a finite-element 

shallow water equations model was involved to generate the corresponding observations, 

which were available at each time step of the assimilation window. The cost function was 

the weighted sum of the difference between the model solution and the generated 

observations. Successful minimization of the cost function was obtained using initial 

conditions as control variables (Zhu et al., 1994). A limited memory quasi-Newton 

method was used as the optimization algorithm to obtain the minimum error between 

modeled and observed river sediment transports. The control variable was chosen as the 

initial river discharge (Yang and LeDimet, 1998).  
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Appendix C. Finite difference grid system generation process                                                                                                 

Since EFDC allows single focal point with expanding Cartesian grids, three grid 

systems were initially generated with the focal point at the water intake to better 

simulates the complex flow around the gates and near the causeway. Additionally, grids 

were rotated parallel with the dam in regards of the accuracy of model‟s capability of 

simulating flow patterns near the dam. In the initial trial runs, the grid size for the fine 

grid system was 15.5m with the total 5290 grids through ECR, for the medium grid 

system 20.0m with a total 3821, and for the coarse system 35.0m with a total amount of 

1763 (Appendix Table 1) (Appendix Figure 1). However, considering the computational 

costs for the following water quality model, coarser grids which significantly reduce the 

cell amount and the required time steps were required. Meanwhile, cell rotation angle 

was also removed in order to make sure water flows through the 56
th

 bridge without any 

unrealistic physical obstacle. Vertically, EFDC only allows standard sigma vertical grid 

system, in which the same number of vertical layers was set up throughout the research 

domain. The number of vertical layers was set to be five, taking account of the photic 

depth in the deepest area of the reservoir and the computational burden of the numerical 

model. 

Appendix Table 1: Parameter selection for grid generation. 

Focal Point  

(X, Y) 

Number 

of grids 

Minimum 

cell size (m) 

Maximum 

cell size (m) 

Expanding 

factor 

Cell rotation 

angle (degree) 

559313,4411545 5290 15.5 100.0 1.020 -52 

559313,4411545 3821 20.0 100.0 1.020 -52 

559313,4411545 1763 35.0 80.0 1.020 -52 

559313,4411545 2401 40.0 60.0 1.005 0 
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Appendix Figure 1: 2008 water quality sampling locations within three grid systems of in 

ECR. (Left: fine grid; Middle: medium grid; Right: coarse grid) 
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Appendix D. Pseudo-code of genetic algorithm application to EFDC model 
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Appendix E. EFDC simulations in water surface elevation and mass balance using 

uncalibrated SWAT 

Initial simulations using EFDC were performed for one vertical layer to ensure 

model stability. Atmospheric boundary conditions were further specified in full 

hydrodynamic module with multiple layers. After initial hydrodynamic trial runs, five 

vertical layers were defined for the water column based on computational accuracy as 

well as time consumption.  

With the preliminary results from the on-going Eagle Creek watershed model, a 

series of EFDC uncalibrated runs were carried out before model calibration. Problems 

such as negative depth and exceeded iterations would occur because of the inaccuracy of 

bathymetry data for cells around, impropriate choice of dry depth and numerical 

solutions. The purpose of this process was to warm up the model, determine proper 

values for numerical parameters (finite difference model scheme, numerical solution, 

etc.) which influenced the model iteration, and achieved a basic idea of the model‟s 

capability of capturing the trend of hydrodynamic processes.  

Based on water balance calculations for ECR for 2008, ECR received total of 

2096.94 m
3
/s from twelve different tributaries where flow discharge was estimated using 

an uncalibrated watershed model (SWAT), as well as precipitation (total 1.37 m/year) in 

2008. With data collected by water intake and dam operators, the total amount of water 

out from ECR is estimated to be 2574.905 m
3
/s. An average evaporation was taken with 

the value of approximately 5.5 mm/day from June to October, and an average of 4.01 

mm/day from November to May as presented in the previous research (Lobligeois, 2009) 

in the same domain. Appendix Figure 2 shows the total inflow from SWAT model versus 
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the total outflow from dam, water intake and evaporation in 2008. According to the 

calculation, there were +28,250,531.93 m
3
 net storage of water in the reservoir in 2008. 

Positive storage came from the uncalibrated inflow data from the tributaries. In the 

following work, the inflow and outflow of water in ECR are further considered. A 

correction step was highly required. 

 

Appendix Figure 2: ECR inflows and outflows in 2008.  

 

Meanwhile, a comparison was done between USGS water surface elevation 

measurements and model predicted surface elevation based on volume – elevation 

relationship provided by EFDC (Appendix Figure 3). This relationship was based on 

topographic data for the reservoir and the modeling grid system that were generated. 
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Appendix Figure 3: Volume, area and surface elevation relationship provided in EFDC. 

 

In order to estimate pool elevation based on the relationship between volume and 

surface elevation of ECR, the net storage of the reservoir was calculated daily in 2008. 

Discrete data from the curve are imported into Matlab to generate a proper fitting curve 

and the corresponding functions. 

The initial total water volume in the reservoir was calculated using the 

mathematical relationship from the functions with the known initial water surface 

elevation. The water surface elevations for the rest of days in 2008 were calculated using 

the algebraic summation of the water volume within the reservoir in the previous day, 

and the net storage of water volume that was calculated from the inflow and outflow in 

that day. In hydrodynamic calibration of EFDC, water surface elevation for ECR would 

be compared with in-situ data measured near the dam from USGS database. Appendix 

Figure 4 shows the simulated ECR surface elevation in the first uncalibrated run of EFDC 

for 2008. The results were compared with mass-balanced water surface elevation from 
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uncalibrated SWAT flow, and USGS gauge station measurements to the east of Eagle 

Creek dam.  

 

Appendix Figure 4: Modeled pool elevation using uncalibrated SWAT inflows (crosses), 

measured pool elevation near the dam (dashed line), and Volume-Elevation based pool 

elevation calculated from uncalibrated SWAT inflows (continuous line). 

Although there existed an obvious difference between modeled and in-situ data, 

the results of the comparison (Appendix Figure 5) showed excellent agreement (R
2
 = 

0.99) between simulated and calculated pool elevation from water balance. Since EFDC 

reads input flows from each tributary provided by SWAT model outputs, the SWAT flow 

data are the only „knowledge source‟ for the model. Given that its computation performs 

in good correlation with input knowledge, it was concluded that the uncalibrated flow 

data from watershed model is a significant contributing factor to the discrepancies in 

water surface elevation. Therefore, in the calibration of EFDC, further calibration of 

SWAT model was required. 
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Appendix Figure 5: Comparison between modeled and calculated pool elevation. 
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Appendix F. Initial and boundary condition for water temperature 

Water temperature in January 2008 was required for initial condition of the 

model. However, two watershed monitoring stations established by CEES (ECWMP-01 

and ECWMP-02) did not collect daily water temperature and could not be used as data 

sources (Appendix Figure 6). Meanwhile, water temperature for ECR was not collected 

during winter months and data from buoy placed in reservoir were not available for this 

period. Thus, data from nearest USGS monitoring stations was used (Appendix Figure 7) 

for initial and boundary conditions. Two stations provide most accurate water 

temperature for 2008 are USGS gauge Station #03359000 at Mill Creek (located in a 

different eco-region) and USGS gauge Station #03354000 at White River near Centerton, 

IN (approximately 25 miles south from ECR). Water temperature for tributaries from 

January 1 to January 13, 2008 was determined based on a linear relationship between 

USGS Centerton station and Mill Creek station. USGS Stout Gen. Station #03353611 

which was closer to the study domain could not be used because it was reported to be 

thermally polluted. Water temperature data for boundary conditions for the rest of year 

2008 came from USGS Centerton station (Appendix Table 2).  

 

Appendix Table 2: Boundary water temperature data sources for 2008. 
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Appendix Figure 6: Eagle Creek watershed water temperature sampling locations close to 

ECR. 
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Appendix Figure 7: USGS gauge station locations used in water temperature comparison. 
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Appendix G. Water column salinity calibration 

The in-situ measurements of water column salinity were taken along with water 

temperature sampling using YSI probes. Initial salinity on January 1
st
, 2008 was 

determined as 0.25 kg/m
3
, which was the average observation value for ECR in 2008. 

Salinity calibration was implemented by adjusting the evaporation transfer coefficient in 

EFDC. The result showed less satisfactory correspondence at this location all through the 

calibration process, achieving an RMSE as much as 0.100ppt in the results (Appendix 

Figure 8 (a-c) ) (Appendix Table 3). However, the measured salinity in this inland 

reservoir system was within the range of 0.160 ppt – 0.310 ppt, and the modeled range as 

0.268 ppt – 0.350 ppt. Previous research (Somchai Wangwibulkit, 2008) showed very 

limited influences on the concentration of Chlorophyll-a with the water column salinity 

less than 2.00 ppt. Both of the model calibrated and the measured salinity for this inland 

water system were satisfactorily within this range, which indicated that salinity value for 

this study case was not a dominant factor for the simulation and prediction of algal bloom 

events. 
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Appendix Figure 8 (a): Calibrated salinity vertical profiles for ECR. 
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Appendix Figure 8 (b): Calibrated salinity vertical profiles for ECR. 
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Appendix Figure 8 (c): Calibrated salinity vertical profiles for ECR. 
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Appendix Table 3: Statistical review of water column salinity calibration results. 

Station ID Date/Time # Pairs Parameter RMSE (ppt) 

ECRAT-A1 22-May-08 9 Salinity 0.050 

ECRAT-A2 22-May-08 8 Salinity 0.056 

ECRAT-A3 22-May-08 6 Salinity 0.073 

ECRAT-A4 22-May-08 5 Salinity 0.037 

ECRAT-B1 5-Jun-08 11 Salinity 0.105 

ECRAT-B2 5-Jun-08 10 Salinity 0.121 

ECRAT-B3 5-Jun-08 7 Salinity 0.187 

ECRAT-B4 5-Jun-08 5 Salinity 0.160 

ECRAT-C1 17-Jun-08 5 Salinity 0.092 

ECRAT-C2 17-Jun-08 5 Salinity 0.112 

ECRAT-C3 17-Jun-08 8 Salinity 0.137 

ECRAT-C4 17-Jun-08 13 Salinity 0.133 

ECRAT-D1 8-Jul-08 13 Salinity 0.096 

ECRAT-D2 8-Jul-08 9 Salinity 0.095 

ECRAT-D3 8-Jul-08 5 Salinity 0.100 

ECRAT-D4 8-Jul-08 4 Salinity 0.095 

ECRAT-E1 16-Jul-08 12 Salinity 0.086 

ECRAT-E2 16-Jul-08 7 Salinity 0.111 

ECRAT-E3 16-Jul-08 7 Salinity 0.110 

ECRAT-E4 16-Jul-08 3 Salinity 0.132 

ECRAT-F1 30-Jul-08 14 Salinity 0.069 

ECRAT-F2 30-Jul-08 9 Salinity 0.092 

ECRAT-F3 30-Jul-08 6 Salinity 0.102 

Composite Statistics 185 (sum) Salinity 0.100 (average) 
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