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ABSTRACT 

Elmaraghi, Omar. M.S.M.E., Purdue University, May 2013. Integrated Multibody 
Dynamics and Fatigue Models for  Predicting the Fatigue Life of Poly–V Ribbed Belts. 
Major Professor: Tamer Wasfy. 

 

In this thesis, a high fidelity numerical model was developed using a multibody 

dynamics/finite element code to simulate a belt-drive that transmits power from a turbine 

of a Rankin cycle (that uses the exhaust waste heat of the internal combustion engine as a 

heat source) to the crank shaft of the engine. The belt was modeled using three-node 

beam elements to account for the belt axial and bending stiffness/damping, while the 

pulleys, shafts and tensioner body were modeled as rigid bodies. The pulleys have a 

cylindrical contact surface. The penalty technique was used to model normal contact 

between the belt and the pulleys. The code uses a time-accurate explicit numerical 

integration technique to solve the multibody dynamics differential equations. 

An asperity-based friction model was used to approximate Coulomb friction 

between the belt and the pulleys. To account for the stiffness/damping of the shafts, 

torsional spring(s) were added at one or both sides of each shaft. Virtual sensors were 

placed on each belt span to measure belt tension, belt deflection and number of belt node 

at the sensor position. The model inputs are crankshaft angular velocity and torque 

applied on the turbine. The predicted angular velocity and the torque transmitted by a 

drive shaft are compared to experimental results supplied by Cummins, Inc. and excellent 

agreement was found with error less than 15% in the vibration amplitudes of the main 

frequencies. 



   xv 

A Parameter sensitivity study was performed by changing parameters such as the 

tensioner arm viscous and coulomb damping, belt axial stiffness and damping, belt 

bending stiffness and damping, the coefficient of friction between the belt and pulleys , 

gear tooth backlash, gear tooth stiffness and damping, and the shafts stiffness and 

damping. Then the effect of each change on the response was observed. It was found that 

the viscous and frictional (Coulomb) damping of the tensioner arm, and the coefficient of 

friction between the belt and the pulleys have the most significant effect on the system’s 

response. 

Predicted normal and tangential forces between the belt and the pulleys as well as 

the tension force in the belt were used to calculate different stresses experienced at the 

belt rib. The different stresses were added together using Sine’s theory and represented 

by an equivalent uniaxial stress, which is used as a damage criterion to estimate the belt 

life-time based on a fatigue model. As the belt chords have much larger Young’s 

modulus than the rubber, the chords limit the rubber strain keeping it in the linear elastic 

zone. Hence, the High Cycle Fatigue (HCF) model was used along with the modified 

Basquin relation to estimate the fatigue life of the belt. The fatigue life was estimated for 

different belt-drive operating ranges. The engine duty cycle, which specifies the percent 

of time the belt operates in each operating range, was used to estimate the overall fatigue 

life of the belt. 

Finally, three different alternative configurations of the belt-drive were built and 

simulated for the same input, the same material properties and the same belt initial 

tension, but different idler pulley positions and configuration. The response was observed 

for each configuration in terms of the stresses and fatigue life. The results of the three 

configurations and the baseline were compared. 
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1. INTRODUCTION 

Belt-drives are used for power transmission in many applications such as 

automotive accessory drives. They have the following  advantages over alternative power 

transmission systems:   

• They generally have lower cost than other power transmission systems. 

• They are easier to maintain due to easy installation and the lack of need 

for lubrication.  

• They are tolerant to sudden loads  

• They allow high flexibility in the distances between drive and driven 

shafts.    

Flat belts were the first type of belts to be introduced in industry. Flat belts have 

much lower maximum allowable transmitted power than alternative mechanical power 

transmission systems such as gears. One way to increase the power transmission capacity 

of a belt is to make it wider so that the contact area between the belt and the pulley 

becomes bigger. The V-belt was introduced to enable transmitting more power than flat 

belts of the same width due to the wedge action between the belt V-rib and the pulley 

groove. The V-belt power transmission capacity cannot be increased by increasing the 

belt width (like the case in the flat belt) because the wedge profile will change. To 

increase the power transmission capacity of the V-belt, multiple belts are installed on the 

same pulley to share load. The evolution of this concept led to the development of the 

poly-V ribbed belts which integrate the features of both the flat belt as well as the V-belt. 
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The poly-V belt can be considered as a flat belt with multiple V-shaped cross 

sectional ribs connected in parallel on one of its sides. The poly-V belt is now widely 

used in different applications especially the automotive industry. 

1.1 Motivation 

As belt-drives become more widely used for power transmission, it was essential 

to find methods to help designers and researchers design the belt-drive that would 

perform the required function. Experimental results are the most trusted; however, they 

require special arrangements like labs and special measuring devices. Also, a physical 

model of the system needs to be manufactured. This makes experimental validation of 

belt-drive designs an expensive process, which is not favorable for technology producers. 

Also some of the experiments, such as high cycle fatigue life, may take a long time to 

obtain the results which is not convenient for a designer who needs to run the experiment 

many times to tune the design. As a result, depending on experimental validation hinders 

the progress of spread of the technology and limits the designer abilities. 

1.1.1 Present Application of Belt-Drive 

Internal combustion engines waste around one third of the produced heat energy 

in the exhaust gasses [1, 2] (see Figure  1.1). Moreover, emission regulations are 

becoming stricter to limit Greenhouse Gasses (GHG) emissions including CO2, which 

requires that less fuel be burnt in the engine. For those reasons, it is essential that 

researchers work on finding solutions to fuel efficiency, and consequently reducing fuel 

consumption and emissions. Currently many technologies are under development to 

recover the heat energy wasted through exhaust and coolant (see Figure  1.1). One of 

these technologies introduced is to add a Rankin cycle that uses the wasted heat energy in 

the tail pipe as input heat energy to evaporate a working fluid. The evaporated fluid 

(steam) rotates a turbine, which produces power. The waste heat recovery system can 

reduce the fuel consumption by up to 10% [3] and increase the engine power by 10% on 
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cruising speed on highways [2], thus decreasing the amount of emissions produced for 

the same trip.  

 

Figure  1.1  Energy utilization in ICE [2] 

In order to add the power produced from the turbine (in the Rankin cycle) to the 

engine power, a mechanical power transmission system is required. A belt-drive was the 

preferred solution due to the advantages of belt-drives mentioned in the beginning of this 

chapter. 
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1.2 Literature Review 

The belt drive has many advantages that make it the preferred solution for many 

applications, one of which is the accessory serpentine belt in the automotive industry. 

This made it necessary to understand the failure modes of belt-drives and develop 

methods to predict belt-drive failure. One of the most critical failure modes of a belt-

drive is failure of the belt due to fatigue. 

In 1965, G. J. Lake and P. B. Lindley [4] studied the mechanical fatigue limit for 

rubber due to a flaw cut growth which are initially present in rubber. The study was 

looking for the minimum tear energy under which a mechanical rupture can occur in the 

presence of oxidation. This helps to estimate the performance of the belt rubber under 

cyclic loading. In 1988, Y. S. Huang and O. H. Yeoh [5] further studied failure modes of 

a rubber chord composite.  The study included a penny shaped crack initiate in the rubber 

where the crack grows. They employed a fracture mechanics approach using the strain 

energy release rate per unit area increase on one surface of a growing crack. They 

developed a theory to estimate the crack growth rate and the fatigue life. The theory has 

been validated using experimental results and both results were found to be in agreement. 

In 1981 J. N Fawcett [6] reviewed studies that looked at various analytical 

solution methods related to chains and belt drives vibrations, noise, material properties 

and pulley belt interaction. With the development in computational power, the trend of 

solutions changed from analytical models to numerical models solved by computer 

simulation. In 1989, D. Frhzson [7] developed a theory to estimate the service life of the 

belt. However, the study was based on observing a certain parts of the belt when the belt 

is running under loading conditions, but not the entire belt. This approximation was taken 

to decrease the amount of computation and to avoid boundary effects. The study focused 

on three modes of failure, which are radial crack in the rubber, separation between rubber 

and chord and chord breakage. 

S. Karunendiran, M. Clark and J. W.Zu [8, 9]  used the stress life approach to 

create a belt life equation. The various types of stresses affecting the belt drive in a 
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planner multi-axial system were used in the fatigue model to estimate the life-time of the 

belt. An equivalent uniaxial approach was used to represent the uniaxial system in the 

fatigue model. The fatigue index and the fatigue strength coefficient are estimated 

empirically. The belt fatigue model was validated by experimental results from different 

configurations of belt drives. However, the stresses in the numerical model were 

described by equations that used curve fitting. The studies didn’t include a time accurate 

prediction of the stresses on the belt. 

One of the biggest challenges that faced researchers was to determine the material 

fatigue properties. Those properties were determined empirically by analyzing 

experimental results. Although the studies were validated and had a reasonable agreement 

with experimental results, they did not count for the effect of the operating temperature. 

When the operating temperature of the belt changes, the material properties of the belt 

change. Consequently, the forces and stresses applied on the belt change in magnitude. S. 

Sundararaman el al.  [10] studied in 2009 the effect of temperature on the fatigue life of a 

V-ribbed serpentine belt. They employed a finite element model that can take the thermal 

degradation of the belt properties into account. This model was used to study the 

propagation of a crack due to a flaw that initially exists on the rib tip of the belt. It was 

shown that belt rubber suffers significant degradation due to the increase in working 

temperature, resulting in shorter fatigue life. T. Ha Anh and T. Vu-Khanh [11] studied the 

influence of temperature change on material properties. They used the polychloroprene 

(CR) to conduct the study. This material is usually used in the belt rubber manufacturing. 

Nassiri [12] proposed a new approach to determine the hyperelastic material properties of 

the belt rubber. Nassiri calculated the chord’s elastic modulus of the belt. The results of 

calculation showed agreement with the results obtained from a tensile test. The predicted 

values of the belt parameters were used in finite element model. This model was used to 

estimate the belt fatigue life of a typical automotive belt-drive. 

As belt wear progresses, the V-ribbed belt shape deforms and the load is no 

longer distributed uniformly. In 1998, D Yu et al [13] studied the effect of wear on the 

traction capacity of the belt. In their approach, they attempted to find how the load was 
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shared between the rib flanks and the rib root to achieve their purpose. They built a 

numerical model to simulate the new belt and another one to simulate the worn belt. The 

loading of the belt and the traction capacity were monitored in the numerical models. 

Wear was found to happen in three regions; the rib shoulder, the rib flanks and the rib 

root. It was found that belt wear resulted in 10 percent reduction in the maximum belt 

traction. The study, however, did not discuss the prediction of the life of the belt. 

With further advancement in computation power, many endeavors were taken to 

simulate the belt drive with high fidelity. In 2002, Michael J. Leamy and Tamer Wasfy 

[14] worked on simulating a pulley belt drive system using a dynamic finite element 

model. The model consisted of simple system of two pulleys connected with a belt. This 

model was employed to determine the transient and steady state response of the system. 

The pulleys were modeled as rigid bodies with circular constraints and the belt was 

modeled using standard truss elements. The friction between both the pulleys and the belt 

was modeled using penalty formulation with friction laws that approximates coulomb 

friction. The drive was incorporated in an explicit finite element code. The solution was 

validated by comparing to an exact analytical solution [15] of steady state and an 

excellent agreement was found. T. Wasfy, M. Leamy and R. J. Meckstroth [16] used the 

multibody dynamics explicit finite element technique presented in [14] to predict belt 

drive natural frequencies. Two methods were employed to find the natural frequency of 

the system. The first technique applied a sharp impulse to the system and subsequently 

extracted the system natural frequencies using an FFT. The second technique applied a 

harmonic excitation to the system, then increasing the frequency of the harmonic 

excitation in a linear pattern and observing the frequency at which the system will have 

the highest response. Although these studies predicted the stresses very accurately, they 

did not use these responses to calculate the fatigue life of the belt due to the effect of 

these stresses. 
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1.3 Objectives 

The wide spread use of belt-drives along with the limitations of experimental 

validation generated the need to have more flexible, cheaper but yet accurate methods to 

estimate the behavior of different belt-drives designs. With the boom in the 

computational power, and the decrease in computation expense, numerical analysis 

becomes a more attractive alternative to physical experiments. The challenge has always 

been how accurate is the numerical model (i.e. how close are the numerical results to the 

real system). 

The thesis has four main objectives. The first aims at building a high fidelity 

numerical model of a practical belt-drive. In order to prove the model’s accuracy, the 

numerical model is validated by comparing its response to experimental results. The next 

objective follows validating the numerical model, and it aims at conducting a parameter 

sensitivity study by changing one parameter at a time and observing the change of 

response. This study will give the designers an estimate of the impact of each parameter 

on the belt-drive dynamic response. The third objective aims at creating a belt fatigue life 

model and to be used to estimate the belt fatigue life for the practical belt-drive. The 

fourth and final objective is to change the belt-drive configuration, such as removing a 

pulley or changing its place, and observing the effect of this change on the belt fatigue 

life. 

The study contributes to this field through integrating the multibody dynamics 

model presented in [17-20] with the fatigue model presented in [8, 12] to obtain a full 

model that can predict the belt fatigue life. The multibody dynamics model gives a time 

accurate prediction of the forces that the belt experience, which are used to calculate belt 

stresses. The stresses are then used in the fatigue model as a damage criterion. Another 

contribution of this thesis is creating and experimentally validating a high-fidelity 

numerical model of a practical belt-drive. Another contribution is to evaluate the 

sensitivity of the belt-drive’s response due to the change of the value of the model 

parameters. The final contribution is exercising the integrated model on different belt 

configurations and comparing the results to show the capability of the integrated model in 
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comparing different configurations. The integrated multibody dynamics and fatigue 

models can be used as a useful tool for optimizing belt-drives’ fatigue life. 

1.4 Thesis Organization 

Chapter 1 served as an introduction to belt-drive history and importance. It also 

presented the transition and developments in belt shape and configuration showing the 

advantages of each new configuration and the reason behind this development. Then, a 

literature review on belt fatigue life prediction and multibody dynamics of belt-drives 

was presented. The final section stated the thesis objectives. 

The numerical model was solved using the explicit time integration Dynamic 

Interactive simulator (DIS) code [17]. Chapter 2 presents the multibody dynamics 

equations used in the numerical model. It starts with the general equations of motion. 

Then it shows the strategy of modeling and formulating the joints and how to incorporate 

the joint constraints in the solution procedure. The asperity friction model, used to 

approximate coulomb friction, is also shown along with its formulation. The three-node 

beam element used to model the belt is then described. Finally, the explicit solution 

procedure that incorporates the joint and contact constraints is presented at the end of 

chapter 2. 

Moving to the case study, Chapter 3 has description of the belt-drive that has been 

studied. It describes the components, geometry, loading and input angular velocities of 

the system. To validate the response of the numerical model, it was compared to 

experimental results of the response of a physical model. The comparison is shown in 

Chapter 3 in form of comparison plots. 

System response changes if some of the belt parameters change. There was an 

interest in knowing the sensitivity of the belt-drive response due to change in specific belt 

parameter. In Chapter 4 one parameter is changed every time and the response is 
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observed for any variation. Different parameters were studied such as stiffness, damping, 

friction and clearances for different components in the system. 

Chapter 5 presents the procedure used to calculate the stresses acting on the belt 

rib. Different types of stresses are taken into account such as axial, transverse shear and 

bending stresses. Also a uniaxial equivalent stress is used to approximate the multi-axial 

stress. Sine’s rule was employed to find the equivalent uniaxial stress. 

Chapter 6 discusses the estimation of the belt fatigue life-time based on the 

fatigue theory. It begins with a general overview about the concept and definitions of 

fatigue. This includes the low cycle fatigue (LCF), High cycle fatigue, S-N fatigue curve 

and the effect of the mean stress on the fatigue life. The fatigue model is described in this 

chapter along with the derivations and equations. The equivalent uniaxial stress system, 

calculated in Chapter 5 is used in the fatigue model as a damage criterion. Chapter 6 also 

introduces the cumulative damage theory in the fatigue calculation applied on multi-

pulley belt-drives. The fatigue model is applied on the case study belt-drive, which is the 

focus of this thesis, in order to estimate the fatigue life of the belt-drive. Results are listed 

and discussed at the end of the chapter. 

Different alternative belt configurations are introduced in Chapter 7. The 

alternatives are supposed to do the same job under the same operating conditions but only 

different in configuration. The forces and stresses are observed for each of the alternative 

configuration and then the fatigue life is estimated using the fatigue model introduced in 

Chapter 6. Comparative results are listed and discussed at the end of the chapter. 

Chapter 8 summarizes the work done in this thesis and conclusions reached from 

the research. It also presents recommendation for future research that can be performed to 

build on this research. 
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2. MULTIBODY DYNAMIC EQUATION 

The multibody dynamics model was presented in [16, 19, 20] including the 

governing equations as well as joints and frictional contact model. Furthermore, the 

multibody dynamics model was used in [14, 15, 21] to model a belt-drive and study its 

response (mainly frictional contact). Those studies did not calculate the fatigue life for 

the belt. 

2.1 Governing Equations 

In the subsequent equations follows the following convention [18]:  

• The indicial notation is used.  

• The Einstein summation convention is used for repeated subscript indices 

unless otherwise noted.  

• Upper case subscript indices denote node (or rigid body) numbers.  

• Lower case subscript indices denote vector component number.  

• The superscript denotes time.  

• A superposed dot denotes a time derivative. 

A multibody dynamic system consists of multiple rigid bodies (which are 

modeled using finite element nodes) that may come into contact with each other and are 

connected through joints. 

. 
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The dynamics of each body will affect all other bodies. If we have a multibody 

system consisting of N rigid bodies, then we can write semi-discrete [18, 19] Newton-

Euler equations for each rigid body (node) as:  

𝑀𝑘𝑋̈𝐾𝑖
𝑡 = 𝐹𝑘𝑖𝑡  ( 2.1) 

𝐼𝐾𝑖𝑗𝜃̈𝐾𝑖
𝑡 = 𝑇𝑘𝑖𝑡 − �𝜃̇𝐾𝑘

𝑡 × �𝐼𝐾𝑖𝑗𝜃̇𝐾𝑘
𝑡
��

𝑘𝑖
 ( 2.2) 

Where: 

Superscript t: is the running time. 

Lower case indices indicate coordinate numbers. 

Upper case indices indicate rigid body number. 

K: is the rigid body number K = 1 to N 

N: is the total number of rigid bodies. 

𝑀𝑘: is the mass of body K. 

𝐼𝐾𝑖𝑗: is the mass moment of inertia of body K. 

𝑋𝐾𝑖𝑡 : is the position vector of the c.g. of body K. 

𝑋̇𝐾𝑖𝑡 : is the velocity vector of the c.g. of body K. 

𝑋̈𝐾𝑖𝑡 : is the acceleration vector of the c.g. of body K. 

𝜃̇𝐾𝑘𝑡 : is the angular velocity vector of the rigid body K. 

𝜃̈𝐾𝑖𝑡 : is the angular acceleration vector of the rigid body K. 

𝐹𝑘𝑖𝑡 : is the force vector acting on the rigid body K. 

𝑇𝑘𝑖𝑡 : is the applied/external moment vector acting on the rigid body K. 

We can use the trapezoidal integration rule to integrate each body’s translational 

equations of motion ( 6.3) in time [19]: 

)(5.0 tt
Kj

t
Kj

tt
Kj

t
Kj XXtXX ∆−∆− +∆+= 

 ( 2.3) 

)(5.0 tt
Kj

t
Kj

tt
Kj

t
Kj XXtXX ∆−∆− +∆+= 

 ( 2.4) 

where Δ𝑡: is the time step. 
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Similarly, we can use the trapezoidal rule to integrate each body’s rotational 

equations of motion (3.2) in time [19]: 

)(5.0 tt
Kj

t
Kj

tt
Kj

t
Kj t ∆−∆− +∆+= θθθθ 

 
( 2.5) 

)(5.0 tt
Kj

t
Kj

t
Kj t ∆−+∆=∆ θθθ 

 
( 2.6) 

Where: 

t
Kjθ∆ : is the incremental rotation vector of body K. 

We can calculate the rigid body rotation matrix at time t as [19]: 

)( t
KlKkj

tt
Kik

t
Kij RRR θ∆= ∆−

 ( 2.7) 
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If the incremental angles t
Kiθ∆  are infinitesimally small then the order of the 

product )()()( 123
t
K

t
K

t
K RRR θθθ ∆∆∆  is not important. However, since t

Kiθ∆  are small but 
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finite. We should vary the order of the product during our solution procedure. Since there 

are three matrices therefore there are six possible orders: 

)()()()( 123
t
K

t
K

t
K

t
Kl RRRR θθθθ ∆∆∆=∆  

)()()()( 213
t
K

t
K

t
K

t
Kl RRRR θθθθ ∆∆∆=∆  

)()()()( 312
t
K

t
K

t
K

t
Kl RRRR θθθθ ∆∆∆=∆  

)()()()( 132
t
K

t
K

t
K

t
Kl RRRR θθθθ ∆∆∆=∆  

)()()()( 321
t
K

t
K

t
K

t
Kl RRRR θθθθ ∆∆∆=∆  

)()()()( 231
t
K

t
K

t
K

t
Kl RRRR θθθθ ∆∆∆=∆  

( 2.9) 

Each successive time step we can use a different order to calculate )( t
KlR θ∆  

2.2 Joint Modeling 

A joint is used to connect different bodies to each other or to the ground. It 

defines the motion constraint between two points on different bodies. Joints constraints 

are shown in equation ( 2.10). 

0})({ =Xf  ( 2.10) 

2.2.1 Connection Points 

Each rigid body can have a number of connection points. A connection point is a 

point on the body where joints can be located. The position of a connection point c on 

rigid body K with respect to the global inertial reference frame ( icX ) is given by: 
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jcKijKiic xRXX +=  ( 2.11) 

Where: 

KiX : Position coordinates of the c.g. of rigid body K (body reference frame) with 

respect to the global inertial reference frame. 

KijR : Rotation matrix of rigid body K 

jcx  : Position coordinates of point c with respect to the body reference frame. 

Those coordinates do not change with time since the body is rigid.  

Figure  2.1 shows a random body in space with position vectors shown on it. A 

joint is defined by defining the relation between connection points. 

 

 xcj 

 X1 

 X2 

 x2  x1 

 XKi 

 Xci 

 Rigid body K 

 c 

 

Figure  2.1  Rigid body in the space [19] 

2.2.2 Spherical Joint 

A spherical joint connects two points on two bodies. It constrains those two points 

such that they have the same translational coordinates relative to the global reference 

frame. Thus, a spherical joint between two connection points is defined as: 
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t
ic

t
ic XX 21 =   ⇒ 021 =− t

ic
t
ic XX  ( 2.12) 

Where  

t
icX 1 : is the global position vector of the first point c1  

t
icX 2 : is the global position vector of the second point c2.  

This constraint is of the form:  

0})({ =Xf  ( 2.13) 

A spherical joint leaves 3 relative rotational DOFs (degrees-of-freedom) between 

the two rigid bodies free and constrains 3 relative translational DOFs. 

 

 xc1j 

 X1 

 X2 

 x2 

 x1 

 Xc1i 

 Rigid body 1 

 Rigid body 2 

 Xc2i 
 di 

 

Figure  2.2  Two bodies connected with spherical joint 

This constraint is imposed using the penalty technique as: 

iippp ddcdkF +=  ( 2.14) 

t
ic

t
ici XXd 21 −=  ( 2.15) 
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Where: 

pF : Penalty force magnitude. 

𝑘𝑝: Penalty spring stiffness. 

𝑐𝑝: Penalty damping. 

id : Relative displacement vector between the points c1 and c2. 

id : Relative velocity vector between points c1 and c2. 

𝑑: Distance between points c1 and c2. 
t
icX 1 : Global velocity vector for point c1. 

t
icX 2 : Global velocity vector for point c2. 

𝐹𝑝𝑖 :  Penalty reaction force on connection point c1. The penalty force on 

connection point c2 is to  −𝐹𝑝𝑖 

The joint penalty force is applied on the two connection points in opposite 

directions. This force tries to make points t
icX 1  and t

icX 2  coincident, i.e. it tries to impose 

the joint constraint t
ic

t
ic XX 21 =  or 021 =−= t

ic
t
ici XXd . A spherical joint is also called: “ball 

joint” or “ball-and-socket joint”. Each joint force is transferred to the c.g. of the 

corresponding rigid body using equation ( 2.19) and ( 2.20): 

ipi FF =  ( 2.19) 

)( 1 ipjiici FRxT ×−=  ⇔ )( 1 p
T

c FRxT


×−=  ( 2.20) 

Where: 

𝐹𝑖: The force at the c.g. of the rigid body 

𝑇𝑖: The moment on the rigid body 

t
ic

t
ici XXd 21  −=  ( 2.16) 

2
3

2
2

2
1 dddd ++=  ( 2.17) 

𝐹𝑝𝑖 =
𝐹𝑝𝑑𝑖
𝑑

 ( 2.18) 
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𝑥𝑐1𝑖: The position of the point relative to the rigid body’s frame 

𝑅𝑗𝑖: The rigid body rotation matrix 

The constraint forces are applied to the rigid bodies (nodes) by assembling them 

into the global forces t
KiF . Also, the constraint moments are applied to the rigid bodies by 

assembling them into the global torques t
KiT . 

2.2.3 Revolute Joint 

 

Figure  2.3  Revolute joint is shown as yellow cylinders at the axe of rotation 

A revolute joint connects two rigid bodies in which it restricts 5 degrees of 

freedom and allowing only one rotational degree of freedom between the two bodies. 

Revolute joints are modeled by placing two spherical joints along a line. It’s used to 

model all kinds of axes of rotation and some rotational shafts, see Figure  2.3. It is also 

called “hinge joint”. 
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2.3 Contact Model 

The contact between two bodies is modeled as normal contact between points of 

one body and the surface of the second one. The normal constraint is defined using 

penalty technique and is defined as shown in equation ( 2.21) [19]. 

0})({ ≥Xf  ( 2.21) 

The first step is to find the position and velocity of each contact point (say contact 

point c) using Equations ( 2.22) and ( 2.23): 
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Where: 

jcx : Coordinates of contact point c with respect to the local frame of the first 

body. 
t
icX : Position coordinates of contact point c with respect to the global frame at 

time t. 
t
KiX : Coordinates of the center of the first body frame with respect to the global 

frame at time t. 
t
KijR : Rotation matrix of the first rigid body at time t. 

t
icX : Velocity components of contact point c with respect to the global reference 

frame at time t. 
t
KiX : Velocity components of the center of the first body frame with respect to the 

global frame at time t. 
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t
Kkθ : Angular velocity components of the first body at time t. 

Figure  2.4 shows the coordinates notation for a rigid body in the global and local 

frame of reference. It also shows the relation between them. 
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Figure  2.4  Rigid body coordinates 

The normal and the tangential forces are calculated at the contact point. The total 

force 𝐹𝑐 at each contact point is the summation of both of normal and tangential force on 

the point c. using Equation ( 2.19) and ( 2.20) 𝐹𝑐 is transferred as a force and a moment to 

the center of the rigid body. Using the same equations, an equal in magnitude but 

opposite in direction force is transferred to the other body. 

2.3.1  Normal Contact Model Using Penalty Technique 

When a point on the first body penetrates the surface of the second body, a normal 

reaction force ( 𝐹𝑛𝑜𝑟𝑚𝑎𝑙 ) is developed on the body. This force has a magnitude 

proportional to the distance penetrated in the surface as well as the velocity of penetration 



20 

and is calculated in Equation ( 2.24) through ( 2.26). Figure  2.5 illustrates the penetration of 

a node on a rigid body into the surface of the other rigid body. 





<
≥

+=
0
0

d
d

dcs
dcAdkAF
pp

p
pnormal









 
( 2.24) 

ii nvd =  ( 2.25) 

iin ndv =  ( 2.26) 

Where: 

A: Area of the rectangle associated with the contact point 

kp and cp: Penalty stiffness and damping coefficient per unit area 

d: Closest distance between the contact point and the contact surface 

d :  Signed time rate of change of d 

𝑆𝑝: Separation damping factor between 0 and 1 which determines the amount of 

sticking between the contact point and the contact surface at the contact 

point (leaving the body) 

n : Unit vector normal to the surface 

iv : The relative velocity vector between the contact point and the contact surface 
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Figure  2.5  Contact surface and contact node [20] 
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2.3.2 Friction Model (Asperity-Friction) 

The surface of a smooth rigid body looks rough with peaks and valleys if 

examined under a microscope. These peaks are called asperities, see Figure  2.6. 

Asperities on two moving surfaces, in contact with each other, interlock together 

developing a force which opposes motion. This force is called friction force or asperity 

force. To slide one body over the other, a large enough force should be applied to 

overcome the force developed due to asperity interlock.  

 

Figure  2.6  Surface asperities magnified for illustration 

 

2.3.2.1 Asperity-Friction Model 

The tangential force (𝐹𝑡𝑎𝑛𝑔𝑒𝑛𝑡 ) is calculated using the normal force and the 

asperity friction model. The model approximates asperity friction by transmitting a 

tangential friction force vector between two bodies at the point of contact to represent the 

friction forces between two rough surfaces in contact arise due to the interaction of the 

surface asperities (𝐹𝑡𝑗). It is given by equation ( 2.27). 

𝐹𝑡𝑖 = 𝐹𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑡𝑖 ( 2.27) 

The asperity-spring friction model presented in Ref. [20] is used to model contact 

friction. The model consists of a piece-wise linear velocity-dependent approximate 

Coulomb friction element in parallel with a variable anchor point spring. When two 

surfaces are in static contact, the surface asperities act like tangential springs. When a 
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tangential force is applied, the springs elastically deform and pull the surfaces to their 

original position. If the tangential force is large enough, the surface asperities yield (i.e. 

the springs break) allowing sliding to occur between the two surfaces [20]. The 

breakaway force is proportional to the normal contact pressure. In addition, when the two 

surfaces are sliding past each other, the asperities provide resistance to the motion that is 

a function of the sliding velocity and acceleration, and the normal contact pressure. 

2.4 Beam Element 

The belt will be modeled using the three-node torsional spring beam finite 

elements presented in Ref. [16]. The beam element connects three nodes and consists of 

three sub-elements: two truss elements each connecting two-nodes to model the axial 

response of the beam and a torsional spring connecting the three nodes to model the 

bending response of the beam. 

The truss sub-element connects two nodes. Due to the stiffness and damping of 

the element, it acts like a spring. The internal force in a truss element is calculated as 

shown in the following equation [18].  

𝐹 =
𝐸𝐴
𝑙0 

(𝑙 − 𝑙0) +
𝐶𝐴
𝑙0
𝑙̇ ( 2.28) 

Where: 

𝐸: The Young’s Modulus 

𝐶: The Damping Modulus 

𝐴: The effective cross-sectional area 

𝑙: The current length, of the truss 

𝑙:̇ Rate of change in element length 

𝑙0: The un-stretched length of the truss. 

The three-node torsional spring sub-element has 3 point mass type nodes that 

have translational DOFs only. Figure  2.7(a) shows a beam element connects the point 𝑝1 
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(mid-point of 12����) to point 𝑝2 (mid-point of 23����). The beam element has a slope which is 

tangent to12���� at the point 𝑝1, while it is tangent to  23���� at the point 𝑝2. The beam element 

consists of two truss sub-elements ( 𝑝12����� ) and 2𝑝2�����) and a torsional-spring bending sub-

element (𝑝12�𝑝2). Equation ( 2.28) calculates the internal force in a sub-truss element [18]. 

The element reaction moment is given by [18]:  

𝑀 =
𝐸𝐼
𝐿0 

Δα+
𝐶𝐼
𝐿0 

α̇ ( 2.29) 

Where: 

𝐸: The Young’s Modulus 

𝐶: The Damping Modulus 

 

Figure  2.7  (a) Three-noded beam element (b) Finite element discretization of a beam 
using 3-nided beam element [18] 
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𝐼: The effective cross sectional moment of inertia 

𝐿0: The un-stretched length of the truss of the bending element 

Δ𝛼: The change in angle between  𝑝12����� and  2𝑝2����� 

Δ𝛼̇: The rate of change in angle between  𝑝12����� and  2𝑝2����� 

Figure  2.7(b) shows how a beam is discretized using the 3-noded beam element. 

Note that this is a 1-D beam element that has no torsional response along the axis of the 

beam. It is also assumed that the beam has equal moments of inertia of the cross-section 

around two perpendicular cross-section axes. This is not true for belts; however, since the 

belt-problem is two-dimensional we are only need to accurately model the belt bending 

behavior around one axis (parallel to the axes of the pulleys). 

2.5 Explicit Solution Procedure 

The solution fields for modeling multibody systems are defined at the model rigid 

bodies. Note that a rigid body is modeled as one node. These solutions fields are: 

• Global translational position vectors t
KiX  

• Global translational velocity vectors t
KiX  

• Global translational acceleration vectors t
KiX  

• Global  local rotation matrices t
KijR  

• Local body rotational velocity vectors t
Kjθ  

• Local body rotational acceleration vectors t
Kjθ  

Where  

K = 1 to N 

N: total number of rigid bodies. 
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An explicit predictor corrector solution procedure based on the trapezoidal 

integration rule for time is used. The explicit time integration solution procedure predicts 

the time evolution of the above response quantities.  

1. Set t = 0 and set the initial conditions for all the rigid bodies (nodes) are set. 

Those are: 

0
KiX , 

0
KiX , 

0
KiX , 0

KijR , 0
Kjθ , 0

Kjθ  

2. Increment time: t = t + ∆t 

3. Set the nodal values at the last time step to be equal to the current nodal values for 

all solution fields. 

tt
Ki

t
Ki XX ∆−=   

tt
Ki

t
Ki XX ∆−= 

  
tt

Ki
t
Ki XX ∆−= 

 

tt
Kij

t
Kij RR ∆−=    

tt
Kj

t
Kj

∆−= θθ 
   

tt
Kj

t
Kj

∆−= θθ 
 

4. Perform 2 iterations (predictor iteration and corrector iteration) of the following 

steps. 

a. Initialize the nodal forces and moments to zero. 

0=t
KiF    0=t

KiT  

b. Calculate the nodal forces and moments produced by all elements, joints 

and contact forces and add (assemble) those forces and moments to t
KiF  

and t
KiT . Note that this is the most computationally expensive step in the 

solution procedure. 

c. Calculate t
KiX  and t

Kjθ  using Equations ( 6.3)and ( 2.2) respectively: 
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𝑋̈Kit =
𝐹𝐾𝑖𝑡

𝑀𝐾
 

( )( )
Ki

t
KlKjl

t
Kk

t
KiKij

t
Kj ITI )(1 θθθ  ×−= −

 

d. Use the trapezoidal time integration formulas Equations ( 2.3) through 

Equation ( 2.7) to calculate t
KiX , t

KiX , t
Kjθ  and t

KijR : 

)(5.0 tt
Kj

t
Kj

tt
Kj

t
Kj XXtXX ∆−∆− +∆+= 

 

)(5.0 tt
Kj

t
Kj

tt
Kj

t
Kj XXtXX ∆−∆− +∆+= 

 

)(5.0 tt
Kj

t
Kj

tt
Kj

t
Kj t ∆−∆− +∆+= θθθθ 

 

)(5.0 tt
Kj

t
Kj

t
Kj t ∆−+∆=∆ θθθ 

 

)( t
KlKkj

tt
Kik

t
Kij RRR θ∆= ∆−

 

)( t
KlKkjR θ∆  is calculated using Equation ( 2.8) and ( 2.9) 

e. Execute the prescribed motion constraints which set the nodal value(s) to 

prescribed values. 

5. Go to step 2. 
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3. NUMERICAL MODEL DESCRIPTION 

Figure  3.1 shows the belt-drive model that was built and simulated using the DIS 

(Dynamic Interactions Simulator) multibody dynamic software. 

3.1 Components 

The model consists of a belt-drive operating on an internal combustion engine as 

shown in Figure  3.1. This belt-drive is designed to add the torque produced by a turbine 

in Rankin cycle working on exhaust waste heat recovery to the torque produced by the 

internal combustion engine. The model consists of pulleys, shafts, gears, rotational 

tensioner and a belt which are discussed below in more details. Contacts between the belt 

and the pulleys as well as the contact between gears are modeled using the penalty 

technique with a penalty spring/damper. The friction between the belt and the pulleys is 

modeled using the asperity spring friction model to approximate coulomb friction. 

1- The Ground 

The ground is a hypothetical component that has a ground constraint (i.e. 

translational and rotational velocity and acceleration are equal to zero at all time). All 

pulleys, gears and the tensioner arm are connected to the ground using revolute joints. 

The ground represents the vehicle/engine frame.  
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2- The Crank Pulley (Fly Wheel) 

The flywheel of the internal combustion engine is mounted on the crankshaft and 

it includes the crank pulley (see Figure  3.1). The engine torque is applied to the 

crankshaft. The crank pulley is modeled as a rigid body with a cylindrical contact surface. 

It is connected to the ground using a revolute joint. 

3- The Turbine 

The turbine appears on the top left of Figure  3.1. The turbine drives a 19 teeth 

pinion gear (referred to as “the pinion” in the rest of this thesis).  

4- The Pinion 

Both the pinion and the shaft are modeled as one rigid body. A torsional spring-

damper between the shaft and the turbine is used to model the shaft torsional compliance.  

5- The Drive gear 

The pinion drives a bigger gear (modeled as a rigid body) that has 191 teeth (i.e. 

the gear ratio is 19:191) for speed reduction and torque magnification. This gear will be 

referred to as “drive gear”.  

6- The Drive Pulley 

The drive gear is connected to a pulley through a shaft (both the pulley and shaft 

are modeled as rigid bodies). The pulley and the shaft will be referred to as “drive 

pulley” and “drive shaft” respectively.  

7- The Drive Shaft 

The drive shaft is modeled as a rigid body with a torsional spring-damper at each 

end to account for the shaft stiffness. The two torsional spring-dampers are considered to 

be connected in series and hence, the series spring summation rule is employed to 
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calculate the equivalent rotational stiffness and damping of both springs, which are equal 

to the equivalent stiffness and damping of the shaft. 

8- The Tensioner 

A rotational tensioner is used to maintain the belt tension and to absorb belt slack, 

thus reducing belt slip and vibrations and increasing the power transmission efficiency. 

So, the tensioner pulley is positioned on the low tension (slack) side of the belt. Note that 

the turbine is the driver, thus the low tension span is the right hand side span (see 

Figure  3.1). 

9- The Idlers 

Three idler pulleys are added to the belt drive to increase the belt wrapping angles 

around the crank and drive pulleys (which increase the belt traction on the pulleys) and to 

decrease the length of belt free spans (which decreases belt vibration). All Idlers are 

modeled as rigid bodies and are connected to the ground by a revolute joint. 

10- The Belt 

A serpentine belt is running over the pulleys to couple torque between the turbine 

(through the drive pulley) and the crank. The belt is modeled using beam elements with 

the element length set to 5mm. As stated before, the friction between the belt and the 

pulley is modeled using asperity spring friction technique to approximate coulomb 

friction. The belt parameters (axial stiffness/damping, bending stiffness/damping and 

mass per unit length) are chosen to match the specifications of the belt 8Pk2630. 
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Figure  3.1  The belt drive Model 
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11- Sensors 

Sensors are virtual box-shaped sensing elements that can read information of the 

belt elements inside it. Sensors are placed on each belt span (see Figure  3.1) to measure 

the belt tension, and the transverse belt deflection (i.e. deflection of the belt normal to the 

belt span).  

3.2 Geometry and Physical Properties 

 Table  3.1 shows the geometric properties of the belt drive (coordinates of the 

centers of the pulleys and the tensioner and the pitch diameters of the pulleys). 

Table  3.2 shows the other physical properties of the belt drive. Those include: 

moment of inertia of the pulleys, mass of the tensioner pulley, mass and c.g. location of 

the tensioner, torsional stiffness/damping/friction of the tensioner, initial tensioner torque, 

drive and driven shafts torsional stiffness/damping, gear teeth stiffness/damping, gear 

tooth backlash, belt axial stiffness/damping, belt bending stiffness/damping, belt mass per 

unit length and coefficient of friction between the belt and the pulleys. Some of the model 

properties are hard to measure, such as the tensioner arm viscous damping and tensioner 

arm friction torque; those parameters were tuned so that the numerical simulation results 

match the experimental results. An initial estimate was used for each tuning parameter, 

and then the value was increased or decreased until the best match was obtained. The 

tuning parameters are: 

• Torsional viscous damping coefficient of the tensioner 

• Friction torque of the tensioner 

• Belt bending damping 

• Belt bending stiffness 

• Belt axial damping 

• Coefficient of friction between belt and pulley 
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Plots showing the numerical results and experimental results are shown in 

Section  3.5. The plots show excellent match between both results. Table  3.2 shows the 

final values for the model parameters that are used in the model. 

Table  3.1 Layout and geometry of the pulleys and tensioner 

Pulley # Description 
X-Coordinate 

(mm) 

Y- Coordinate 

(mm) 

Pitch diameter 

(mm) 

1 Drive Pulley -407.90 722.60 104.4 

2 Idler -210.00 540.00 74 

3 Idler -120.00 400.00 74 

4 Crank 0.00 0.00 338.3 

5 Idler 60.00 400.00 82.5 

6 
Tensioner 

Pulley 
23.57 483.14 74 

7 Idler -148.00 640.00 82.5 

Tensioner 

pivot 
Tensioner arm 

pivot 
0.00 570.00 N/A 
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Table  3.2 Model parameters 
Crank Pulley 

Inertia (kg.m2) 0.1269 

Idler Pulley 5 

Inertia (kg.m2) 0.000823 

Tensioner Pulley  

Mass  (Kg) 1.135 

Inertia (kg.m2) 0.000819 

Tensioner body 

Mass (Kg) 0.64378 

Inertia (kg.m2) 0.00287 

Rotational stiffness (Nm/rad)  26.22 

Rotational Damping (N.m.sec/rad) 0 

Friction moment (N.m) 3.16 

C.G Location from the pivot along the axis 

of symmetry to the tensioner pulley (m) 
0.025 

Initial torque (N) 45.368 

Arm length (m) 0.09 

Idler pulley 7 

Inertia (kg.m2) 0.000823 

Drive pulley 

Inertia (kg.m2) 0.004244 

Idler Pulley2  

Inertia (kg.m2) 0.00102947 

Idler Pulley3 

Inertia (kg.m2) 0.00102947 
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Table  3.2 Continued  
Drive Shaft  

Inertia (kg.m2) 0.0088217 

Stiffness (N/m) 5674 

Damping (N.sec/m) 45 

Driven Gear 

Inertia (kg.m2) 0.011414 

Turbine 

Inertia (kg.m2) 6.56E-05 

Turbine Shaft with Pinion 

Inertia (kg.m2) 3.00E-06 

Stiffness (N/m) 1442 

Damping (N.m/sec) 4 

Pinion tooth Stiffness (N/m) 2.00E+13 

Pinion tooth Damping (N.m/sec) 8.00E+06 

Tooth backlash (m) 5.00E-05 

Belt 

Axial stiffness (EA) (N) 140,563  

Axial Damping (CA) (N.sec) 10 

Bending Damping  (CI) (N.m2.sec) 5.00E-05 

Mass per unit length (Kg/m) 0.4 
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3.3 Dynamics 

3.3.1 Crankshaft Angular Velocity 

The numerical model uses the crank shaft angular velocity versus time as an input 

to the system. There are six ranges of operation at 5 different engine mean angular 

velocities. These ranges and their corresponding mean angular velocity are shown in 

Table  3.3. The exact crank angular velocity is measured experimentally and was used as 

an input to the numerical model. The numerical simulation was run for 20 seconds 

simulating the six operation ranges. Figure  3.2 shows the crank angular velocity profile. 

Intentionally, 0.3 seconds in the beginning of simulation was set to 0 RPM to allow the 

belt drive to reach the initial static configuration, followed by 0.7 seconds to ramp the 

crank angular velocity from 0 RPM to 700 RPM to start simulation of the idle engine 

operating speed. A PID controller is used to control the desired angular velocity of the 

crank shaft. Each of the six operating ranges is simulated for 3 seconds. There is 0.2 

seconds interval between each operating range to allow the system to ramp up between 

different mean angular velocities. To avoid the effect to transients, only the last second of 

each range is compared to the experimental results. 

Table  3.3 Mean crank RPM for different ranges 
of operation 

Operation Range RPM 
Idle operation 700 
A100 1250 
B100 1500 
C100 1800 
Unloaded Up 2100 
Unloaded Down 2100 
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Figure  3.2  Crank angular velocity profile used as an input to the numerical model. Note 
the crank is rotation in the clockwise direction. 

3.3.2 Turbine Torque 

Turbine torque comes from the output power of the Rankin cycle at the turbine 

shaft. The turbine torque depends on many parameters including engine load, engine 

speed, temperature of the exhaust and mass flow rate of the exhaust. In the numerical 

model the turbine torque was assumed to be a function of only the turbine angular 

velocity. Figure  3.3 and Table  3.4 show the profile of the turbine torque versus the 

turbine angular velocity in rpm. The negative sign indicate that the torque is in the 

clockwise direction. The turbine torque acts in the same direction as the engine rotation 

so that it adds to the engine torque, thus increasing the effective engine power (with no 

additional fuel consumption). Turbine torque is used as another input to the system.  
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Figure  3.3  Turbine torque profile 

 

Table  3.4 Turbine torque Vs. turbine RPM 

Turbine 

RPM 

Turbine 

Shaft 

Torque 

(Nm) 

 
Turbine 

RPM 

Turbine 

Shaft 

Torque 

(Nm) 

0 0  52120 26 

22802 3  58635 24 

29317 10  59771 22 

32575 15  60263 12 

35832 20  65150 5 

39090 25  68265 2 

40758 30  68407 2 

45605 30  69227 1 

50310 30    
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3.4 Experimental Results 

A test rig was built by Cummins Inc. (a leading manufacturer of diesel engines). 

The crank angular velocity profile used in the model was obtained from the test rig. The 

input turbine torque profile (Table  3.4) was first roughly estimated from the test rig, and 

then the profile was tuned in the numerical model. Output quantities of the experiment 

were chosen to be the drive shaft angular velocity and the drive shaft torque. Results were 

measured using high fidelity measuring instruments. More information about the test rig 

was not available due to confidentiality restrictions of Cummins, Inc.. 

3.5 Numerical Results 

Table  3.5 shows a summary of the finite element model used to model the belt-

drive. The finite element numerical model has 526 nodes. They consists of 1 node for the 

ground object (i.e. engine frame), 7 nodes represents the pulleys, 1 node for the tensioner 

arm, 2 nodes for the turbine and drive shafts, 1 node for the drive gear, 1 node for the 

turbine and 513 nodes for the belt elements. The model was solved using trapezoidal 

explicit numerical integration with predictor corrector technique using a time step of  

3 × 10−7 seconds. The simulation time was 20 seconds and it was solved in 14.8 hours 

using an Intel(R) Core(TM) i7-2700k CPU @ 3.50 GHz with 8.00 GB of RAM. 

Table  3.5  Numerical solution parameters 
Elemetn length 0.005 m 

No. of belt elements 513 

No. of pulleys 7 

No. of Gears 2 

Simulation time (sec.) 20 

Numerical integration Time Step (sec.) 3 × 10−7 

Computational times (hours) 14.85 
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3.6 Comparison between Experimental and Numerical Results 

The numerical model was simulated using the DIS code, which uses an explicit 

numerical integration technique to solve equations of motion. The experiment was run on 

the numerical model for 20 seconds with angular velocity profile to the crank shaft shown 

in Figure  3.2. The drive shaft angular velocity and drive shaft torque (which were agreed 

to be the system outputs) were compared with the experimental results. Each output was 

compared for each range of operation, and results were plotted in both time domain and 

frequency domain. The time domain plot gives sense of the behavior of the system and 

the overall shape of the signal. The frequency domain shows the main frequencies of the 

system and the magnitude of vibration at those frequencies. The frequency domain 

graphs were calculated using the Fast Fourier Transform (FFT) technique. Plots of the 

input crank angular velocity, drive shaft angular velocity and drive shaft torque are 

shown in Figure  3.5 through Figure  3.21. As shown in the plots, idle, A100, B100 and 

C100 numerical results show excellent agreement with the experimental results. The code 

accurately predicted at least the first 3 main frequencies. The difference between the 

amplitudes of the main frequencies in the experiment and simulation in the idle operation 

was less than 10%. While the difference between the main frequencies in the experiment 

and simulation for the A100 operation range was about 15%. In the B100 and C100 

operation ranges the difference between the experiment and simulation in the amplitudes 

of the 2 main frequencies was less than 15%, while the third main frequency error was 

50%. The other two ranges, namely Unloaded up and Unloaded down show more 

frequencies than the numerical results. By investigating the frequency domain graph of 

the input crank shaft angular velocity as a function of vibration amplitude it was found 

that the number of exciting frequencies in the crank shaft angular velocity is much less 

than the number of excited frequencies in the response (drive shaft angular velocity and 

torque). This means that there has to be another source of excitation to the system. It was 

concluded that, most likely, the other source of excitation is structural excitation to the 

test rig. Such excitation cannot be reproduced by the numerical model unless the structure 

was modeled, which was not the focus of this work. Hence, the results are considered to 
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be an acceptable match. Thus, overall, the model showed enough fidelity to be 

confidently used in further investigation. 

Figure  3.4  Crank angular velocity comparison for the idle operation range   
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Figure  3.5  Drive shaft angular velocity (RPM) comparison for the idle operation range  
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Figure  3.6  Drive shaft torque (N.m) comparison for the idle operation range 

 



43 

 

Figure  3.7  Crank angular velocity comparison for the A100 operation range   
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Figure  3.8  Drive shaft angular velocity (RPM) comparison for the A100 operation range 
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Figure  3.9  Drive shaft torque (N.m) comparison for the A100 operation range 
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Figure  3.10  Crank angular velocity comparison for the B100 operation range   
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Figure  3.11  Drive shaft angular velocity (RPM) comparison for the B100 operation 
range 
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Figure  3.12  Drive shaft torque (N.m) comparison for the B100 operation range 
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Figure  3.13  Crank angular velocity comparison for the C100 operation range   
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Figure  3.14  Drive shaft angular velocity (RPM) comparison for the C100 operation 
range 

 



51 

 

Figure  3.15  Drive shaft torque (N.m) comparison for the C100 operation range 
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Figure  3.16  Crank angular velocity comparison for the Unloaded Down2 operation 
range   
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Figure  3.17  Drive shaft angular velocity (RPM) comparison for the Unloaded Down 
operation range 
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Figure  3.18  Drive shaft torque (N.m) comparison for the Unloaded Down operation 
range 
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Figure  3.19  Crank angular velocity comparison for the Unloaded Up 1 operation range   
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Figure  3.20  Drive shaft angular velocity (RPM) comparison for the Unloaded Up 
operation range 
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Figure  3.21  Drive shaft torque (N.m) comparison for the Unloaded Up operation range 
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4. PARAMETER STUDY 

Belt properties can change due to change in the physical operating conditions, like 

operating temperature and humidity or change in belt chemical composition due to 

oxidation. Moreover, some belt properties are not constant and can be a function of the 

belt kinematic variables, contact forces or internal belt forces.  For example, belt material 

damping coefficient can be dependent on the strain rate and belt-pulley friction 

coefficient can be dependent on the normal contact forces. When belt parameters change, 

the estimation of belt forces and stresses becomes challenging. As a result, it was 

important to study how the parameters change can affect the dynamic response of the 

system to assess the accuracy of the model’s prediction. In this section, a parameter 

sensitivity study is conducted to study the effect of the various model parameters on the 

dynamic response of the belt drive. Then one model parameter is changed and the 

dynamic response of the new model is generated. In Section  3.5, the dynamic response of 

the baseline model closely matches the experimental results for the idle, A100, B100 and 

C100 operation ranges. Therefore, in this section the new models responses are compared 

to the experimental results in order to assess the sensitivity of a parameter on the dynamic 

response. The amount of change of a model parameter is selected to be equal to the 

expected uncertainty or range of change (during the belt operation) of the parameter 

value in the physical system. Representative plots comparison plots are shown in this 

section. Appendix I shows the full response comparison plots for all the belt-drive 

operation ranges. 
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The model parameters that are changed in the study are: 

Tension arm 

• Viscous damping. 

• Coulomb friction. 

Belt 

• Axial damping. 

• Axial Stiffness 

• Bending damping. 

• Bending stiffness. 

• Coefficient of friction between the front-wrapped pulleys and the belt. 

Gears 

• Gear backlash. 

• Gear tooth stiffness. 

• Gear tooth damping. 

Drive shaft 

• Torsional stiffness. 

• Torsional damping. 

Turbine shaft 

• Torsional stiffness. 

• Torsional damping. 
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4.1 Tensioner Arm 

The tensioner arm viscous damping and coulomb friction was found to have a 

direct and significant effect on the system dynamic response. This is because it affects the 

response of the tensioner to take over the belt slack. 

4.1.1 Viscous Damping 

The viscous damping of the tensioner arm, in the baseline numerical model is 0 

N.S/m. On setting the tensioner arm damping to 5 N.S/m instead of 0 N.S/m, the 

amplitude of the drive shaft torque decreased significantly. This is due to the dissipation 

of some energy of the system to compensate the extra tensioner damping. The 

comparison is shown in Figure  4.1. 

4.1.2 Coulomb Friction 

Coulomb friction torque (due to friction at the tensioner pivot point) in the 

tensioner has a similar effect to damping. On increasing the friction torque from 3.14 

N.m to 8 N.m the response becomes more damped and the vibration amplitude of the 

drive shaft angular velocity is about half that of the experimental results (Figure  4.2). 
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Figure  4.1  Drive shaft angular velocity in the idle operation range with tensioner arm 
viscous damping = 5 N.S/m 
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Figure  4.2  Drive shaft angular velocity in the idle operation range with tensioner arm 
coulomb friction = 8 instead of 3.14 in the base line 

4.2 Belt 

Belt axial stiffness and damping may change with the belt age due to heat, 

chemical effects and belt fatigue loading. 

4.2.1 Belt Axial Damping 

In this study, the belt axial damping was chosen to be constant, but a simulation 

was run to determine the sensitivity of the system to change in belt axial damping. In this 

simulation, the belt damping was increased by 50% from 10 N.s/m to 15 N.s/m. the 
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response, in terms of drive shaft angular velocity and drive shaft torque didn’t show any 

significant change from the base line run. Figure  4.3 and Figure  4.4 show the result plots 

from the sensitivity study. 

 

Figure  4.3  Drive shaft angular velocity in the idle operation range with belt axial 
damping = 15 N.s/m  instead of 10 N.s/m  in the base line 
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Figure  4.4  Drive shaft torque in the idle operation range with belt axial damping 
= 15 𝑁. 𝑠/𝑚  instead of 10 𝑁. 𝑠/𝑚  in the base line 
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4.2.2 Belt Axial Stiffness 

Decreasing the belt axial stiffness (EA) from 140,563 𝑁  to  110,000 𝑁 makes 

the belt more flexible thus causing it to exhibit more axial strain. This behavior dissipates 

more energy due to belt axial damping. This can be observed as more damped response 

compared to the baseline and experimental results as shown Figure  4.5 and Figure  4.6. 

 

Figure  4.5  Drive shaft angular velocity in the idle operation range with belt axial 
stiffness (EA) = 110,000  N instead of 140,563N in the base line 
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Figure  4.6  Drive shaft torque in the idle operation range with belt axial stiffness (EA) 
= 110,000  N instead of 140,563 N in the base line 
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4.2.3 Belt Bending Damping 

The belt bending damping is increased from 5 × 10−5 N.m2.s to 10 × 10−5 

N.m2.s. The response did not show any significant difference between this simulation and 

the base line in both drive shaft angular velocity and torque (See Figure  4.7 and 

Figure  4.8). 

 

Figure  4.7  Drive shaft angular velocity in the idle operation range with belt bending 
damping = 10 × 10−5 N.s/rad  instead of 5 × 10−5  N.s/rad    in the base line 
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Figure  4.8  Drive shaft torque in the idle operation range with belt bending damping 
= 10 × 10−5  N.s/rad   instead of 5 × 10−5 N.s/rad    in the base line 
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4.2.4 Belt Bending Stiffness 

In the baseline model, the belt bending stiffness was set to zero. On increasing the 

belt bending stiffness the belt will tend to lose the ability to fully bend around the pulleys. 

Figure  4.9 and Figure  4.10 show the result plots for drive shaft angular velocity and 

torque when belt bending stiffness has increased from 0 N/rad to 2 N/rad in both time and 

frequency domain. When the belt bending stiffness was increased to 2 N.m2 , the belt 

exhibited less wrapping around the pulleys causing poor traction force on the pulleys. In 

the frequency domain, the main frequency is shifted to a lower value. Note that this 

response is not expected in the physical model, but it is expected that the belt will crack 

in order to follow the pulley geometry instead of resisting bending. 

 

Figure  4.9  Drive shaft angular velocity in the idle operation range with belt bending 
stiffness = 2 N/rad instead of 0 N/rad in the base line 
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Figure  4.10  Drive shaft torque in the idle operation range with belt bending stiffness = 2 
N/rad instead of 0 N/rad in the base line 
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4.2.5 Coefficient of Friction (Static-Kinetic Friction Curve) 

In this section, two simulations were run. In the first one, the belt coefficient of 

friction was increased to 1 instead of 0.6 in the baseline model (Figure  4.13 and 

Figure  4.14). While in the second simulation, the belt coefficient of friction was reduced 

to 0.4 instead of 0.6 in the base line (Figure  4.15 and Figure  4.16). The simulations 

showed that on changing the coefficient of friction, the amplitude of the drive shaft 

angular velocity as well as the drive shaft torque doesn’t have a significant change till it 

drops below some threshold where the belt starts to loose traction with the pulleys and 

slip. In this model, the coefficient of friction threshold appears to be around 0.45 for the 

B100 operation range which has the highest transmitted torque. Thus, the B100 operation 

range results were selected as representative results in this section figures. When the belt 

coefficient of friction was decreased to 0.4, the result showed a significant decrease in the 

amplitude for both drive shaft angular velocity, as well as drive shaft torque (Figure  4.15 

and Figure  4.16).  
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Figure  4.11  Drive shaft angular velocity in the B100 operation range with belt 
coefficient of friction 0.6 
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Figure  4.12  Drive shaft torque in the B100 operation range with belt coefficient of 
friction 0.6 
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Figure  4.13  Drive shaft angular velocity in the idle operation range with belt coefficient 
of friction increased to 1 instead of 0.6 in the baseline 
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Figure  4.14  Drive shaft torque in the idle operation range with belt coefficient of friction 
increased to 1 instead of 0.6 in the baseline 
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Figure  4.15  Drive shaft angular velocity in the B100 operation range with belt 
coefficient of friction decreased to 0.4 instead of 0.6 in the baseline 
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Figure  4.16  Drive shaft torque in the B100 operation range with belt coefficient of 
friction decreased to 0.4 instead of 0.6 in the baseline 
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4.3 Gears 

4.3.1 Gear Backlash 

Increasing the gear backlash did not have any significant effect on the response 

till some limit when the gears start to bounce. When the gears start bouncing, the angular 

velocity response at the drive shaft does not have significant change, however; the torque 

response will start to show spikes, see Figure  4.17, due to bouncing and tooth impact. 

 

Figure  4.17  Drive shaft angular velocity in the idle operation range with pinion tooth 
backlash increased to 25 × 10−5𝑚  instead of 5 × 10−5𝑚  in the baseline 
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Figure  4.18  Drive shaft torque in the idle operation range with pinion tooth backlash 
increased to 25 × 10−5 𝑚  instead of 5 × 10−5 𝑚  in the baseline 

 

  



80 

4.3.2 Gear Tooth Stiffness 

Increasing the pinion gear tooth stiffness from  4 × 1013𝑁/𝑚   instead of 2 ×

1013𝑁/𝑚  in the base line, didn’t have significant impact on the response of the 

driveshaft angular velocity, however, the torque response shows some spikes in the time 

domain due to the increase of the impact magnitude, due to the increase in stiffness.  

 

Figure  4.19  Drive shaft angular velocity in the idle operation range with pinion tooth 
stiffness increased to 4 × 1013𝑁/𝑚   instead of 2 × 1013𝑁/𝑚  in the baseline 
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Figure  4.20 Drive shaft torque in the idle operation range with pinion tooth stiffness 
increased to 4 × 1013 N/m   instead of 2 × 1013 N/m  in the baseline 
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4.3.3 Gear Tooth Damping 

In this simulation, the pinion gear tooth damping has been decreased 2 ×

106 𝑁. 𝑠/𝑚   instead of 4 × 106 𝑁. 𝑠/𝑚  in the baseline. Decreasing the tooth stiffness 

did not have a significant effect on the response of any of drive shaft angular velocity or 

the torque. The responses are shown in Figure  4.21 and Figure  4.22 

 

Figure  4.21  Drive shaft angular velocity in the idle operation range with pinion tooth 
damping decreased to 2 × 106𝑁. 𝑠/𝑚 instead of 4 × 106𝑁. 𝑠/𝑚  in the baseline 
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Figure  4.22  Drive shaft torque in the idle operation range with pinion tooth damping 
increased to 4 × 1013𝑁/𝑚 instead of 2 × 1013𝑁/𝑚  in the baseline 
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4.4 Drive Shaft 

4.4.1 Drive Shaft Torsional Stiffness 

In this simulation, the drive shaft torsional stiffness is increased to 7500 N/rad 

instead of 5674 N/rad. The shaft stiffness is modeled by adding two rotational springs at 

both ends of the shaft having an equivalent torsional stiffness to the shaft. The responses 

show no significant change for the drive shaft angular velocity or the drive shaft torque. 

 

Figure  4.23  Drive shaft angular velocity in the idle operation range with drive shaft 
torsional stiffness increased to 7500 𝑁/𝑟𝑎𝑑 instead of 5674 𝑁/𝑟𝑎𝑑 
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Figure  4.24  Drive shaft torque in the idle operation range with drive shaft torsional 
stiffness increased to 7500 N/m instead of 5674 N/m 
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4.4.2 Torsional Damping 

Changing the drive shaft torsional damping does not affect the system response. 

Figure  4.25 and Figure  4.26 show the drive shaft angular speed velocity and torque 

respectively, when decreasing the rotational damping of the drive shaft from 45 𝑁. 𝑠/

𝑟𝑎𝑑   to 35 𝑁. 𝑠/𝑟𝑎𝑑 . 

 

Figure  4.25  Drive shaft angular velocity in the idle operation range with drive shaft 
damping decreased to  35 𝑁. 𝑠/𝑟𝑎𝑑   instead of  45 𝑁. 𝑠/𝑟𝑎𝑑   in the baseline 
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Figure  4.26  Drive shaft angular velocity in the idle operation range with drive shaft 
damping decreased to  35 N.s/m   instead of  45 N.s/m   in the baseline 
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4.5 Turbine Shaft 

4.5.1 Turbine Shaft Torsional Stiffness 

In this simulation, the turbine shaft torsional stiffness is decreased to 1000 N/rad 

instead of 1442 N/rad. The shaft stiffness is modeled by adding a spring at the turbine 

end of the shaft having an equivalent stiffness as desired. The responses show no 

significant change for the drive shaft angular velocity or the drive shaft torque. 

 

Figure  4.27  Drive shaft angular velocity in the idle operation range with turbine shaft 
torsional stiffness decreased to 1000 𝑁/𝑟𝑎𝑑 instead of 1442 𝑁/𝑟𝑎𝑑 
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Figure  4.28  Drive shaft torque in the idle operation range with turbine shaft torsional 
stiffness decreased to 1000 𝑁/𝑟𝑎𝑑 instead of 1442 𝑁/𝑟𝑎𝑑 
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4.5.2 Torsional Damping 

Like drive shaft torsional damping, changing the turbine shaft torsional damping 

does not affect the system response. Figure  4.29 and Figure  4.30 show the turbine shaft 

angular speed velocity and torque respectively, when decreasing the rotational damping 

of the drive shaft from 4 𝑁. 𝑠/𝑟𝑎𝑑   to 2 𝑁. 𝑠/𝑟𝑎𝑑 . 

 

Figure  4.29  Drive shaft angular velocity in the idle operation range with turbine shaft 
torsional damping decreased to 2 𝑁. 𝑠/𝑟𝑎𝑑 instead of 4 𝑁. 𝑠/𝑟𝑎𝑑  
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Figure  4.30  Drive shaft torque in the idle operation range with turbine shaft torsional 
damping decreased to 2 𝑁. 𝑠/𝑟𝑎𝑑 instead of 4 𝑁. 𝑠/𝑟𝑎𝑑 
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4.6 Conclusion and Discussion 

The effect of changing the system parameters on the belt-drive response was 

studied in this chapter. By observing the response due change of different parameters, it 

was shown that the main components affecting the response of the system are the 

tensioner arm and the belt parameters, namely: 

• Tensioner arm viscous damping 

• Tensioner arm coulomb friction torque 

• Belt axial stiffness 

• Belt Bending Stiffness 

• Belt Coefficient of friction 

Results are shown in Figure  4.1 to Figure  4.30 and a comparison summary is 

shown in Table  4.1.  

Increasing the tensioner arm viscous damping, Tensioner arm coulomb friction 

torque, or decreasing belt axial stiffness will result in significant decrease in amplitude 

due to the energy dissipated due to damping/friction. 

Increasing pinion tooth backlash does not have a significant effect on the 

response, until the backlash is large enough for the gear teeth to bounce and start 

impacting each other. The main response frequencies values and amplitudes remain 

unchanged, however; in the torque time domain, some spikes appear due to the impacts. 

Likewise, decreasing the belt coefficient of friction does not have a significant effect on 

the system’s response until it is low enough such that the belt starts slipping over the 

pulley. Hence the amplitude of the drive shaft angular velocity starts to decrease due to 

slip. 
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Table  4.1  Summary of parameters sensitivity 

Parameter Change Response Magnitude Response 
Frequency 

Tension arm    

•Viscous damping. Increase Decrease No 
change 

•Coulomb friction. Increase Decrease No 
change 

Belt    

•Axial damping. Decrease No change No 
change 

•Axial Stiffness Dec     
rease Decrease No 

change 

•Bending damping. Increase No change No 
change 

•Bending stiffness. Increase Decrease Decrease 

•Coefficient of friction. Increase Doesn't change above 0.45, 
but increase below 0.45 

No 
change 

•Coefficient of friction. Decrease Doesn't change above 0.45, 
but decrease below 0.45 

No 
change 

Gears    

•Gear backlash. Increase 
When backlash is big enough 

for gear teeth to bounce 
causing torque spikes 

No 
change 

•Gear tooth stiffness. Increase Torque spikes appears due to 
impact of teeth 

No 
change 

•Gear tooth damping. Increase No change No 
change 

Drive shaft    

•Torsional stiffness. Increase No change No 
change 

•Torsional damping. Decrease No change No 
change 

Turbine shaft    

•Torsional stiffness. Decrease No change No 
change 

•Torsional damping. Decrease No change No 
change 
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5. STRESS CALCULATIONS 

In this chapter, different stresses affecting the belt rib are studied, while in 

Chapter  6, the calculated stresses are used in the fatigue model. The belt ribs suffer 

different types of stress cycling each time the belt passes over a pulley: 

• The belt suffers cycling in axial stress because of the torque transmitted to 

each pulley.  

• Due to the curvature of the pulleys, bending stress develops in the belt 

each time the belt passes on a pulley the bending stress depends on the 

radius of curvature of the pulley, as well as the material properties of the 

belt. 

• Since the belt rib’s bottom surface tip doesn’t touch the pulley, the normal 

force transfers from the pulley to the belt through the rib sides. Due to the 

wedge geometry of the belt rib and the wedge action of the pulley groove, 

this normal force is transferred as transverse force on the belt rib. Thus, 

transverse stress develops due to squeezing of the V-ribs in the pulley 

grooves. 

• Finally, the belt is driving or being driven by various pulleys. The torque 

is transmitted from the pulley to the belt or vice versa by the means of the 

friction force. The friction force is the tangential force acting on a plane 

parallel to the belt’s axis. It is modeled in the system by the asperity spring 

friction model which approximates coulomb friction. The belt is subjected 

to a shear stress due to this tangential friction force between the sides of 

the belt ribs and the pulley grooves. 
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5.1 Axial (Tension) Stress 

 

 

Figure  5.1  Belt span tension at the entry and exit of the drive pulley. 

Axial tension varies over the pulley from the belt entry side to the belt exit side. 

The difference between the belt tension at both sides, as well as the diameter of the pulley 

and the wrap angle, determine the torque added or consumed by the pulley. Using the 

DIS code tension in belt spans can be predicted. An example of the DIS output is shown 

in Figure  5.1. Due to crank angular velocity variations, the tension in the belt span is not 

constant. To take the effect of the crank angular velocity variations into account, the 

highest magnitude at high tension side, and the lowest magnitude at the low tension 

(slack) side are used, instead of using the mean values. 

Using the belt tension, belt strain can be calculated, using equation ( 5.1). 

Consequently, axial stress can be calculated using Hook’s law (equation ( 5.2)). Mean and 

alternating stress can be calculated using equations ( 5.3) and ( 5.4) respectively. 
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𝜀𝜃 =
𝑇𝜃
𝐸𝐴 ( 5.1) 

𝜎𝜃 = 𝜀𝜃𝐸𝑟𝑢𝑏𝑏𝑒𝑟 ( 5.2) 

𝜎𝜃𝑚 =
𝜎𝑖𝑛 + 𝜎𝑜𝑢𝑡

2  ( 5.3) 

𝜎𝜃𝑎 = ±
𝜎𝑖𝑛 − 𝜎𝑜𝑢𝑡

2  ( 5.4) 

Where: 

𝜎𝜃: The axial stress 

𝐸𝐴: The equivalent axial stiffness of the belt 

𝐸𝑟𝑢𝑏𝑏𝑒𝑟: Rubber’s Young’s modulus 

𝑇: Belt tension 

𝜀: Belt strain 

𝜎𝜃𝑚: Mean axial stress 

𝜎𝜃𝑎: Alternating axial stress 

The main challenge in this step is to determine the Young’s modulus (E) of the 

rubber rib tip of the belt. Nassiri 2010[12] estimated Young’s modulus for rubber in 6PK 

belt to be 7.78 MPa. T. Ha Anh and T. Vu-Khanh [11], on the other hand, studied the 

variation of Young’s Modulus value with the aging of time and temperature. The results 

of the study indicated that the belt Young’s modulus varied from 3.51 to 10.93 MPa 

(Table  5.1). Such variation affects the accuracy of belt life prediction. For this study, 

Young’s modulus was taken as 7 MPa for the sake of comparison between different belt-

drive configurations. For more accurate belt life estimation, experiments should be 

conducted to determine belt’s rubber Young’s modulus and its range of variation over the 

belt life. 
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Table  5.1 Young's modulus variation for polychloroprene with the aging of time and 
temperature 

Aging 

temperature 

(°C) 

100 120 

Aging time 

(hrs.) 12 24 48 96 168 24 48 96 168 

E (MPa) 3.51 3.6 3.69 3.68 4.84 4.05 4.74 6.96 10.93 
 

5.2 Bending Stress 

Bending stress acts in the axial belt direction. Thus, bending stress can be 

algebraically added to the axial stress. Figure  5.2 shows a sketch that illustrates the 

distribution of the bending stress over the belt’s cross-section and it’s superposition with 

the axial stress.  

Bending stress depends on the pulley radius and the belt material properties. As 

the belt thickness is much smaller than any of the pulley diameters, the following 

assumptions can be made: 

1. The bending stress distribution is linear over thickness of the belt 

2. The radius of curvature is constant and equal to the pulley pitch radius. 

Given the above assumptions, the bending stress can be expressed using equation 

( 5.5). 

𝜎𝐵 =
𝐸𝑟𝑢𝑏𝑏𝑒𝑟𝑦

𝑅  ( 5.5) 

𝜎𝐵𝑚 =
𝜎𝐵
2  ( 5.6) 

𝜎𝐵𝑎 = ±
𝜎𝐵
2  ( 5.7) 

 



98 

 

Figure  5.2  Bending stress distribution and superposition 

Where: 

𝐸𝑟𝑢𝑏𝑏𝑒𝑟= Young modulus for rubber 

𝑦= The height of the rib from the chords 

R= Pulley pitch radius 

5.3 Transverse Stress 

As a result of the normal contact force between the pulley and the belt, and the 

wedge shape of the belt V-rib, a transverse force develops. This force will tend to 

squeeze the belt rib to try to fit it in the pulley groove consequently developing a 

transverse stress. The DIS code can predict the normal force between the pulley and the 

belt. The normal force with the belt geometry can be used to calculate the transverse 

force as well as the transverse stress. Figure  5.3 shows the time history of the normal 

force acting from the pulley on one element of the belt as it travels through the different 

pulleys. A time window was chosen so that the results shown for one complete cycle 

around the drive.  

Figure  5.4 shows a cross section of the V-rib of the belt with transvers forces 

applied on it. Transverse force (𝐹𝑧) is defined as the force perpendicular to the surface of 

the belt rib side. The normal force (𝐹𝑁) is defined as the radial force acting from the 

Axial Stress 

distribution 

+ = 

Belt rib 
Bending Stress 

distribution 

Total 

Stress 

 Neutral 
axis  
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pulley on the belt, calculated from the DIS code. DIS code calculates 𝐹𝑁 applied on a belt 

area of length equals to one element length and width equals to the whole belt width.  

Assuming equal load sharing between ribs, each rib will share a normal force (𝐹𝑛) 

equals to: 

𝐹𝑛 =
𝐹𝑁

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑏𝑠  
( 5.8) 

As the belt rib carries the load on both sides and due to symmetry, each side will 

carry half the load only (i.e. 𝐹𝑛/2). 

 

Figure  5.3  DIS results for the calculated normal force on one belt element varying over 
time as it travels around the belt-drive. 
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𝐹𝑧 has two components in the normal and axial directions of the pulley. The two 

components are defined as: 

𝐹𝑍 sin𝜃 =
𝐹𝑛
2   

( 5.9) 

𝐹𝑍 cos𝜃 =
𝐹𝑛

2 × tan𝜃  
( 5.10) 

Where: 

𝜃: Half the belt rib wedge angle (20 degrees for the PK belt section) 

 

Figure  5.4  Transverse force acting on the belt V-rib cross section due to normal force 
acting from the pulley in the rib 

Hence we can use the 𝐹𝑁 calculated by the DIS code and employ it in Equations 

( 5.8) and ( 5.12) to calculate 𝐹𝑍. Knowing 𝐹𝑍 and the geometry of the belt, the transverse 

stress (𝜎𝑍) can be calculated as shown in Equation ( 5.11). 

𝜎𝑍 =
𝐹𝑍 cos𝜃
 ℎ𝑟 × 𝑙  

( 5.11) 

𝐹𝑍 sin 𝜃 

𝐹𝑍 cos 𝜃 

𝐹𝑍 

𝐹𝑍 sin𝜃 

𝐹𝑍 cos 𝜃 

𝐹𝑍 

𝜃 = 20°   

ℎ𝑟 



101 

Where: 

ℎ𝑟: Height of the V-rib 

𝑙: Length of the belt element in the DIS code 

 Transverse stress will always be negative, as it is a compression stress. It only 

happens on the grooved side, in other words, when the belt is front wrapped. The back 

wrapped pulleys are facing the flat side of the belt, and hence the normal force will not 

develop any transverse stress. Since we are only interested in the rib stresses so the back 

wrapped pulleys are not taken into account in the transvers stress calculation. 

As the free span is not in contact with any pulley, it will have no applied normal 

force, and consequently, it will not have a transverse force or transverse stress. Hence the 

belt enters and exits the pulley with zero transverse stress. The transverse stress (𝜎𝑧) 

when the belt is in contact with the pulley is calculated as shown in Equations ( 5.8) 

through ( 5.11). The mean and the alternating transverse stresses can be calculated using 

equations ( 5.12) and ( 5.13). 

𝜎𝑍𝑚 =
𝜎𝑍
2  ( 5.12) 

𝜎𝑍𝑎 = ±
𝜎𝑍
2  ( 5.13) 

Where: 

𝜎𝑍: Maximum transverse stress 

𝜎𝑍𝑚: Mean transverse stress 

𝜎𝑍𝑎: Alternating transverse stress 

The normal force is not always the same for each cycle. To take the variation into 

account, and to avoid the dummy spikes in the force distribution, Normal force was 

observed on a specific pulley for one second with a sampling rate of 1000 Hz. Each 

cycle, the maximum force was observed, and then the maximums are averaged, and the 

average maximum is used in the calculations. 
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5.4 Shear Stress 

The belt main function is to transmit power between different pulleys, some of 

them are driving and others are driven. Power is transmitted within the belt by the means 

of axial forces, while it is transmitted between the belt and the pulleys by the means of 

friction forces, which is also referred to as tangential or shear forces. According to 

equation ( 5.14), the tangential force depends on the normal force between the belt and the 

pulley as well as the coefficient of friction between the belt and the pulley.  

FT = µFN ( 5.14) 

Where: 

𝐹𝑇 : Tangential force 

𝐹𝑁 : Normal force 

𝜇 : Coefficient of friction 

Given the coefficient of friction, the DIS code can predict the tangential force. 

The coefficient of friction is tuned in the model to match the experimental results. 

Figure  5.5 shows the tangential force on one belt element, as it travels around the belt-

drive, with respect to time. The time window was chosen so that the belt element travels 

about one complete belt cycle. Hence the plot shows the shear force distribution over 

different pulleys. DIS code calculates 𝐹𝑇 applied on a belt area of length equals to one 

element length and width equals to the whole belt width. Assuming equal load sharing 

between ribs, each rib will share a tangential force (𝐹𝑡) equals to: 

𝐹𝑡 =
𝐹𝑇

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑏𝑠  
( 5.15) 

As the belt rib carries the load on both sides and due to symmetry, each side will 

carry half the load only (i.e. 𝐹𝑡/2). 
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Figure  5.5  Tangential force predicted by DIS code for one element over time 

As the tangential forces change with respect to time on each pulley, it was 

proposed to calculate the shear stress using the maximum shear force in order to account 

for the most extreme condition. However, the maximum is not the same at each cycle, 

moreover it may spike at one cycle to a very high value that will never happen again in 

other cycles. As a result, a code was written to track the maximum shear force at each 

pulley during the one second of test at a sampling rate of 1000 Hz. Then the maximum 

values obtained are averaged to reduce the effect of the non-dominant spikes. 

Shear stress develops due to the application of the tangential friction force on the 

sides of the belt ribs. Shear stress is very small at the idler pulleys as there is negligible 

power transmitted from or to them. On the other hand, shear stress value is large at the 

crank and the drive pulleys since power is transmitted from or to them. 

Given the tangential force acting on the belt and the belt geometry, the shear 

stress can be calculates as: 
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𝜎𝜏 =
𝐹𝑡 cos𝜃

2 × ℎ𝑟 × 𝑙 
( 5.16) 

As the free span is not in contact with any pulley, it will have no applied 

tangential force, and consequently, it will not have a shear stress. Hence the belt enters 

and exits the pulley with zero shear stress. The value of shear stress (𝜎𝜏) when the belt is 

in contact with the pulley is calculated as shown in Equations ( 5.15) and ( 5.16). The mean 

and the alternating transverse stresses can be calculated using equations ( 5.17) and ( 5.18). 

𝜎𝜏𝑚 =
𝜎𝜏
2  ( 5.17) 

𝜎𝜏𝑎 = ±
𝜎𝜏
2  ( 5.18) 

Where: 

𝜎𝜏: Maximum shear stress 

𝜎𝜏𝑚: Mean transverse stress 

𝜎𝜏𝑎: Alternating transverse stress 

5.5 Equivalent Uniaxial Stress 

To employ the fatigue model, uniaxial stress model is required; however the belt 

stress is multi-axial. Hence, it is required to find an equivalent uniaxial stress that 

combines the effect of the multi-axial stresses. Using Sine’s theory [8, 22], the equivalent 

mean axial stress is given by:  

𝜎𝑚 = 𝜎𝜃𝑚 + 𝜎𝐵𝑚 + 𝜎𝑍𝑚 ( 5.19) 

𝜎𝑎 = �(𝜎𝑎1 − 𝜎𝑎2)2 + (𝜎𝑎2 − 𝜎𝑎3)2 + (𝜎𝑎3 − 𝜎𝑎1)2

2  
( 5.20) 

Where: 

𝜎𝑚: The equivalent uniaxial mean stress. 

𝜎𝑎: The equivalent uniaxial alternating stress 

𝜎𝑎1,𝜎𝑎1.𝜎𝑎1: The principal multi-axial alternating stresses 
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In the next chapter, the uniaxial equivalent mean and alternating stresses will be 

used to calculate the fatigue life of the belt. 
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6. BELT LIFE PREDICTION 

The multibody dynamics belt-drive model can be used to predict the system 

dynamic response, including time-histories of belt tension, belt-span transverse 

vibrations, normal and tangential forces between the belt and the pulleys, pulley angular 

velocities, pulley hub loads, torque transmitted through shafts and the tensioner arm 

angle, under various operating conditions. This information can be used to determine if 

the belt-drive can withstand those operating condition without failure. For example, the 

pulley mounting points must be able to support the hub loads without experiencing static 

or fatigue failures. In this chapter we will use the information generated by the multibody 

dynamics belt-drive model to predict one of the most common failure modes of the belt-

drive, which is failure due to belt fatigue. Specifically, in this chapter a belt fatigue life 

prediction model will be presented. 

Section  6.1 describes the failure criteria used to determine belt fatigue life. In 

Section  6.2 an introduction about fatigue including High Cycle Fatigue Model (HCF) 

and Low Cycle Fatigue (LCF) model, the difference between both models, and the 

reasons behind choosing the HCF model are presented. In Section  6.3 more details are 

presented on the methodology of the HCF model. Section  4 shows how the multibody 

dynamic code results can be used in the fatigue life model to estimate the life-time of the 

belt drive. 

6.1 Failure Criteria 

Failure criteria of the belt is described by appearance of cracks in the belt rib tip 

[8]. When cracks appear, the belt is considered “due for change” as per the advice of 
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most belt manufacturers. Although the belt chords may not have ruptured and the belt is 

still functioning, the belt is still considered to have failed. This is because at this point the 

rubber will start to be torn, so that the belt can no longer transmit power. 

6.2 Fatigue Concept 

Fatigue failure is the failure of the material due to cycling load, see Figure  6.1. 

This process passes through two main phases; crack initiation and crack propagation. 

Depending on the value of the alternating stress, the material would fail after certain 

number of cycles, the smaller the alternating stress is, the more life cycles the material 

can withstand. Below certain value of stress, the material tends to operate for infinite 

number of cycles, such stress is referred to as endurance stress (𝜎𝑒) 

 

Figure  6.1  Cycling Stress 

6.2.1 S-N Curve 

The S-N curve is a diagram which shows the relation between the magnitudes of 

the alternating uniaxial stress applied on the material (𝜎) and number of cycles (Nf) that 

𝜎𝑎 
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the material can withstand under this stress. Figure  6.2 shows 𝜎 as a function of number 

of reversals (2Nf). 

The curve can be defined by two main slopes, one of which is the plastic strain 

slope (c) and the other is the elastic strain slope (b). The intercept of the extension of the 

elastic region and the 2Nf=1 vertical axis is called the fatigue strength (𝝈𝒇). The slope, b, 

of the elastic strain region of the curve is called the fatigue strength exponent.  

 

Figure  6.2  S-N Curve (Ref. [8]) 

As it appears in Figure  6.2, when the alternating stress is much higher than the endurance 

stress (𝜎𝑒), the curve is steeper, with a higher slope (plastic strain slope). This simulates 

the operation of the material in plastic strain region. This type of fatigue is called Low 

Cycles Fatigue (LCF). LCF can be described by Coffin-Manson law as follows (first 

proposed in 1960’s) [8]: 

𝜀𝑝 = 𝜀𝑓�2𝑁𝑓�
𝑐 ( 6.1) 

𝜎𝑒 
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Where: 

𝜀𝑝: Independent plastic strain amplitude 

𝜀𝑓: Fatigue ductility coefficient 

𝑐: Fatigue ductility exponent 

𝑁𝑓: The number of cycles for failure (2𝑁𝑓 is the number of reversals for failure) 

 On the other hand, when the alternating stress is closer to the endurance stress, 

the curve tends to be more flat with a smaller slope. This simulates the operation of the 

material in the elastic strain region.  This type of fatigue behavior is called High Cycles 

Fatigue (HCF).  HCF can be described by Basquin relation, proposed in 1910 [8, 12, 23]: 

𝜎𝑎 = 𝜎𝑓�2𝑁𝑓�
𝑏 ( 6.2) 

Where: 

𝜎𝑝: Alternating stress  

𝜎𝑓: Fatigue strength coefficient 

𝑏: Fatigue strength exponent 

𝑁𝑓: The number of cycles for failure 

When the alternating stress is below 𝜎𝑒, the material tends to have, theoretically, 

infinite number of cycles before it suffers a failure. 

In a belt drive, the belt chords (made usually from polyester or nylon) have much 

higher Young’s modulus than the belt rubber (usually made from volcanized rubber). 

This limits the belt chords from straining as much as the rubber under the same tension 

force, and hence, the chords act as the main tension carrier.  As the chords and the rubber 

are connected in parallel, they have to have the same strain. In this case, the chords will 

limit the rubber strain at very low values, and the rubber will always operate in the elastic 

zone. Hence high cycles fatigue model is adopted for the belt rubber. 
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6.2.2 Effect of Mean Stress 

In equations ( 6.1) and ( 6.2) above, the stress was considered to be cycling around 

zero stress. When the material suffers cycling stress around non zero mean stress, the 

fatigue life will be affected [23]. It was observed that if the mean stress is +ve (tension), 

the fatigue life decreases, while if the mean stress (𝜎𝑚) is -ve (compression), the fatigue 

life increases. Figure  6.3, shows the effect of the mean stress on the fatigue life. 

 

Figure  6.3  Effect of mean stress on fatigue life on S-N curve 

The Basquin relation, equation ( 6.2), is further modified to account for the mean 

stress. Equation ( 6.3) below represents the modified equation: 

𝜎𝑎 = (𝜎𝑓 − 𝜎𝑚)�2𝑁𝑓�
𝑏 ( 6.3) 

6.3 Fatigue Model 

As discussed in the previous section, the HCF model is employed in this study. 

The modified Basquin relation, equation ( 6.3) is employed to relate the stresses to the 

fatigue life. Using equation ( 6.3) we can calculate the number of cycles to failure: 
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𝑁𝑓 =
1
2 �

𝜎𝑎
𝜎𝑓 − 𝜎𝑚

�

1
𝑏
 ( 6.4) 

The above relation describes single cycling action, however; the belt passes 

through all the pulleys (more than one) in the belt-drive each cycle. Each pulley would be 

considered as a different cycling load, Thus Miners  Linear Damage Rule (LDR) [8, 24] 

will be used as described in the next section. 

6.4 Cumulative Damage Theory 

When the belt is subjected to different loadings, each loading will consume a 

fraction of the belt life. Consider at some loading condition, the belt useful life is 𝑵𝒇𝟏 

cycles, while the belt operates at this loading conditions for 𝒏𝟏 cycles, then this loading 

event caused a fraction of damage to the belt as shown in equation ( 6.5). 

𝑑1 =
𝑛1
𝑁𝑓1

 ( 6.5) 

Where 

𝑁𝑓𝑖 =
1
2 �

𝜎𝑎𝑖
𝜎𝑓𝑖 − 𝜎𝑚𝑖

�

1
𝑏
 ( 6.6) 

When other 𝑘 loading events take place, they cause different amounts of damage 

𝑑2,𝑑3, … . ,𝑑𝑘 according to their loading conditions. The total cumulative damage (𝐷) can 

be calculated by Linear Damage Rule (LDR) introduced by Miners in 1945 [8, 24]:  

𝐷 =
𝑛1
𝑁𝑓1

+
𝑛2
𝑁𝑓2

+⋯+
𝑛𝑘
𝑁𝑓𝑘

= �
𝑛𝑖
𝑁𝑓𝑖

𝑘

𝑖=1
 

( 6.7) 

The failure criteria will be when the summation of the partial damage is greater or 

equal to one: 



112 

�
𝑛𝑖
𝑁𝑓𝑖

𝑘

𝑖=1
≥ 1 

( 6.8) 

In the case of our study, different loadings are represented by different pulleys. 

Each of the pulleys exerts different values of stresses on the belt. However, in this case 

the belt has the same number of cycles over all the pulleys. This implies Equation ( 6.9). 

𝑛1 = 𝑛2 = 𝑛3 = ⋯ = 𝑛𝑘 ( 6.9) 

Hence, the cumulative damage rule for one cycle is given by:  

𝐷|𝑛=1 =
1
𝑁𝑓1

+
1
𝑁𝑓2

+⋯+
1
𝑁𝑓𝑘

= �
1
𝑁𝑓𝑖

𝑘

𝑖=1
=

1
𝑁𝐹

 
( 6.10) 

⇒ 𝑁𝐹 =
1

𝐷|𝑛=1
 

( 6.11) 

Where 𝑁𝐹  is the number of the useful life cycles for the system. Hence, the 

equivalent life cycles can be determined using Equations ( 6.6), ( 6.10) and ( 6.11). 

Finally the time to failure can be calculated using Equation ( 6.12): 

ℎ𝑓 =
𝑁𝐹  𝐿

𝜋𝐷 (𝑅𝑃𝑀)(60)   ( 6.12) 

Where: 

ℎ𝑓: The number of hours to failure 

𝑁𝐹: Number of cycles to failure due to all the loads 

𝐿: Belt length (m) 

𝐷: Diameter of crankshaft pulley (m) 

𝑅𝑃𝑀: Crank shaft angular velocity (rpm) 

6.5 Duty Cycle 

The belt doesn’t essentially run a constant speed and load (especially in 

automotive applications), but it runs over a duty cycle. To estimate the life time of a belt, 
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the duty cycle needs to be known. Suppose we have a duty cycle of total time 𝑇T with 

number of operation ranges  𝐾 . Each operation range lasts an amount of time  Δ𝑇𝑗 , 

where 𝑗 = 1:𝐾. Let ℎ𝑓𝑗 be the life time (in hours) of the belt operating at operation range 

 𝑗, the total lifetime of the belt is equal to: 

𝑆𝑦𝑠𝑡𝑒𝑚 𝐵𝑒𝑙𝑡 𝑙𝑖𝑓𝑒 =
1

∑
Δ𝑇𝑗
𝑇  . 1

ℎ𝑓𝑗
𝑘
𝑗=1

 
( 6.13) 

6.6 Summary of Belt Fatigue Life Solution Procedure 

Figure  6.4 shows a flow chart of the belt fatigue life prediction model. The model 

is defined by the geometry of the belt-drive and the physical properties. Once the 

information is entered, DIS code calculates the different forces applied on the belt. The 

output of the DIS code is used to calculate the belt stresses and the fatigue life for each 

pulley in the system. Then Miner’s Linear Damage Rule (LDR) is applied to calculate the 

combined effect of all the pulleys in the belt-drive on the belt fatigue life. 
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Figure  6.4  Flow Chart of the belt fatigue life prediction model 
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6.7 Results and Discussion 

To calculate the fatigue life-time of the belt, fatigue properties should be known. 

Fatigue properties are calculated by running many experiments on different belt specimen 

[23]. As the fatigue behavior depends on many criteria such as surface finish, 

manufacturing flaws and defects, results are not always repeatable. The best practice is to 

collect data from many tests and try to average the results to get the closest estimate. For 

this study the fatigue strength coefficient was taken as 10 MPa and the fatigue strength 

exponent was taken as -0.068 for the sake of comparison of different belt-drive 

configurations. For accurate belt life estimation, more experiments need to be done to 

estimate those two material fatigue properties. Also, recall that in Section  5.1 the belt 

rubber’s Young’s modulus was estimated to be equal to 7 MPa based on experiments 

performed References [11, 12]. 

Applying the procedure shown in Figure  6.4 to the belt-drive shown in Figure  3.1, 

the number of cycles to failure and time to failure for the various belt-drive operation 

ranges were calculated and are shown in the bottom of Figure  6.5. The figure also shows 

the values of different stresses (mean and alternating axial stresses, bending stress, 

transvers stress, shear stress and equivalent uniaxial mean and alternating stresses) 

applied on the belt rib. The 6 columns show the different operation ranges, as Idle, A100, 

B100, C100, Unloaded up and Unloaded down from left to right, respectively. The rows 

show different pulleys with pulley number 1 in the top and going in order to pulley 

number 7 in the bottom. 
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Figure  6.5  Results for fatigue model. Rows represents pulleys from 1 to 7, columns 
represents different operation ranges (Idle, A100, B100, C100, Unloaded up and 
Unloaded down from left to right). 
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Assume that the belt drive operates a duty cycle as shown in Table  6.1. Using 

Equation ( 6.13) along with the results in Figure  6.5, the total belt drive fatigue life 

operating at this duty cycle is equal to:  

 

Table  6.1  Duty Cycle 
Operation range Percentage time 

idle 5% 

A100 9% 

B100 80% 

C100 4% 

UnloadedUp 1% 

UnloadedDown 1% 
 

𝑇𝑜𝑡𝑎𝑙 𝐵𝑒𝑙𝑡 𝑙𝑖𝑓𝑒 = 1580 ℎ𝑜𝑢𝑟𝑠 ( 6.14) 
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7. CASE STUDIES 

Different configurations of belt drives were built using the DIS multibody 

dynamics software to study the variation of estimated fatigue life with different 

configurations. The new models are studied ONLY from fatigue life point of view. Other 

belt design criteria like belt vibration, space limitation, accessibility, and others are not 

considered. All the configurations were run at the same speed and load profile as the base 

configuration, and they are modified to have the same pretension in the belt. 

Alternative configuration 1 has one less pulley than the baseline configuration and 

it is shown in Figure  7.1 and Table  7.1. Alternative configuration 2 is very close to 

Alternative configuration 1 but has more wrap angle on the tensioner that would help to 

rapidly take the slack from the belt. This configuration is shown In Figure  7.2 and 

Table  7.2. Alternative configuration 3 has the same number of pulleys as Alternative 

configuration 1 and 2, but the tensioner is on the back side of the belt, while the idlers are 

on the groove side. Alternative configuration 3 is shown in Figure  7.3 and Table  7.3. All 

the configurations have the same components parameters as the baseline configuration 

shown in Figure  3.1. The parameters are shown in Table  3.2. 

Fatigue life results for the different belt-drive configurations can be calculated 

using the algorithm shown in Figure  6.4 with the DIS code used to calculate the stresses 

and forces in the system. In the following sections we will elaborate on the different 

configurations. The results and conclusion are discussed later in this chapter. 
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7.1 Alternative Configuration 1  

The main idea behind alternative configuration 1 is taking one of the idler pulleys 

out of the drive. By removing one idler we expect to eliminate the bending, shear and 

transverse stress developed on this pulley. If an idler was a forward wrapped idler (i.e. it 

contacts the belt at the rib side), the shear and transverse stresses will decrease the belt 

fatigue life, while the bending stress will be subtracted from the axial stress resulting in 

higher fatigue life. On the other hand, if the idler was a back wrapped idler (i.e. it contact 

the belt on the flat side), the transverse and shear stress will have no effect on the rib, but 

the bending stress will add to the axial stress at the rib tip. As a result, we eliminated a 

back wrapped idler hoping to get a higher fatigue life. 

Figure  7.1 shows the layout of the suggested model. Table  7.1 shows the location 

of the pulleys and different idlers, as well as the diameter of the pulleys. The model 

parameters are the same as the baseline configuration, except for the tensioner arm initial 

torque and belt length. The tensioner initial torque was changed to 60 N.m so that the 

initial tension in the belt matches the baseline configuration. As one pulley was removed 

and other pulleys had different locations, the belt length was also changed to match the 

new configuration. 

The change in the configuration took only the fatigue life into consideration. 

Other criteria like belt vibration and space limitation were not considered. This is done 

purely for research purpose to discuss the effect of different configurations on the fatigue 

life time and not intended to be a complete belt drive design. 
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Figure  7.1  Alternative configuration 1 belt drive model 
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Table  7.1 Layout and geometry of different pulleys 

Pulley # 
X-Coordinate 

(mm) 

Y- Coordinate 

(mm) 

Pitch diameter 

(mm) 

1 -407.90 722.60 104.4 

2 -111.2 474.5 74 

3 0.00 0.00 338.3 

4 114.8 292.5 82.5 

5 50.1 525.6 74 

6 -71 600 82.5 

Tensioner arm 

pivot 
140 530 N/A 

 

7.2 Alternative Configuration 2  

In alternative configuration 2, the main idea was to increase the wrap angle of the 

belt around the pulley. This makes the direction of the movement of the tensioner the 

same as the axial direction of the belt spans which will help taking over the slack in the 

belt quickly. This is because both belt spans will have a larger displacement component 

in the belt axial direction which means more axial belt displacement for the same unit of 

the tensioner displacement. This will help the belt derive keep the desired tension without 

delay and avoid aggressive tension corrections due to belt slack.  

Figure  7.2 shows the layout of alternative configuration 2, with increased wrap 

angle on the tensioner. Table  7.2 contains the coordinates of each pulley, as well as their 

diameters. 
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Figure  7.2  Alternative configuration 2 belt drive model 
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To make a fair comparison between this configuration and the base configuration, 

the initial tensioner torque was tuned to 110.5 N.M to keep the same initial tension as the 

one in the baseline configuration. This configuration was studied only from the fatigue 

life point of view, and didn’t consider any other criteria like vibration or space limitation. 

It’s intended only for research purpose and not intended to be a complete design. 

Table  7.2  Layout and geometry of different pulleys for alternative 
configuration2 

Pulley 

#  

X-

Coordinate 

(mm) 

Y- 

Coordinate 

(mm) 

Pitch 

diameter 

(mm) 

1 -407.90 722.60 104.4 

2 -111.2 474.5 74 

3 0.00 0.00 338.3 

4 40 400 82.5 

5 107.4 456.3 74 

6 -71 600 82.5 

Tensio

ner 

pivot 

107.4 456.3 N/A 

 

 

7.3 Alternative Configuration 3  

As mentioned before in Section  7.1, the back wrapped pulley (contact the belt at 

the flat side) will results in bending stress added to the axial stress in the rib tip section 

while there will be no transverse or shear stress. On the other hand, in the forward 

wrapped pulleys (contact with the belt at the rib side) the bending stress is subtracted 

from the axial stress, while transverse and shear stress are added. Investigating the last 

two statements, we cannot say explicitly which kind of wrapping will result in less stress. 

If the bending is more dominant in the system than transverse and shear stress, then a 
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forward wrapped pulley will be preferable in the sense of increasing the fatigue life time. 

On the other hand, if the transverse and shear stress are more dominant than the bending 

stress, a backward wrapped pulley would be a preferred design. 

As mentioned before in Section  5.2, bending moment depends mainly on the 

geometry and on the belt material which are constant. On the other hand, the shear and 

transverse stresses depend on the dynamics of the system. Mathematically, we can say 

that the higher the dynamics in the system, the more dominant the transverse and shear 

stresses. However by experience, it was found that the transverse and shear stresses are 

generally less dominant and the bending stress is more dominant. Belt manufacturers and 

designers recommend that the pulleys are preferable to be forward wrapped (grooved 

pulley in contact with belt ribs) rather than being back wrapped (flat pulleys contact the 

flat belt side). This shows the dominance of the bending stress over the transverse and 

shear stresses. In this configuration the wrapping angle around the tensioner has 

increased. Moreover, the tensioner wrapping changed sides from being forward wrapped 

to be backward wrapped. At the same time, idler 4 and 6 has changed wrapping side from 

backward wrap to forward wrap. In this case, we have two forward wrapped pulleys and 

one backward versus of two backward and one forward in alternative configurations 1 

and 2. Figure  7.3 shows the layout of the suggested configuration and the wrapping of 

each pulley. Table  7.3 lists the coordinates of the centers of different pulleys, as well as 

their diameters. As in the previous configurations, the initial torque of the tensioner was 

tuned so that the initial belt tension matches the baseline configuration. The tuned value 

of the initial torque is 124 N.m. The belt length has changed as needed to fit in the new 

configuration. 
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Figure  7.3  Alternative configuration 3 belt drive model 
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Table  7.3  Layout and geometry of different pulleys 
 

Pulley # 
X-Coordinate 

(mm) 

Y- Coordinate 

(mm) 

Pitch diameter 

(mm) 

1 -407.90 722.60 104.4 

2 -111.2 474.5 74 

3 0.00 0.00 338.3 

4 80 450 82.5 

5 0 357.7 74 

6 -71 600 82.5 

Tensioner 

pivot 
90 357.5 N/A 

7.4 Results and Discussion 

Figure  7.4 to Figure  7.6 show the stress and fatigue life results for different 

alternate configurations. For each table in the figure, the columns represent one of the six 

different operation ranges, namely idle, A100, B100, C100, Unloaded up and Unloaded 

down, respectively. Each row represent different pulleys with the upper row represent 

pulley1 and the going in ascending order to pulley 6 in the last row. 

Although one pulley was removed from the baseline in alternative configuration 

1, the belt fatigue life is less than that of the baseline configuration in all ranges of 

operation. We expected that eliminating stresses on the removed pulley would increase 

the belt fatigue life however this configuration led to increased belt-drive vibrations 

which caused higher belt stresses. Similarly, in alternative configuration 2, the belt life is 

less than that of alternative configuration 1 in all operating ranges, which again was 

opposite to our expectation. In alternative configuration 3, results were more 

complicated. The belt life increased in the idle operating range, however it decreased in 

all other operating ranges. This shows that the belt fatigue prediction model in 

conjunction with the multibody dynamics model of the belt-drive are essential for 

accurate prediction of the belt fatigue life. 
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Figure  7.4  Stress and fatigue results for alternative configuration 1 
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Figure  7.5  Stress and fatigue results for alternative configuration 2 
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Figure  7.6  Stress and fatigue results for alternative configuration 3 
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8. CONCLUDING REMARKS AND FUTURE WORK 

8.1 Concluding Remarks 

A numerical model was built using an explicit finite element code to simulate a 

belt-drive. The code uses the trapezoidal integration rule along with an explicit solution 

procedure to solve the multibody dynamics differential equations, presented in Chapter  2. 

The belt was modeled using three-node beam elements to account for bending stiffness, 

while the pulleys, shafts and tensioner body were modeled as rigid bodies. The pulleys 

have a cylindrical contact surface. The penalty technique was used to model contact 

between the belt and the pulleys.  An asperity-based friction model was used to 

approximate the coulomb friction between the belt and the pulleys. To account for the 

stiffness of the shafts, torsional spring(s) were added at one or both sides of the shaft. The 

spring(s) equivalent stiffness is equal to the equivalent stiffness of the shaft, and the 

spring(s) equivalent damping is equal to the equivalent damping of the shaft. Virtual 

sensors were placed on each belt span to measure belt tension, belt deflection and number 

of belt node at the sensor position. 
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There were two inputs defined for the model. The first is the crank angle velocity 

and it has a velocity profile shown in Figure  3.2. The profile represents  6 operation 

ranges  operating at 5 distinctive average angular velocities. There is a time gap ( 0.2 

seconds ) between different ranges to ramp the average angular velocities between 

different operating ranges. The second input is the turbine torque, and it has a profile that 

is dependent on the turbine angular velocity as shown in Figure  3.3. The drive shaft (refer 

to Figure  3.1 for definition) angular velocity and torque obtained by the model were 

compared to experimental results, supplied by Cummins, Inc., that were obtained from a 

physical belt-drive. The two results showed excellent agreement match for the 4 

operation ranges with the lower crankshaft angular velocity. For the 2 ranges operating at 

average crankshaft angular velocity 2100 rpm, there was some frequencies in the 

experimental results that were not matched by corresponding frequencies calculated by 

the finite element model. By investigating the response of the belt-drive in the 

experimental results, the number of frequencies was much more than the number of 

frequencies in the input (crankshaft angular velocity). Hence it was obvious that some of 

these frequencies were due to other excitation sources than the crankshaft dynamics. 

These excitations (such as structural resonance) are not included in the numerical model, 

and hence it is not expected to see such frequencies in the numerical response. To get the 

complete system response, the whole system should be modeled including the mounting 

structure of the belt-drive. Comparison plots between numerical and experimental results 

for the belt-drive response are shown in Section  3.5. 

A parameter sensitivity study was performed to evaluate the change in response 

due to change in specific parameter. Different parameters for different components were 

studied such as tensioner arm viscous and coulomb damping, belt axial stiffness and 

damping, belt torsional stiffness and damping, the coefficient of friction between the belt 

and pulleys , gear-tooth backlash, gear tooth stiffness and damping, and stiffness and 

damping of shafts. The parameters that had the most significant effect on the response 

were the viscous and frictional (Coulomb) damping of the tensioner arm pivot, and the 

coefficient of friction between the belt and the pulleys. 
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After the numerical model was validated, more information was obtained from the 

numerical model including normal and tangential forces between the belt and the pulleys 

as well as the tension force in the belt. This information was used in Chapter  5 to 

calculate different stresses applied on the belt rib. The different stresses were added using 

Sine’s theory and represented by an equivalent uniaxial stress. The uniaxial stress was 

then used in Chapter  6 as a damage criterion to estimate the belt life time based on 

fatigue model. As the belt chords have much larger Young’s modulus than the rubber, the 

chords will limit the rubber strain keeping in the linear elastic zone. Hence, High Cycle 

Fatigue (HCF) model was used and modified Basquin relation was employed to estimate 

the fatigue life of the belt. The fatigue life was estimated for every operating range and 

the results are shown in Section  6.7. 

Furthermore, three different alternative configurations of the numerical model belt 

drive were built and simulated for the same input. The different configurations have the 

same input, the same material properties and the same belt initial tension, but different 

idler pulleys and tensioner positions and configurations. All the alternatives have one less 

pulley than the baseline configuration. The response was observed for each configuration 

and the same analysis was done to calculate the stresses and fatigue life. The three 

configurations were found to have lower fatigue life than the baseline configuration 

although they have one less pulley. The results were shown in Section  7.4. 

Design configuration changes proposed in Chapter  7 were expected to improve 

the belt fatigue life; however they had an opposite effect. One main reason is that it is 

hard to change one condition without affecting other conditions in the system. This 

appears clearly in the alternative configuration 1, it was expected that one less pulley will 

eliminate the stresses on the pulley taken out while the stresses on other pulleys will be 

the same. This will consequently increase the belt fatigue life. After running the 

simulation and calculating the belt fatigue life, it was found that this assumption was 

invalid because changing the configuration of the system led to higher belt-drive 

vibrations. A more complicated case was alternative configuration 3. The effect of the 

change was not the same in all the ranges. Results show that the estimated belt life-time 
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is increased in the idle operation range, while the estimated life-time was decreased in all 

the other operation ranges. 

The above conclusion elaborates the importance of the calculation of the system 

response taking all the effects into account. It also elaborates the importance of using a 

computational model that can simulate the physical model with high level fidelity. This 

computational model will give the flexibility of tuning the system and check different 

configurations while eliminating the cost and the time of setting up test rigs. 

Due to the dynamic interactions between different bodies, a single change in the 

system will propagate in the entire system making it challenging to estimate the resultant 

change of the system response. Having a high-fidelity multibody numerical model allows 

designers to obtain an accurate system response of the final product in the design 

phase.  Further analysis can be done and the system response due to different 

modifications can be accurately predicted. The main challenge to build a numerical 

model is to predict material properties such as fatigue strength, fatigue exponent index, 

and belt axial/bending damping, which need to be experimentally determined. This 

becomes even more challenging when the material property changes due to different 

operation conditions like Young's modulus changes with operating temperature. One way 

to overcome this uncertainty is to do a parameter sensitivity study to find the range of the 

property change and predict the range of the corresponding responses. Other solution is to 

take the most severe case, or the average of the range of change. The designer shall make 

the best judgment depending on the application of the model. 

8.2 Future Work 

As shown in Section  5.1 the system response can vary due to a change in the 

model parameter. Also Table  5.1 shows how Young’s modulus of the belt rib rubber can 

vary significantly due to time aging or operating temperature. Young’s modulus has a 

direct impact on the belt stiffness and damping. Further studies to involve the effect of 
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operating temperature in the model will help to improve the prediction of the model 

response in actual operating conditions.  

Fatigue failure is only one mode of belt failure. It is true it is most common, but it 

is not the only mode. Belts may fail due to wear as a result of the friction between the belt 

and the pulley. Further work to predict the belt life due to wear failure is needed.  

In this thesis, belt fatigue was studied for different operation ranges, where each 

operation range represents a steady-state operation condition. However, the belt-drive can 

experience transient operating conditions like engine start-up. Accessory belt-drives 

experience large stresses on the engine start-up to overcome the inertia associated with 

starting the power steering pump, the alternator, the A/C compressor and the fan, 

especially if those components are engaged. However, for the belt-drive studied in this 

thesis is not an accessory belt-drive. It is not expected to have large stresses on the engine 

startup because the turbine will not be loaded at startup. For more general cases, it will be 

helpful to evaluate the startup operating conditions as well as other operation conditions 

such as sudden accelerations/decelerations and wet operating conditions and study their 

effects. 

Also Chapter  7 can be used as a start point for further optimization study to obtain 

the highest fatigue life time. An optimization model can be developed using the fatigue 

life model introduced in this thesis to compare different belt configurations, and hence, 

optimize the design. 

[1-28] 
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