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Abstract

In this paper, an improved inflow boundary condition is proposed for Wigner equa-
tions in simulating a resonant tunneling diode (RTD), which takes into consideration
the band structure of the device. The original Frensley inflow boundary condition
prescribes the Wigner distribution function at the device boundary to be the semi-
classical Fermi-Dirac distribution for free electrons in the device contacts without
considering the effect of the quantum interaction inside the quantum device. The
proposed device adaptive inflow boundary condition includes this effect by assign-
ing the Wigner distribution to the value obtained from the Wigner transform of
wave functions inside the device at zero external bias voltage, thus including the
dominant effect on the electron distribution in the contacts due to the device inter-
nal band energy profile. Numerical results on computing the electron density inside
the RTD under various incident waves and non-zero bias conditions show much
improvement by the new boundary condition over the traditional Frensley inflow
boundary condition.

Key words: Frensley inflow boundary condition, Wigner function, Resonant
tunneling diode.




1. Introduction

As semiconductor devices are being scaled down to nanometer dimensions, the
quantum effects, such as size quantization and tunneling, become important in
studying the properties of the devices [1] [2]. The non-equilibrium Green func-
tion (NEGF) formalism and the Wigner equation are two popular simulation
methods in quantum transport of nano-scale devices as open systems. For bal-
listic transport, the NEGF formalism is equivalent to solving the Schrodinger
equation [3] [4] while it also introduces self-energy for treating device contacts
attached to the active device region [5], and a phenomenal treatment of the
bodily scattering effects [6,7]. On the other hand, the Wigner distribution,
defined via a Wigner-Weyl transform of the density correlation function of
the quantum device, is introduced by E. Wigner in 1932 as an analog of the
classical Boltzmann distribution for the quantum system [8]. Being a quan-
tum kinetic analog of the classical Boltzmann equation, the Wigner equation
has advantages over the NEGF method in two aspects [9,10]. One is that the
Wigner framework allows the modeling of scattering phenomena for the quan-
tum kinetic equation. The other is that its phase space formulation makes it
easier to impose boundary conditions for the Wigner distribution at the de-
vice contacts, using the knowledge of the semi-classical distribution such as
the Fermi-Dirac distribution for electrons in the device contacts [11].

In the last decades, the Wigner equation has received much attention in sim-
ulating quantum transport of nano-scale devices [11-13]. It was originally
used for studying the current-voltage characteristics of RTDs by Frensley
[11]. Frensley successfully reproduced the negative differential resistance by
using an upwind finite difference method for the Wigner equation with an
inflow boundary condition. This work motivated later work on Wigner based
numerical simulations of nano-scale devices [14,13,15-22]. Furthermore, self-
consistent Wigner-Poisson equations were used in [23] [24] to clarify the origin
of the hysteresis and a plateau-like structure of the I-V curve of RTDs. Recent
works on the comparison between the Wigner equation and the NEGF for dou-
ble gate MOSFETs [22] [4] and for RTDs [17] [18] have produced qualitatively
similar results. However, these results also show that the transport current
calculated by the Wigner equation method with the Frensley inflow boundary
condition is higher than that by the NEGF method [4]. Recently, Jiang et al.
investigated how the accuracy of the inflow boundary condition is affected by
the size of contact regions included in the simulation domain of the RTD [25].
In [25], it was found that the Frensley inflow boundary condition for incoming
electrons holds exactly only infinite away from the active device region and
its accuracy depends on the length of the contacts included in the simulation.
This result implies that, in order to get more accurate results, larger regions
of the contacts should be included, which would lead to higher computational
cost. Therefore, it is necessary to design a better inflow boundary condition for



smaller contact region to reduce the computational cost while still preserving
numerical accuracy.

The Frensley inflow boundary condition specifies the distribution function at
the contacts to be some given function, most often in practice, the Fermi-Dirac
distribution. Electrons entering the device will interact with the intrinsic band
structure of the active device region, resulting in reflection and transmission
electrons into the incoming and opposite sides of the device, respectively. For
RTDs, electrons tunnel through the band structure profile through resonant
coupling, in addition to interacting with other electrons through quantum
interference and collisions. These quantum effects will influence the Wigner
distribution function at the boundary as the Wigner function by definition
is constructed through a global Wigner transform of the density correlation
function [8]. In Frensley’s original paper [11], the band structure profile inside
the device is totally ignored when setting the boundary condition. In this
paper, we will propose a device adaptive boundary condition which reflects
the dominant effect of the device internal band structure in prescribing the
values of the Wigner distributions at the device boundaries. In general, the
electron wave functions inside a quantum device for non-zero bias will be hard
to predict a prior. Therefore, our strategy will only consider the dominant
quantum interaction inside the device, namely, the states of the electrons
inside the device at zero bias under the impact of incident free electron, so
called scattering states of the electrons [26,27]. We will then compute the
corresponding Wigner distribution of these scattering states and the resulting
distributions will be used as the boundary data for the Wigner distribution
function for general non-zero bias situations. This new boundary condition
will be called the device adaptive boundary condition (DABC) as the internal
band structure is indirectly used in the prescription of the Wigner distribution
in the contacts. We expect, as validated by our numerical tests, the new DABC
will improve the density profile inside the device for a reasonably wide range
of applied external bias.

The rest of the paper is organized as follows. The Wigner function and its
truncated version and their governing equations are introduced in Section 2.
Section 3 gives the original Frensley inflow boundary condition and then the
improved device adaptive inflow boundary condition. A upwind finite differ-
ence method to the Wigner equation is described in Section 4 and the numer-
ical studies of the DABC are presented in Section 5. Finally, Section 6 gives
the conclusion of the paper and discussion on future work.



2. Wigner fucntion and its truncated version using the correlation
length L.,

In this paper, the stationary and linear Wigner equation will be used for
finding better inflow boundary condition for the Wigner distribution func-
tions. The Wigner equation is a quantum kinetic equation derived from the
Schrodinger equation as a quantum mechanical analogue to the Boltzmann
equation [8,28]. In the following the key idea of the derivation of the Wigner
equation for pure states is sketched.

The stationary Schrodinger equation for an electron of the effective mass m
in a potential energy V(x) reads
h* 0% (x)

" 2m O

+V(2)y(x) = Ey(x), (1)

where 1(z) is the eigen wavefunction and F is the eigen energy. If the state
of a quantum system can be described completely with a given wave function
¥(x), we will consider the quantum system in a pure state. Otherwise, if the
quantum system can be found in states described in multiple wave functions
in specific probability, then we consider the quantum system in a mixed state.
The density matrix p(z,z’) for a pure state system is defined simply as

pla,a") = (x)v*(af), (2)

which satisfies the von Neumann equation

2m 022 Oz

h la : ]p<w,x'>+[v<x>—v<x'>]p<x,x’>—0- ®3)

The von Neumann equation (3) is equivalent to the Schrodinger equation (1)
in the sense that either can be derived from the other, but the former holds
advantage over the latter in describing quantum systems in mixed states [29].

The Wigner function is defined through the Wigner-Weyl transform of the
density matrix p(z,z'), i.e.

r

f(z,q) = 217T /_;oop (x + g,x — 2) exp(—igr)dr. (4)

Based on this definition, the electron density is related to the Wigner function
by

o) = ple,2) = [ fw.ada 9

—0o0



The Wigner-Weyl transform of the von Neumann equation (3) yields the fol-
lowing Wigner equation

MONT) | ov)(f) =0, )
where .
OW)() = [ Vule,a—d)f(x,)dd ™)

and the Wigner potential V,,(z, q) is

i +o0
Vw(l“,Q) = %[m

1% (ac + ;) -V <x — ;)} exp(—igr)dr. (8)

2.1  Truncated Wigner function f(x,q; Leon)

For many quantum systems, it can be assumed that the correlation of the
density matrix at two locations = and z’ will decay to zero as the distance
between them goes to infinity, i.e.,

lim p(z,2") =0. 9)

|z—a!| =00

So the Wigner distribution function f(x,q) defined in (4) can be approximated
by a truncated Wigner function

00 T r )
f(@, ¢; Leon) = /_ p (:6 + 5T - 2) XB(0,Leon/2) (T) €xp(—igr)dr, — (10)
where L, is the truncation length beyond which the correlation of the density
matrix is ignored, B(0, Leon/2) = (—Lcon/2, Leon/2), and the characteristic
function is

1, if |z] < Leon/2,

XB(0,Leon/2)(T) = - (11)

0, otherwise.
Obviously, as Leo, goes to infinity, the truncated Wigner function defined in
(10) converges to the Wigner function defined in (4), i.e.,

lim f(x,q; Leon) = f(2,q). (12)

Lcohﬁoo

Multiplying Xp(0,1..,) (¢ — 2’) on both sides of the von Neumann equation
(3), and applying the Wigner-Weyl transform, we obtain a truncated Wigner
equation

@8}”(% q; Lcoh)

m Ox + @(V)(f(l’, q; Lcoh)) = 0, (13)



where

i

OWV)(f (.05 L)) = 5o [ V(@ +7/2) = Viz = r/2)

XB(O,Lcoh)<7")P($ +7/2,2 —r/2) exp(—igr)dr.
(14)

Using the convolution theorem of the Fourier transform and the obvious iden-
tity
2
XB(OvLcoh)(r> = (XB(OaLcoh)(T)) Y

we have
O(V)(f(z,q; Leon)) = /_ Vi(@,q = ¢'s Leon) f (2, ¢'s Leon)dq', — (15)
where
1 oo .
Vi (2, q; Leon) = 5 /_ V(z4+71/2) = V(x —17/2)] XB(0,Leon)/2(r) exp(—igr)dr,
(16)
namely,

CO. /2
Vo (%, q; Leon) =3 o / " V(z+r/2) —V(z—r/2)]exp(—igr)dr
s

coh/2

= s [V (e 5) v (e P]ar a9

If we use ©(V)(f(z,q)) to denote the nonlocal Wigner potential term in (6),

o)) = [ Valesa— ) dd' (15)

—0o0

it is clear that by using (10) and (16) we have

@(V)(f(l’, q; Lcoh)) - @(V)(f(l‘, Q))v as Lcoh —r OQ. (19)

Thus, the truncation length L., will determine the accuracy of (13) compared
with the original Wigner equation (6) and can be increased for better accuracy.

3. Device adaptive boundary condition (DABC)
3.1 Frensley inflow boundary condition

The Frensley inflow boundary condition is of the Dirichlet type in the phase
space and specifies the incoming flow, as determined by the sign of the wave



number ¢ in (13), on the left and right contacts. Here the electrons in the
contacts are considered free electrons modeled by a unit plane wave according
to (1) with V(z) =0,

(x) = exp(ikz), (20)
where k is the wave number and is related to the energy level E of the electron
in a dispersion relation as follows

h2k?
~ om

E (21)

According to the definition of the Wigner function (4), the Wigner function
for free electrons is then

frwa) = [0 (o4 )0 (o= ) ) exp(—igndr = sk = ). (22

Therefore, §(k—q) will be used as the inflow boundary condition if the device is
impacted with a unit incident wave. Most previous simulation work using the
Wigner equation for nano-devices (MOSFETs, RTDs) adopted this boundary
condition. From (22), the boundary condition of the Wigner equation with
unit injection from the left (£ > 0) is then

f0,q9) = 0(¢g—k), ¢>0, and f(L,q)=0, ¢<O0. (23)

For numerical simulations, the Dirac delta function in the boundary condition
above is approximated by a discrete version of the delta function

o if g =k,
0, ifg+# kand q > 0,

f(0,q) = (24)

where Ny is the mesh size in the g-space.

3.2 Device structure and boundary condition

The quantum interaction occurring inside a quantum device will unavoidably
change the electron behavior inside the contacts, especially when the length of
the contacts for the simulation is selected to be as small as possible for compu-
tational cost concern. The free electron assumption in the Frensley boundary
condition in (20) and (24) does not consider such an influence of the device
on the contact electrons. Recent studies have shown the boundary condition
and the contact lengths can greatly affect the accuracy of the simulation with
the Wigner equation for resonant tunneling diodes [4]. In the following we will
present a new boundary value for the Wigner equation for better accuracy



by including the quantum interaction from the device itself in the case of a
typical RTD structure shown in Fig. 1.

AlGaAs

e S
e el e
L3 L4

LO L1 L2

Fig. 1. The structure of a typical resonant tunneling diode

The RTD is a classical 1-D hetero-structure device with a negative resistance,
which is composed of two thin AlGaAs layers sandwiched between GaAs layers
to form two energy barriers and one quantum well. If we consider a varying
effective mass in the RTD, then the 1-D Schrédinger equation is

h? 0 1 0
mo <m()a> (@) + V() = Bu(a), (25)

where the effective mass of GaAs is mgqeas = 0.067mg and that of AlGaAs is
Maicasas = 0.0919mg, and my is the rest electron mass. In this paper, we will
not consider the position dependence of the effective mass and instead use a
constant effective mass m, = mgqaas = 0.067mg. The prototype of RTDs is a
symmetric structure, and we denote L;; = L; — L;. The black barrier region is
set to Lo; = Lyz = 2.825nm, the length of the quantum well is L3y = 4.52nm,
and the length of the left/right contact region is L1y = L5y, = 17.515nm.

The ideal potential energy profile of the band structure for the RTD is illus-
trated in Fig. 2. And the potential energy function is

0, Lo<x< Ly,
Eg7 Ll <z < L27
V(..'L') = 07 L2 <x < L37 (26)

By, Ly < x << Ly,

0, Ly<x<Ls,

where E, = 0.27¢eV is the conduction band offset between GaAs and AlGaAs.

Assuming that a free electron is injected with energy F from the left contact
of the device at zero bias (equilibrium state), then, we can solve the wave
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Fig. 2. The potential energy V(x) at the equilibrium state

function 1. (z) for the equilibrium state analytically as follows

exp(ikix) + by exp(—ikiz), Lo < x < Ly,
by exp(ikax) + by exp(—ikex), L1 <z < Lo,
Ve(w) = { byexp(ikix) + by exp(—ik1x), Ly < x < Ls, (27)
bs exp(ikox) + bg exp(—ikox), Ly < x < Ly,

b7 exp(ikix), Ly <z < Ls,
2mE 2m(E — F
where k; = %,kg = m<h29). b;,;i = 0,1,3,...,7 can be obtained

by solving an 8 x 8 complex linear system according to the continuity of the
wave function and flux at L, Lo, L3, and Ly

Oe(Li —0) _ O¢e(Li +0)

¢6(Li - 0) = 7706([/2‘ + O)a O O >

i=1,2,3,4.

The truncated Wigner function for the equilibrium state is

J(,q; Leon) = /;OO e <$ + ;) (I <x — ;) X B(0,Leon/2) (1) €xp(—igr)dr.
(28)

The equilibrium Wigner function f¢(z,q; Leon) now contains the quantum in-
teraction in the presence of the internal structure of the device, and this func-
tion will be used to provide the boundary data for the Wigner function for
general non-zero bias Wigner functions as follows.

10
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Fig. 3. The truncated Wigner function f¢(z,q; Leon) for a unit wave injected with

h
k1= ?q from the left side

e Device adaptive boundary condition (DABC)

f(0,¢; Leon) = £9(0, q; Leon), for ¢ >0, and f(L,q; Leon) = 0, for ¢ < 0.
(29)

Remark 1 For the non-equilibrium state, a better boundary value for the
Wigner distribution should be found by the Wigner function associated with
the wave functions for the device under the corresponding bias, which is in
general not available. Therefore,the boundary value given in (29) for the non-
equilibrium non-zero bias case is only approrimate. However, our numerical
tests will show that even for that case, the boundary condition (29) will still im-
prove the electron density calculation significantly over the traditional Frensley
boundary condition (24).

4. A finite difference method for the Wigner equation

For simplicity, we will denote the truncated Wigner function f(x,q; Leon) as
f(z,q) and the Wigner potential V,,(z, q; Leon) as Vi(z,q). An upwind finite
difference method will be used to solve (13), (15) and (17) as proposed in
[25] where details concerning on the numerical implementation, such as the
numerical conservation and the relation between Lo, (the correlation length)
and h, (the mesh size in the wave vector space), are discussed.

11



L
As we will only need to compute the Wigner function f(z,q) for |g| < ?q for

some large value L,, we will zero-out the distribution function f(z,q) = 0 if

L
lq| > ?q. Thus (15) becomes

La/2 / N
OV)(f(w.a) = [ Vilw.a—q)f(x,q)dd’ (30)
—Lq/2
Plugging (30) into (13) yields
hq 0 La/2 / / o
mx% ('TaQ)+/Lq/2vw<x7q_q)f(x>q)dq =0, (31)

which will be solved in the (z,q) space by a finite difference scheme. We set
h, be the mesh size of the z-space, and N be the number of the mesh points,

L L
hy=—, z;,=——+1th,, 1=0,1,2,...,N. 32
N 5 (32)
From (31), only the boundary condition in the z-space is required. An upwind
finite difference method is used to approximate the first order derivative in x.

The infinite integration with respect to ¢ and r should be truncated to finite

Lcoh
— )

ranges. Let [0, be the integration domain in (17) and N denote the

coh

number of the mesh points with a spacing heon = . Similarly, we let L, be

coh
the integration length in (31), which will be selected by the mass conservation
L,
N,
In order to avoid ¢ = 0 which would lead to a zero element in the diagonal
of the discretization matrix for the derivative operator, we choose the mesh

L 1
pointsasqj:;—<j+2>hq, Jj=0,1,2--- N, — 1

requirement (36). N, is the number of the mesh points with a spacing h, =

Using a middle point formula for the integration with respect to ¢’ in (31) and
the first order upwind finite difference scheme for the spatial derivative, we
arrive at a finite difference equation at (z;, ¢;)

hg; f (@i, q45) — f(@io1, 5)

Ng—
+hy S0 Vielwi, g5 — ) (i, d5) = 0, ¢; > 0,

My ha
hq; f(wiv1,q5) — f(25,q; —
m] ( L ]Zl ( ]) + hq Z;'\/f:()l Vw(xiaqj - ng)f(ffuCl;f) - 07 q; < 07

(33)
fori=1,2,3,---,N—1,and j =0,1,2,--- , N, — 1. Here, Vi,(zi,q; — ) is
calculated by a numerical integration on a uniform mesh of spacing hcoy, say,
hcoh = 2hz

With a trapezoidal rule, we have (note that we only need to evaluate V,,(z, q)

12



at multiples of h,)

h h Ncoh/2_1
Vil ) = "3 sinkanhe) [V (zoss) = Vg, (34)
k=1
for integers j = —N, +1,—-Ny, +2,--- , N, — 1. As the continuous Fourier

transform is changed to the discrete Fourier transform, to use the fast discrete
Fourier transform in (34) we require

Leonh
kheonjhg = k;j# = Leonhy = 2. (35)

coh

To ensure the mass conservation, L, must satisfy [11]
Lyheon = 2. (36)

Observing (35) and (36), one can find that the values of L, and L, are related
by

Lq Lcoh

- 37

hq hcoh 7 ( )
which implies that

Ny = Neon.

5. Numerical results

As the DABC in (29) includes the dominant quantum interaction inside the
device active region, we expect the Wigner equation with the new boundary
condition will perform better than the traditional Frensley inflow boundary
condition. We will conduct a series of numerical tests to show the improved
performance in computing the electron density p(x) throughout the RTD un-
der various bias conditions and with various contact lengths. We denote the
Frensley inflow boundary condition by “Frensley BC” and the device adaptive
inflow boundary condition (29) by “device adaptive BC” or simply DABC. In
all the calculations for the truncated Wigner function f¢(x,q; Leon) in (28),
Lcop is taken to be twice the length of the RTD device under study.

The reference solutions for the density profile inside the RTDs are calculated
by the NEGF method for the single energy incident electron cases (Tests one
to three) as the NEGF together with a Sommerfeld radiation condition is
shown [4] to be equivalent to solving the Schrodinger equation directly. It was
shown previously [25] that the Wigner equation with the Frensley BC on a
sufficiently long contact will agree with the NEGF method and, therefore,

13



the former method is used to compute the reference solution in Test four in
accessing the performance of the DABC for multi-energy incident electrons.
In all cases, the potential energy profile V' (z) inside the RTD at non-zero bias
voltage is assumed to be a piecewise linear extension of the case given in (26)
for zero bias.

e Test One: Single energy incident electron

h
In the first test, we consider a unit electron wave exp(ik,z), k; = — injected

into the RTD with the contact length L. = 17.515nm under different bias
voltages. Fig. 4 presents the absolute error of the density. Obviously, the DABC
gives a more accurate density distribution compared with the Frensley inflow

boundary condition. The same conclusion can be arrived at Figs. 5 and 6.
h
The wave number of the unite wave exp(ik,z) is increased to k; = —Z in

Fig. 5. The case with the wave function exp(—ikiz), ky = Eq injected from

the right contact is shown in Fig. 6. All three cases clearly show a remarkable
improvement of the electron density obtained by using the DABC over that
obtained by using the traditional Frensley inflow boundary condition.

Vv=0.1 Vv=0.15
0.4 - - 0.4 - -
device adaptive BC > device adaptive BC
\ — — — Frensley BC — — — Frensley BC
0.2 \ 0.2
< \
\ -~
= ogeea®® 000,
2 0 0
‘@ 0 10 20 30 40 50 0 10 20 30 40 50
5 V=0.2 V=0.25
T 04 - = 0.4 - =
2 device adaptive BC > device adaptive BC
5 \ — — — Frensley BC \ — — — Frensley BC
5 0.2 \ 0.2} \
£ N \
3] PN -
@ % c%m
5 0 cossea 0
2 0 10 20 30 40 50 0 10 20 30 40 50
Q2 V=0.3 V=0.35
© 0.4 0.4
2 device adaptive BC o device adaptive BC
= \ — — — Frensley BC \ — — — Frensley BC
0.2} \ 0.2} \
\ \
c% M—
0 0
0 10 20 30 40 50 0 10 20 30 40 50
location in RTD (nm) location in RTD (nm)

h

Fig. 4. The absolute error of the density for an injected wave with k; = ?q

e Test Two: Effect of device internal structure

In this test, we will show that the improvement of the electron density by
using DABC in (29) for the Wigner equation comes from its use of the correct

14
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characteristics of the quantum devices in assigning the boundary value for the
Wigner function in the contacts. For example, the double barrier structures
and the single barrier structure will behave differently when impacted by in-
cident electron waves as indicated by their different transmission coefficients.
Fig. 8 presents how the transmission coefficient T,y changes with the wave
number ¢ in three cases. The figure shows different transmission characteris-
tics for the three cases, indicating different quantum interactions for each case.
One salient feature for the double barrier structure is that it allows resonant
tunneling (a main characteristic of RTDs) while a single barrier structure does
not.

In order to show that it is important to use the correct property of the double
barrier structure in RTD devices for designing a good DABC, we first compute
the numerical solutions of a RTD device by using the DABC based on a
single barrier structure. We use the left or right barrier in the double barrier
structure to represent the main effect of the RTD device as in Fig. 7. The
absolute errors of the density calculated by the Wigner equation are depicted
in Fig. 9. The result using the DABC based on the right barrier is worse than
that using the original Frensley inflow boundary condition, and of course,
both are worse than the result using the DABC based on the double barrier
structure. However, the result using the DABC based on the left single barrier
structure is close to the result using the DABC based on the double barrier
structure. The reason for this is that the reflection wave due to the left single
barrier alone is close to that due to the double barriers for incident waves at
low energies. However, the reflection from only the right barrier in the double
barrier structure will have a phase error, and the resulting Wigner function
in (28) will be quite different from those obtained by considering the double
barrier reflection. These differences can be clearly seen in Figs. 10 and 11 for
the Wigner function f¢(x,q; Leon) in (28) based on the wave functions for the
three cases at zero bias. Especially, Fig. 11 shows the difference between the
boundary data used in (29) of DABC and in (24) for the original Frensley BC.
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Fig. 7. The structure of the two-barrier and one-barrier devices
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Fig. 9. The absolute error of the density for an injected wave with k; = ?q
e Test Three: Effect of contact length

Next, we would like to investigate the effect of the contact length and the
accuracy obtained by both the Frensley boundary condition and the DABC.
From the distribution function (28) used in the definition of the DABC (29),
it can be seen that for a fixed correlation length L.y, as the length of the con-
tact becomes long enough, the DABC is equivalent to the Frensley boundary
condition. It has been shown in [25] that as the length of the contact used
with the Frensley inflow boundary condition increases, the numerical result
becomes more accurate. This point is shown in Fig. 12 by comparing the abso-
lute errors of the density p(z) calculated by using the Frensley inflow boundary
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Fig. 11. The truncated Wigner function f¢(0,q) for a unit wave injected with
h
k1= ?q from the left side

condition with the contact length L. = 20a, 30a, 40a, 50a (a = 0.565nm is the
lattice constant of GaAs). The result for the DABC in Fig. 13 shows that
for a shorter contact length L. = 20a the DABC yields an error similar to
that using the Frensley inflow boundary condition with much longer contact
length L. = 50a. Fig. 13 also shows that the DABC is not as sensitive to
the contact length as the Frensley inflow boundary condition. Finally, Fig. 14
demonstrates that for a given accuracy, twice contact lengths are needed for
the Frensley inflow boundary condition compared with those needed for the
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e Test Four: Incident electrons with multiple energy levels

Finally, we compare the results using the DABC and the Frensley inflow
boundary condition in Fig. 15 when multi-energy electron injections from both
sides are considered. The density obtained using the DABC with L, = 20a is
plotted in the left sub-figure, comparing with that of the Frensley boundary
condition with L. = 20a and L. = 40a, respectively. It shows the density of
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Fig. 14. The absolute error of the density with the two inflow boundary conditions
and different lengths of the contacts

the DABC with L. = 20a is close to that of the Frensley boundary condition
with L. = 40a. To make it more clearly, taking the density of the Frensley
inflow boundary condition with L. = 40a as the reference solution, we get
the relative errors of the density of the two inflow boundary conditions with
L. = 20a in the left sub-figure of Fig. 15. It shows that for a given accuracy,
the DABC allows to use a much shorter contact length, thus much smaller
computational domain than the Frensley inflow boundary condition. So the
DABC is a more efficient domain truncation method for simulating nano-scale
devices in open systems.
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Fig. 15. The results of multi-injection with the two inflow boundary conditions
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6. Conclusion and future work

In this paper, we proposed a device adaptive boundary condition (DABC) of
inflow type for the Wigner equation in quantum transport. This new boundary
condition considers the global nature of the Wigner functions and includes the
effect of the device internal band structure on the behavior of the electrons
in the contacts. The conventional application of the Frensley inflow boundary
condition uses a boundary value based on the semi-classical Fermi-Dirac dis-
tribution, which does not include the quantum interaction due to the internal
band structure of the device. The DABC corrects this situation by setting
the boundary value of the Wigner function to be that of the Wigner func-
tion based on the wave function of the quantum device at zero bias. This
approach allows the inclusion of the dominant quantum behavior due to the
device band structure into the physical picture of the electrons in the contacts.
Numerical tests on resonant tunneling diodes at a wide range of non-zero bi-
ases show significant improvement in the electron density calculation with the
new boundary condition and also the reduction of the contact length to be
included in the simulation, reducing the overall computational cost for a given
desired accuracy.

Further research is underway to study how the boundary value for the Wigner
function can be found for more general quantum devices beyond the 1-D RTDs
considered here and apply the DABC to the self-consistent Poisson-Wigner
equations, where nonlinear effects in the one-particle electron model in the
Poisson-Wigner equations will be addressed, and also investigate the effect of
DABC on the computation of the I-V characteristic of the RTDs and nano-
scale MOSFETs.
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