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Abstract: We analyze the time reversible Born-Oppenheimer molecular dynamics
(TRBOMD) scheme, which preserves the time reversibility of the Born-Oppenheimer
molecular dynamics even with non-convergent self-consistent field iteration. In the linear
response regime, we derive the stability condition as well as the accuracy of TRBOMD for
computing physical properties such as the phonon frequency obtained from the molecular
dynamic simulation. We connect and compare TRBOMD with the Car-Parrinello molecular
dynamics in terms of accuracy and stability. We further discuss the accuracy of TRBOMD
beyond the linear response regime for non-equilibrium dynamics of nuclei. Our results are
demonstrated through numerical experiments using a simplified one dimensional model for
Kohn-Sham density functional theory.

Keywords: Ab initio molecular dynamics; self-consistent field iteration; time reversibility;
stability

1. Introduction

Ab initio molecular dynamics (AIMD) [1–6] has been greatly developed in the past few decades,
so that nowadays it is able to quantitatively predict the equilibrium and non-equilibrium properties for
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a vast range of systems. AIMD has become widely used in chemistry, biology, materials science etc.
Most AIMD methods treat the nuclei as classical particles following the Newtonian dynamics (known
as the time dependent Born-Oppenheimer approximation), and the interactive force among nuclei is
provided directly from electronic structure theory, such as the Kohn-Sham density functional theory [7,8]
(KSDFT), without the need of using empirical atomic potentials. KSDFT consists of a set of nonlinear
equations which are solved at each molecular dynamics time step self-consistently via the self-consistent
field (SCF) iteration. In the Born-Oppenheimer molecular dynamics (BOMD), KSDFT is solved till full
self-consistency for each atomic configuration per time step. Since many iterations are usually needed
to reach full self-consistency and each iteration takes considerable amount of time, until recently this
procedure was still found to be prohibitively expensive for producing meaningful dynamical information.
On the other hand, if the self-consistent iterations are truncated before convergence is reached, it is often
the case that the energy of the system is no longer conservative even for an NVE system. The error in
SCF iteration acts as a sink or source, gradually draining or adding energy to the atomic system within
a short period of molecular dynamics simulation [9]. This is one of the main challenges for accelerating
Born-Oppenheimer molecular dynamics.

AIMD was made practical by the ground-breaking work of Car-Parrinello molecular dynamics
(CPMD) [10]. CPMD introduces an extended Lagrangian including the degrees of freedom of both
nuclei and electrons without the necessity of a convergent SCF iteration. The dynamics of electronic
orbitals can be loosely viewed as a special way for performing the SCF iteration at each molecular
dynamics (MD) step. Thanks to the Hamiltonian structure, numerical simulation for CPMD is stable,
and the energy is conservative over a much longer time period compared to that for BOMD with
non-convergent SCF iteration. When the system has a spectral gap, the accuracy of CPMD is controlled
by a single parameter, the fictitious electron mass µ. The result of CPMD approaches that of BOMD as
µ goes to zero [11,12]. However, it has also been shown that CPMD does not work as well for systems
with vanishing gap, for example for metallic systems [11].

To reduce the cost of BOMD, in particular, the number of SCF iterations needed per MD time step,
a new type of AIMD method, the time reversible Born-Oppenheimer molecular dynamics (TRBOMD)
method has been recently proposed by Niklasson, Tymczak and Challacombe in [13]. The method has
been further developed in [14–17]. The idea of TRBOMD can be summarized as follows: TRBOMD
assumes that the SCF iteration is a deterministic procedure, with the outcome determined only by the
initial guess of the variable to be determined self-consistently. For instance, this variable can be the
electron density, and the SCF iteration procedure can be simple mixing with a fixed number of iteration
steps without reaching full self-consistency. Then a fictitious dynamics governed by a second order
ordinary differential equation (ODE) is introduced on this initial guess variable. The resulting coupled
dynamics is then time-reversible and supposed to be more stable since it has been found that time-
reversible numerical schemes are more stable for long time simulation [18,19].

Although TRBOMD has been found to be effective and significantly reduces the number of SCF
iterations needed in practice, to the extent of our knowledge there has been so far no detailed analysis
of TRBOMD, other than the numerical stability condition of the Verlet or generalized Verlet scheme
for time discretization [16]. Accuracy, stability, as well as the applicability range of TRBOMD remain
unclear. In particular, it is not known how the choice of SCF iteration scheme affects TRBOMD. These
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are crucial issues for guiding the practical use of TRBOMD. The full TRBOMD method for general
systems is highly nonlinear and is difficult to analyze. In this work, we first focus on the linear response
regime, i.e. we assume that each atom oscillates around their equilibrium position and the electron
density stays around the “true” electron density. Under such assumptions, we analyze the accuracy
and stability of TRBOMD. We then extend the results to the regime where the atom position is not near
equilibrium using averaging principle.

The rest of the paper is organized as follows. We illustrate the idea of TRBOMD and its analysis in
the linear response regime using a simple model in Section 2, and introduce TRBOMD for AIMD in
Section 3. We analyze TRBOMD in the linear response regime, and compare TRBOMD with CPMD
in Section 4. The numerical results for TRBOMD in the linear response regime are given in Section 5.
We present the analysis of TRBOMD beyond the linear response regime such as the non-equilibrium
dynamics in Section 6, and conclude with a few remarks in Section 7.

2. An illustrative model

To start, let us illustrate the main idea for a simple model problem, which provides the essence of
TRBOMD in a much simplified setting. Consider the following nonlinear ODE

ẍ(t) = f(x(t)) (1)

where we assume that the right hand side f(x) is difficult to compute, and it can be approximated by
an iterative procedure. Starting from an initial guess s ≈ f(x), the final approximation via the iterative
procedure is denoted by g(x, s). We assume the approximation g(x, s) is consistent, i.e.

g(x, f(x)) = f(x). (2)

To numerically solve the ODE (1), we discretize it by some numerical scheme, then it remains to decide
the initial guess s at each time step. A natural choice of s would be g(x, s) from the previous step, as
x does not change much in successive steps. For instance, if the Verlet algorithm is used and tk = k∆t

with ∆t being the time step, the discretized ODE becomes

xk+1 = 2xk − xk−1 + (∆t)2g(xk, sk),

sk+1 = g(xk, sk).
(3)

We immediately observe that the discretization scheme (3) breaks the time reversibility of the original
ODE (1). In other words, for the original ODE (1), we propagate the system forward in time from
(x(t0), ẋ(t0)) to (x(t1), ẋ(t1)). Then if we use (x(t1), ẋ(t1)) as the initial data at t = t1 and propagate
the system backward in time to time t = t0, we will be at the state (x(t0), ẋ(t0)). The loss of the time
reversible structure can introduce large error in long time numerical simulation [19]. This is the main
reason why BOMD with non-convergent SCF iteration fails for long time simulations [13]. To overcome
this obstacle, the idea of TRBOMD is to introduce a fictitious dynamics for the initial guess s. Namely,
we consider the time reversible coupled system

ẍ(t) = g(x(t), s(t)),

s̈(t) = ω2(g(x(t), s(t))− s(t)),
(4)
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where ω is an artificial frequency. We analyze now the accuracy and stability of Eq. (4) in the linear
response regime by assuming that the trajectory x(t) oscillates around a equilibrium position x∗. We
denote by x̃(t) = x(t) − x∗ the deviation from the equilibrium position and s̃(t) = s(t) − f(x(t)) the
deviation of the initial guess from the exact force term. Consequently, the equation of motion (4) can be
rewritten as (for simplicity we suppress the t-dependence in the notation for the rest of the section)

¨̃x = g(x, s),

¨̃s = ω2(g(x, s)− s)− f ′′(x)(ẋ)2 − f ′(x)ẍ.
(5)

where the term −f ′′(x)(ẋ)2 − f ′(x)ẍ comes from the term f(x) in s̃ by the chain rule.
In the linear response regime, we assume the linear approximation of force for x around x∗:

f(x) ≈ −Ω2(x− x∗) = −Ω2x̃, (6)

where Ω is the oscillation frequency of x in the linear response regime. We also linearize g with respect
to s̃ and x̃ and dropping all higher order terms as

g(x, s) = g(x, f(x) + s̃)

≈ g(x, f(x)) + gs(x, f(x))s̃

≈ −Ω2x̃+ gs(x
∗, f(x∗))s̃,

(7)

where gs denotes the partial derivative of g with respect to s and the consistency condition (2) is applied.
We then have

g(x, s)− s = (g(x, f(x) + s̃)− f(x))− (s− f(x))

≈ (gs(x, f(x))− 1)s̃

≈ (gs(x
∗, f(x∗))− 1)s̃.

(8)

In accord with notations used in later discussions, let us denote

L = gs(x
∗, f(x∗)), K = 1− gs(x

∗, f(x∗)), (9)

with which the linearized system of Eq. (5) becomes

d2

dt2

(
x̃

s̃

)
=

(
−Ω2 L

f ′(x∗)Ω2 −f ′(x∗)L − ω2K

)(
x̃

s̃

)
:= A

(
x̃

s̃

)
. (10)

Note that when the force is computed accurately, i.e.

g(x, s) = f(x), ∀s, (11)

we have
L = 0, K = 1, (12)

meaning that the motion of x̃ is decoupled from that of s̃, and x̃ follows the exact harmonic motion in
the linear response regime with the accurate frequency Ω. When the force is computed inaccurately, x̃ is
coupled with s̃ in Eq. (10). Actually, we can solve (10) analytically and the eigenvalues of A are(

λΩ̃
λω̃

)
=

 1
2

(√
(Lf ′(x∗) +Kω2 + Ω2)2 − 4Kω2Ω2 − Lf ′(x∗)−Kω2 − Ω2

)
1
2

(
−
√

(Lf ′(x∗) +Kω2 + Ω2)2 − 4Kω2Ω2 − Lf ′(x∗)−Kω2 − Ω2
) . (13)
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Then the frequencies of the normal modes of the ODE are Ω̃ =
√
−λΩ̃ and ω̃ =

√
−λω̃ respectively.

Assume ω2 ≫ Ω2 and expand the solution to the order of O(1/ω2), we have

Ω̃ = Ω

(
1− f ′(x∗)

2ω2
LK−1

)
+O(1/ω4). (14)

Similarly the frequency for the other normal mode which is dominated by the motion of s̃ is

ω̃ =
√
Kω

(
1 +

f ′(x∗)

2ω2
LK−1

)
+O(1/ω3). (15)

It is found that one of the normal mode of Eq. (10) has frequency Ω̃ ≈ Ω. We can therefore measure the
accuracy of Eq. (4) using the relative error between Ω̃ and Ω. Furthermore, if the dynamics (4) is stable
in the linear response regime, it is necessary to have K > 0.

From Eq. (14) we conclude that if the time reversible numerical scheme (4) is used for simulating
the ODE (1) and if we neglect the error due to the Verlet scheme, the error introduced in computing the
frequency Ω is proportional to ω−2. This seems to indicate that very large ω (i.e. very small time step
∆t) might be needed to obtain accurate results. Fortunately the ω−2 term in Eq. (14) has the prefactor
f ′(x∗)LK−1. Eq. (6) shows that f ′(x∗) ≈ −Ω2, which is small compared to ω2. If gs(x∗, f(x∗)) is small,
then K ≈ 1, and the accuracy of Ω̃ is determined by L or gs(x∗, f(x∗)), which indicates the sensitivity
of the computed force with respect to the initial guess, or the accuracy of the iterative procedure for
computing the force. If a “good” iterative procedure is used, gs(x∗, f(x∗)) will be small. Therefore the
presence of the term L allows one to obtain relatively accurate approximation to the frequency Ω without
using a large ω. The same behavior can be observed when using TRBOMD to approximate BOMD (vide
post).

Finally, we remark that even though Eq. (1) is a much simplified system, it will be seen below that
for BOMD with M atoms and N interacting electrons, the analysis in the linear response regime follows
the same line, and the result for the frequency is similar to Eq. (14).

3. Time reversible Born-Oppenheimer molecular dynamics

Consider a system with M atoms and N electrons. The position of the atoms at time t is denoted by
R(t) = (R1(t), . . . , RM(t))T . In BOMD, the motion of atoms follows Newton’s law

mR̈I(t) = fI(R(t)) = −∂E(R(t))

∂RI

, (16)

where E(R(t)) is the total energy of the system at the atomic configuration R(t). In KSDFT, the total
energy is expressed as a functional of a set of Kohn-Sham orbitals {ψi(x)}Ni=1. To illustrate the idea with
minimal technicality, let us consider for the moment a system of N electrons at zero temperature. The
energy functional in KSDFT takes the form

E({ψi(x)}Ni=1;R) =
1

2

N∑
i=1

∫
|∇ψi(x)|2 dx+

∫
ρ(x)Vion(x;R) dx+ Ehxc[ρ],

ρ(x) =
N∑
i=1

|ψi(x)|2 .

(17)
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The first term in the energy functional is the kinetic energy of the electrons. The second term contains
the electron-ion interaction energy. The ion-ion interaction energy usually takes the form

∑
I<J

ZIZJ

|RI−RJ |
where ZI is the charge for the nucleus I . The ion-ion interaction energy does not depend on the electron
density ρ. To simplify the notation, we include the ion-ion interaction energy in the Vion term as a constant
shift that is independent of the x variable. The third term does not explicitly depend on the atomic
configuration R, and is a nonlinear functional of the electron density ρ. It represents the Hartree part of
electron-electron interaction energy (h), and the exchange-correlation energy (xc) characterizing many
body effects. The energy E(R) as a function of atomic positions is given by the following minimization
problem

E(R) = min
{ψi(x)}Ni=1

E({ψi(x)}Ni=1;R),

s.t.
∫
ψ†
i (x)ψj(x) dx = δij, i, j = 1, . . . , N.

(18)

We denote by {ψi(x;R)}Ni=1 the (local) minimizer, and ρ∗(x;R) =
∑N

i=1 |ψi(x;R)|2 the converged
electron density corresponding to the minimizer (here we assume that the minimizing electron density is
unique). Then the force acting on the atom I is

fI(R; ρ∗(x;R)) = −∂E(R)

∂RI

= −
∫
ρ∗(x;R)

∂Vion(x;R)

∂RI

dx. (19)

In physics literature the force formula in Eq. (19) is referred to as the Hellmann-Feynman force. The
validity of the Hellmann-Feynman formula relies on that the electron density ρ∗(x;R) corresponds to
the minimizers of the Kohn-Sham energy functional. Since Ehxc[ρ] is a nonlinear functional of ρ, the
electron density ρ is usually determined through the self-consistent field (SCF) iteration as follows.

Starting from an inaccurate input electron density ρin, one first computes the output electron density
by solving the lowest N eigenfunctions of the problem(

−1

2
∆x + V(x;R, ρin)

)
ψi = εiψi (20)

with

V(x;R, ρ) = Vion(x;R) +
δEhxc[ρ]

δρ
(x), (21)

and the output electron density ρout is defined by

ρout(x) := F [ρin](x) =
N∑
i=1

|ψi(x)|2 . (22)

Here the operator F is called the Kohn-Sham map. ρout can be used directly as the input electron density
ρin in the next iteration. This is called the fixed point iteration. Unfortunately, in most electronic structure
calculations, the fixed point iteration does not converge even when ρin is very close to the true electron
density ρ∗. The fixed point iteration can be improved by the simple mixing method, which takes the
linear combination of the electron density

αρout + (1− α)ρin (23)
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as the input density for the next iteration with 0 < α ≤ 1. Simple mixing can greatly improve the
convergence properties of the SCF iteration over the fixed point iteration, but the convergence rate
can still be slow in practice. There are more complicated SCF iteration schemes such as Anderson
mixing scheme [20], Pulay mixing scheme [21] and Broyden mixing scheme [22]. Furthermore,
preconditioners can be applied to the SCF iteration to enhance convergence properties such as the Kerker
preconditioner [23]. More detailed discussion on convergence properties of these SCF schemes can be
found in [24]. In the following discussions, we denote by ρSCF(x;R, ρ) the final electron density after
the SCF iteration starting from an initial guess ρ. We assume that ρSCF satisfies the consistency condition

ρSCF(x;R, ρ
∗(·;R)) = ρ∗(x;R). (24)

If a non-convergent SCF iteration procedure is used, ρSCF(x;R, ρ) might deviate from ρ∗(x;R). Such
deviation introduces error in the force, and the error can accumulate in the long time molecular dynamics
simulation, and lead to inaccurate results in computing the statistical and dynamical properties of the
systems.

The map ρSCF is usually highly nonlinear, which makes it difficult to correct the error in the force.
The TRBOMD scheme avoids the direct correction for the inaccurate ρSCF, but allows the initial guess
to dynamically evolve together with the motion of the atoms. We denote by ρ(x, t) the initial guess for
the SCF iteration at time t. When ρ(·, t) is used as an argument, we also write ρSCF(x;R(t), ρ(t)) :=

ρSCF(x;R(t), ρ(·, t)). The Hellmann-Feynman formula (19) is used to compute the force at the electron
density ρSCF(x;R(t), ρ(t)) even though ρ∗(x;R(t)) is not available. Thus, the equation of motion in
TRBOMD reads

mR̈I(t) = fI(R(t); ρSCF(x;R(t), ρ(t))) = −
∫
ρSCF(x;R(t), ρ(t))

∂Vion(x;R(t))

∂RI

dx,

ρ̈(x, t) = ω2(ρSCF(x;R(t), ρ(t))− ρ(x, t)).

(25)

It is clear that TRBOMD is time reversible. The discretized TRBOMD is still time reversible if the
numerical scheme is time reversible. For instance, if the Verlet scheme is used, the discretized equation
of motion becomes

RI(tk+1) = 2RI(tk)−RI(tk−1)−
∆t2

m
fI(R(tk); ρSCF(x;R(tk), ρ(tk)),

ρ(x, tk+1) = 2ρ(x, tk)− ρ(x, tk−1) + ∆t2ω2(ρSCF(x;R(tk), ρ(tk))− ρ(x, tk)),

(26)

which is evidently time reversible. The artificial frequency ω controls the frequency of the fictitious
dynamics of ρ(x, t) and is generally chosen to be larger than the frequency of motion of the atoms. The
numerical stability of the Verlet algorithm requires that the dimensionless quantity κ := (ω∆t)2 to be
small [25]. When κ is fixed, ω controls the stiffness, or equivalently the time step ∆t =

√
κ
ω

for the
equation of motion (26).

Let us mention that TRBOMD is closely related to CPMD. In CPMD, the equation of motion is given
by

mR̈I(t) = fI(R(t), ρ(t)) = −
∫
ρ(t)

∂Vion(x;R(t))

∂RI

dx,

µψ̈i(t) = −δE(R(t), {ψi(t)})
δψ†

i

+
∑
j

ψj(t)Λji(t),
(27)
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where µ is the fictitious electron mass for the fake electron dynamics in CPMD, and Λ’s are the Lagrange
multipliers determined so that {ψi(t)} is an orthonormal set of functions for any time. The CPMD
scheme (27) can be viewed as the equation of motion with an extended Lagrangian

LCP
(
R, Ṙ, {ψi}, {ψ̇i}

)
=
∑
I

m

2
|ṘI |2 +

∑
i

µ

2

∫
|ψ̇i|2 − E(R, {ψi}), (28)

which contains both ionic and electronic degrees of freedom. Therefore, CPMD is a Hamiltonian
dynamics and thus time reversible.

Note that the frequency of the evolution equation for {ψi} in CPMD is adjusted by the fictitious mass
parameter µ. Comparing with TRBOMD, the parameter µ plays a similar role as ω−2 which controls the
frequency of the fictitious dynamics of the initial density guess in SCF iteration. This connection will be
made more explicit in the sequel.

We remark that the papers [15,16] made a further step in viewing TRBOMD by an extended
Lagrangian approach in a vanishing mass limit. However, unless very specific and restrictive form of the
error due to non-convergent SCF iterations is assumed, the equation of motion in TRBOMD does not
have an associated Lagrangian in general. The connection remains formal, and hence we will not further
explore here.

4. Analysis of TRBOMD in the linear response regime

In this section we consider Eq. (25) in the linear response regime, in which each atom I oscillates
around its equilibrium positionR∗

I . The displacement of the atomic configuration R from the equilibrium
position is denoted by R̃(t) := R(t)−R∗, and the deviation of the electron density from the converged
density is denoted by ρ̃(x, t) := ρ(x, t) − ρ∗(x;R(t)). Both R̃(t) and ρ̃(x, t) are small quantities in the
linear response regime, and contain the same information as R(t) and ρ(x, t). Using R̃(t) and ρ̃(x, t)
as the new variables and noting the chain rule due to the R-dependence in ρ∗(x;R(t)), the equation of
motion in TRBOMD becomes

m
¨̃
RI(t) = −

∫
ρSCF(x;R(t), ρ(t))

∂Vion(x;R(t))

∂RI

dx,

¨̃ρ(x, t) = ω2(ρSCF(x;R(t), ρ(t))− ρ(x, t))−
M∑
I=1

∂ρ∗(x;R(t))

∂RI

¨̃
RI(t)

−
M∑

I,J=1

˙̃
RI(t)

˙̃
RJ(t)

∂2ρ∗(x;R(t))

∂RI∂RJ

.

(29)

To simplify notation from now on we suppress the t-dependence in all variables, and Eq. (29) becomes

m
¨̃
RI = −

∫
ρSCF(x;R, ρ)

∂Vion(x;R)

∂RI

dx, (30a)

¨̃ρ(x) = ω2(ρSCF(x;R, ρ)− ρ(x))−
M∑
I=1

∂ρ∗

∂RI

(x;R)
¨̃
RI −

M∑
I,J=1

˙̃
RI

˙̃
RJ

∂2ρ∗

∂RI∂RJ

(x;R). (30b)
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In the linear response regime, we expand Eq. (30) and only keep terms that are linear with respect to R̃

and ρ̃. All the higher order terms, including all the cross products of R̃I ,
˙̃
RI , and ρ̃ will be dropped. First

we linearize the force on atom I with respect to ρ̃ as

fI(R; ρSCF(x;R, ρ))

=−
∫
ρSCF(x;R, ρ)

∂Vion(x;R)

∂RI

dx

=−
∫
ρ∗(x;R)

∂Vion(x;R)

∂RI

dx−
∫

(ρSCF(x;R, ρ
∗(R) + ρ̃)− ρ∗(x;R))

∂Vion(x;R)

∂RI

dx

≈−
∫
ρ∗(x;R)

∂Vion(x;R)

∂RI

dx−
∫
δρSCF

δρ
(x, y;R)ρ̃(y)

∂Vion(x;R)

∂RI

dx dy.

(31)

Next we linearize with respect to R̃, we have∫
ρ∗(x;R)

∂Vion(x;R)

∂RI

dx ≈ −m
M∑

I,J=1

DIJR̃J . (32)

Here the matrix {DIJ} is the dynamical matrix for the atoms. For the last term in Eq. (31) we have∫
δρSCF

δρ
(x, y;R)ρ̃(y)

∂Vion(x;R)

∂RI

dx dy

≈
∫
δρSCF

δρ
(x, y;R∗)ρ̃(y)

∂Vion(x;R
∗)

∂RI

dx dy

:=−mLI [ρ̃].

(33)

The last equation in Eq. (33) defines a linear functional LI , with δρSCF

δρ
(x, y;R∗) and ∂Vion(x;R

∗)
∂RI

evaluated
at the fixed equilibrium point R∗.

In the linear response regime, the operator δρSCF

δρ
(x, y;R∗) carries all the information of the SCF

iteration scheme. Let us now derive the explicit form of δρSCF

δρ
(x, y;R∗) for the k-step simple mixing

scheme with mixing parameter (step length) α (0 < α ≤ 1). If k = 1, the simple mixing scheme reads

ρSCF(x;R, ρ
∗(R) + ρ̃) = αF [ρ∗(R) + ρ̃] + (1− α)(ρ∗(R) + ρ̃), (34)

so
δρSCF

δρ
(x, y;R∗) = δ(x− y)− α

(
δ(x− y)− δF

δρ
(x, y)

)
. (35)

Here δ(x) is the Dirac δ-function, and the operator
(
δ(x− y)− δF

δρ
(x, y)

)
:= ε(x, y) is usually refereed

to as the dielectric operator [26,27]. To simplify the notation we would not distinguish the kernel of an
integral operator from the integral operator itself. For example ε(x, y) is denoted by ε. Neither will we
distinguish integral operators defined on continuous space from the corresponding finite dimensional
matrices obtained from certain numerical discretization. This slight abuse of notation allows us to
simply denote f(x) =

∫
A(x, y)g(y) dy by f = Ag as a matrix-vector multiplication, and to denote

the composition of kernels of integral operators C(x, y) =
∫
dzA(x, z)B(z, y) by C = AB as a

matrix-matrix multiplication. Using such notations, Eq. (35) can be written in a more compact form

δρSCF

δρ
= I − αε. (36)
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Similarly for the k-step simple mixing method, we have

δρSCF

δρ
= (1− αε)k. (37)

In general the dielectric operator is diagonalizable and all eigenvalues of ε are real. Therefore the
linear response operator δρSCF

δρ
for the k-th step simple mixing method is also diagonalizable with real

eigenvalues.
From Eq. (30b) we have

ρSCF(x;R, ρ)− ρ(x)

= (ρSCF(x;R, ρ̃+ ρ∗(R))− ρ∗(x;R))− (ρ(x)− ρ∗(x;R))

≈
∫
δρSCF

δρ
(x, y;R)ρ̃(y) dy − ρ̃(x)

≈
∫
δρSCF

δρ
(x, y;R∗)ρ̃(y) dy − ρ̃(x)

:=−
∫

K(x, y)ρ̃(y) dy.

(38)

Here we have used the consistency condition (24). The last line of Eq. (38) defines a kernel

K(x, y) = δ(x− y)− δρSCF

δρ
(x, y;R∗), (39)

which is an important quantity for the stability of TRBOMD as will be seen later. Using Eqs. (33) and
(38), the equation of motion (30) can be written in the linear response regime as

¨̃
RI = −

M∑
J=1

DIJR̃J + LI [ρ̃],

¨̃ρ(x) = −ω2

∫
K(x, y)ρ̃(y) dy −

M∑
I=1

∂ρ∗

∂RI

(x;R∗)

(
−

M∑
J=1

DIJR̃J + LI [ρ̃]

)
.

(40)

Define
L = (L1, · · · ,LM)T , (41)

then Eq. (40) can be rewritten in a more compact form as

¨̃
R = −DR̃+ L[ρ̃], (42a)

¨̃ρ(x) = −ω2

∫
K(x, y)ρ̃(y) dy −

(
∂ρ∗

∂R
(x;R∗)

)T (
−DR̃+ L[ρ̃]

)
. (42b)

Now if the self-consistent iteration is performed accurately regardless of the initial guess, i.e.

ρSCF(x;R, ρ) = ρ∗(x;R), ∀ρ, (43)

which implies
δρSCF

δρ
(x, y;R∗) = 0, L = 0, K(x, y) = δ(x− y). (44)
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The linearized equation of motion (42) becomes

¨̃
R = −DR̃, (45a)

¨̃ρ(x) = −ω2ρ̃(x) +

(
∂ρ∗

∂R
(x;R∗)

)T
DR̃. (45b)

Therefore in the case of accurate SCF iteration, according to Eq. (45a), the equation of motion of atoms
follows the accurate linearized equation, and is decoupled from the fictitious dynamics of ρ̃. The normal
modes of the equation of motion of atoms can be obtained by diagonalizing the dynamical matrix D as

Dvl = Ω2
l vl, l = 1, . . . ,M. (46)

The frequencies {Ωl} (Ωl > 0) are known as phonon frequencies. When the SCF iterations are
performed inaccurately, it is meaningless to assess the accuracy of the approximate dynamics (42) by
direct investigation of the trajectories R̃(t), since small difference in the phonon frequency can cause
large error in the phase of the periodic motion R̃(t) over long time. However, it is possible to compute
the approximate phonon frequencies {Ω̃l} from Eq. (42), and measure the accuracy of TRBOMD in the
linearized regime from the relative error

errl =
Ω̃l − Ωl

Ωl

. (47)

The operator K(x, y) in Eq. (39) is directly related to the stability of the dynamics. Eq. (42b) also
suggests that in the linear response regime, the spectrum of K(x, y) must be on the real line, which
requires that the matrix δρSCF

δρ
(x, y;R∗) be diagonalizable with real eigenvalues. This has been shown for

the simple mixing scheme. However, we remark that the condition that all eigenvalues of K(x, y) are real
may not hold for general preconditioners or for more complicated SCF iterations (for instance, Anderson
mixing). This is one important restriction of the linear response analysis. Of course, this may not be a
restriction for practical TRBOMD simulation for real systems. We will leave further understanding of
this to future works.

Let us now assume that all eigenvalues of K are real. The lower bound of the spectrum of K, denoted
by λmin(K), should satisfy

λmin(K) > 0. (48)

Eq. (48) is a necessary condition for TRBOMD to be stable, which will be referred to as the stability
condition in the following. Furthermore, ω should be chosen large enough in order to avoid resonance
between the motion of R̃ and ρ̃. Therefore the adiabatic condition

ω2 ≫ λmax(D)

λmin(K)
=

maxl Ω
2
l

λmin(K)
(49)

should also be satisfied. Due to Eq. (49), we may assume ϵ = 1/ω2 is a small number, and expand Ωl in
the perturbation series of ϵ to quantify the error in the linear response regime. Following the derivation
in the appendix, we have

Ω̃l = Ωl

(
1− 1

2ω2
vTl L

[
K−1

[(
∂ρ∗

∂R

)T
vl

]])
+O(1/ω4), (50)
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where K−1 is the inverse operator of K (K is invertible due to the stability condition). Since ω =
√
κ/∆t,

Eq. (50) suggests that the accuracy of TRBOMD in the linear response regime is (∆t)2, with preconstant
mainly determined by L, i.e. the accuracy of the SCF iteration.

Let us compare TRBOMD with CPMD. It is well known that CPMD accurately approximates
the results of BOMD, provided that the electronic and ionic degrees of freedom remain adiabatically
separated as well as the electrons stay close to the Born-Oppenheimer surface [11,12]. More specifically,
the fictitious electron mass should be chosen so that the lowest electronic frequency is well above ionic
frequencies

µ≪
Egap

maxl Ω2
l

, (51)

where Egap is the spectral gap (between highest occupied and lowest unoccupied states) of the system,
and recall that Ωl is the vibration frequency of the lattice phonon. For CPMD, a similar analysis in the
linear response regime as above (which we omit the derivation here) shows that

Ω̃l = Ωl(1 +O(µ)), (52)

under the assumption (51).
Note that the condition (51) implies that CPMD no longer works if the system has a small gap or

is even metallic. The usual work-around for this is to add a heat bath for the electronic degrees of
freedom in CPMD [28], so that it maintains a fictitious temperature for the electronic degree of freedom.
Nonetheless the adiabaticity is lost for metallic systems and CPMD is no longer accurate over long time
simulation. In contrast, as we have discussed previously, TRBOMD may work for both insulating and
metallic systems without any modification, provided that the SCF iteration is accurate and no resonance
occurs. This is an important advantage of TRBOMD, which we will illustrate using numerical examples
in the next section.

When the system has a gap we can take µ sufficiently small to satisfy the adiabatic separation
condition (51). Compare Eq. (52) with Eq. (50), we see that µ in CPMD plays a similar role as ω−2

in TRBOMD. The accuracy (in the linear regime) for CPMD and TRBOMD is first order in µ and ω−2

respectively. At the same time, as taking a small µ or large ω increases the stiffness of the equation, the
computational cost is proportional to µ−1 and ω2, respectively.

Let us remark that the above analysis is done in the linear response regime. As shown in [11,12], the
accuracy of CPMD in general is only O(µ1/2) instead of O(µ) for the linear regime. Due to the close
connection between these two parameters, we do not expect O(ω−2) accuracy for TRBOMD in general
either. Actually, as will be discussed in Section 6, if the deviation of atom positions from equilibrium
is not so small that we cannot linearize the nuclei motion, the error of TRBOMD in general will be
O(ω−1).

5. Numerical results in the linear response regime

In this section we present numerical results for TRBOMD in the linear response regime using a
one dimensional (1D) model for KSDFT without the exchange correlation functional. The model
problem can be tuned to exhibit both metallic and insulating features. Such model was used before
in mathematical analysis of ionization conjecture [29].
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The total energy functional in our 1D density functional theory (DFT) model is given by

E({ψi(x)}Ni=1;R) =
1

2

N∑
i=1

∫ ∣∣∣∣ ddxψi(x)
∣∣∣∣2 dx+

1

2

∫
K(x, y)(ρ(x) +m(x;R))(ρ(y) +m(y;R)) dx dy,

(53)
with ρ(x) =

∑N
i=1 |ψi(x)|

2. The associated Hamiltonian is given by

H(R) = −1

2

d2

dx2
+

∫
K(x, y)(ρ(y) +m(y;R)) dy. (54)

Here m(x;R) =
∑M

I=1mI(x−RI), with the position of the I-th nucleus denoted by RI . Each function
mI(x) takes the form

mI(x) = − ZI√
2πσ2

I

e
− x2

2σ2
I , (55)

where ZI is an integer representing the charge of the i-th nucleus. This can be understood as a local
pseudopotential approximation to represent the electron-ion interaction. The second term on the right
hand side of Eq. (53) represents the electron-ion, electron-electron and ion-ion interaction energy. The
parameter σI represents the width of the nuclei in the pseudopotential theory. Clearly as σI → 0,
mI(x) → −ZIδ(x) which is the charge density for an ideal nucleus. In our numerical simulation, we set
σI to a finite value. The corresponding mI(x) is called a pseudo charge density for the I-th nucleus. We
refer to the function m(x) as the total pseudo-charge density of the nuclei. The system satisfies charge
neutrality condition, i.e. ∫

ρ(x) +m(x;R) dx = 0. (56)

Since
∫
mI(x) dx = −ZI , the charge neutrality condition (56) implies∫

ρ(x) dx =
M∑
I=1

ZI = N, (57)

where N is the total number of electrons in the system. To simplify discussion, we omit the spin
degeneracy here. The Hellmann-Feynman force is given by

fI = −
∫
K(x, y)(ρ(y) +m(y;R))

∂m(x;R)

∂RI

dx dy. (58)

Instead of using a bare Coulomb interaction, which diverges in 1D, we adopt a Yukawa kernel

K(x, y) =
2πe−κ|x−y|

κϵ0
, (59)

which satisfies the equation

− d2

dx2
K(x, y) + κ2K(x, y) =

4π

ϵ0
δ(x− y). (60)

As κ → 0, the Yukawa kernel approaches the bare Coulomb interaction given by the Poisson equation.
The parameter ϵ0 is used to make the magnitude of the electron static contribution comparable to that of
the kinetic energy.
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The parameters used in the 1D DFT model are chosen as follows. Atomic units are used throughout
the discussion unless otherwise mentioned. The Yukawa parameter κ = 0.01 is small enough so that the
range of the electrostatic interaction is sufficiently long, and ϵ0 is set to 10.00. The nuclear charge ZI is
set to 1 for all atoms. Since spin is neglected, ZI = 1 implies that each atom contributes to 1 occupied
state. The Hamiltonian operator is represented in a planewave basis set. All the examples presented in
this section consists of 32 atoms. Initially, the atoms are at their equilibrium positions, and the distance
between each atom and its nearest neighbor is set to 10 a.u.. Starting from the equilibrium position, each
ion is given a finite velocity so that the velocity on the centroid of mass is 0. In the numerical experiments
below, the system contains only one single phonon, which is obtained by assigning an initial velocity
v0 ∝ (1,−1, 1,−1, · · · ) to the atoms. We denote by ΩRef the corresponding phonon frequency. We
choose v0 so that 1

2
mv20 = kBTion, where kB is the Boltzmann constant and Tion is 10 K to make sure

that the system is in the linear response regime. In the atomic unit, the mass of the electron is 1, and the
mass of each nuclei is set to 42000. By adjusting the parameters {σI}, the 1D DFT model model can
be tuned to resemble an insulating (with σI = 2.0) or a metallic system (with σI = 6.0) throughout the
MD simulation. Fig. 1 shows the spectrum of the insulating and the metallic system after running 1000

BOMD steps with converged SCF iteration.

Figure 1. Spectrum for insulator and metal with 32 atoms after 1000 BOMD steps with
converged SCF iteration.

10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

index(i)

ε
i

 

 

occupied
unoccupied

(a) Insulator.
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In the linear response regime, we measure the error of the phonon frequency calculated from
TRBOMD. This can be done in two ways. The first is given by Eq. (50), namely, all quantities in the big
parentheses in Eq. (50) can be directly obtained by using the finite difference method at the equilibrium
position R∗. The second is to explore the fact that in the linear response regime, there is linear relation
between the force and the atomic position as in Eq. (32), i.e. Hooke’s law

fI(tl) ≈ −m
∑
J

DIJR̃J(tl) (61)
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holds approximately at each time step. Here {fI(tl)} and {R̃I(tl)} are obtained from the trajectory of
the TRBOMD simulation directly. To numerically compute DIJ , we solve the least square problem

min
D

∑
l,I

∥∥∥fI(tl) +m
∑
J

DIJR̃J(tl)
∥∥∥2 (62)

which yields

D = − 1

m
SfR

(
SRR

)−1
, (63)

where
SfRIJ =

∑
l

fI(tl)R̃J(tl), SRRIJ =
∑
l

R̃I(tl)R̃J(tl). (64)

The frequencies {Ω̃l} can be obtained by diagonalizing the matrix D. Similarly one can perform the
calculation for the accurate BOMD simulation and obtain the exact value of the frequencies {Ωl}.

In order to compare the performance among BOMD, TRBOMD and CPMD, we define the following
relative errors

errHooke
Ω =

Ω̃Hooke − ΩRef

ΩRef , (65)

errLR
Ω =

Ω̃LR − ΩRef

ΩRef , (66)

errE =
E − E

Ref

E
Ref , (67)

errL
2

R =
∥R1(t)−RRef

1 (t)∥L2

∥RRef
1 (t)∥L2

, (68)

errL
∞

R =
∥R1(t)−RRef

1 (t)∥L∞

∥RRef
1 (t)∥L∞

, (69)

where the results from BOMD with convergent SCF iteration are taken to be corresponding reference
values, E is the average total energy over time, the frequencies Ω̃Hooke and ΩRef are obtained via solving
the least square problem (62), the frequency Ω̃LR is measured by Eq. (50) with finite difference methods,
and R1(t) is the trajectory of the left most atom.

5.1. Numerical comparison between BOMD and TRBOMD

The first run is to validate the performance of TRBOMD. We set the time step ∆t = 250, the artificial
frequency ω = 1

∆t
= 4.00E-03, the final time T = 2.50E+06 and employ the simple mixing with step

length α = 0.3 and the Kerker preconditioner in SCF cycles. Fig. 2 plots the energy drift for BOMD
with the converged SCF iteration (denoted by BOMD(c)) where the tolerance is 1.00E-08, BOMD with
5 SCF iterations per time step (denoted by BOMD(5)) and TRBOMD with 5 SCF iterations per time step
(denoted by TRBOMD(5)). We see clearly there that BOMD(5) produces large drift for both insulator
and metal, but TRBOMD(5) does not. Actually, from Table 1, the relative error in the average total
energy over time between TRBOMD(5) and BOMD(c) is under 1.30E-05, but BOMD(c) needs about
average 45 SCF iterations per time step to reach the tolerance 1.00E-08. Fig. 3 plots corresponding
trajectory of the left most atom during about the first 25 periods and shows that the trajectory from
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Figure 2. The energy fluctuations around the starting energy E(t = 0) as a function of time. The

time step is ∆t = 250, the final time is 2.50E+06 and ω = 1/∆t = 4.00E-03. The simple mixing

with the Kerker preconditioner is applied in SCF cycles. BOMD(c) denotes the BOMD simulation

with converged SCF iteration, and BOMD(n) (resp. TRBOMD(n)) represents the BOMD (resp.

TRBOMD) simulation with n SCF iterations per time step. It shows clearly that BOMD(5) produces

large drift for both insulator (a) and metal (b), but TRBOMD(5) does not.
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(a) Insulator.

0 0.5 1 1.5 2 2.5

x 10
6

−5

−4

−3

−2

−1

0

1

2
x 10

−4

t

E
(t

)
−

E
(t

=
0)

 

 

BOMD(c)
BOMD(5)
TRBOMD(5)

(b) Metal.

TRBOMD(5) almost coincides with that from BOMD(c), which is also confirmed by the data of errL2

R

and errL
∞

R in Table 1. However, for BOMD(5), the atom will cease oscillation after a while. A similar
phenomena occurs for other atoms. In Table 1, we present more results for TRBOMD(n) with n =

3, 5, 7. We observe there that TRBOMD(n) gives more accurate results with larger n, and errHooke
Ω has a

similar behavior as n increases to errLR
Ω , which is in accord with our previous linear response analysis in

Sec. 4.
According to Eq. (50), we have that errLR

Ω is proportional to 1/ω2 for large ω. We verify this behavior
using TRBOMD(3) as an example. In this example, a smaller time step ∆t = 20 is set to allow bigger
artificial frequency ω, the final time is T = 6.00E+05, and the simple mixing with α = 0.3 and the
Kerker preconditioner is applied in SCF iterations. For TRBOMD(3) under these settings, we have
λmin(K) ≃ 8.81E-03 for the insulator and λmin(K) ≃ 5.92E-01 for the metal, and thus the critical
values of (ΩRef)2/λmin(K) in Eq. (49) are about 7.12E-06 and 1.90E-08, respectively. We choose ω2 =

2.50E-03, 2.50E-04, 2.50E-05, 2.50E-06, 2.50E-07, 2.50E-08, 2.50E-09, and plot in Fig. 4 the absolute
values of errHooke

Ω , errE , errL2

R for TRBOMD(3) as a function of 1/ω2 in logarithmic scales. When
1/ω2 ≪ λmin(K)/(ΩRef)2, Fig. 4 shows clearly that all of |errHooke

Ω |, |errE|, |errL
2

R | depend linearly on
1/ω2. The error errL∞

R has a similar behavior to errL
2

R and is skipped here for saving space.
The last example illustrates the possible unstable behavior of TRBOMD when the stability

condition λmin(K) > 0 in Eq. (48) is violated. Here we take the insulator as an example and set the
time step ∆t = 250, the final time to 2.50E+05, and the artificial frequency ω = 1

∆t
= 4.00E-03. The

simple mixing with α = 0.3 is now applied in SCF iterations. Under these setting, we have λmin(K) < 0,
e.g. λmin(K) = −2.42E+03 for TRBOMD(3). Fig. 5(a) plots the energy drift for TRBOMD(n) with
n = 3, 5, 7, 45. We see clearly there that TRBOMD is unstable even using 45 SCF iterations per time
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Figure 3. The position of the left most atom as a function of time. The settings are the same as

those in Fig. 2. It shows clearly that the trajectory from TRBOMD(5) almost coincides with that from

BOMD(c). However, for BOMD(5), the atom will cease oscillation after a while.
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Figure 4. The absolute value of the error for TRBOMD(3) as a function of 1/ω2 in logarithmic

scales. The time step is ∆t = 20 and the final time is 6.00E+05. For the readers’ reference, within

each plot, the red straight line denotes corresponding linear dependence while the red solid point in x

axis represents the critical value of λmin(K)/λmax(D).
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Table 1. The errors for TRBOMD(n). The settings are the same as those in Fig. 2 except for the

number of SCF iterations.

Insulator: ΩRef = 2.51E-04, E
Ref

= 8.66E-01

n errLR
Ω errHooke

Ω errE errL
2

R errL
∞

R

3 −6.53E-03 −1.63E-02 −7.63E-05 2.26E-02 4.25E-02

5 −1.08E-03 −2.38E-03 −1.30E-05 1.27E-02 2.92E-02

7 −2.76E-04 −5.41E-04 −3.32E-06 3.02E-03 7.22E-03

Metal: ΩRef = 1.06E-04, E
Ref

= 5.28E-01

3 −2.65E-04 −6.92E-04 −4.36E-06 3.86E-03 8.95E-03

5 −3.65E-05 −7.31E-05 −4.44E-07 4.14E-04 9.60E-04

7 −5.24E-06 2.93E-06 −1.10E-07 1.63E-05 3.78E-05

step (recall that BOMD(c) in the first run needs about average 45 SCF iterations per time step). Fig. 5(b)
plots corresponding trajectory of the left most atom and shows that the atom is driven wildly by the
non-convergent SCF iteration.

5.2. Numerical comparison between TRBOMD and CPMD

We now present some numerical examples for CPMD illustrating the difference between CPMD and
TRBOMD. As we have discussed, TRBOMD is applicable to both metallic and insulting systems, while
CPMD becomes inaccurate when the gap vanishes. To make this statement more concrete, we apply
CPMD to the same atom chain system. We implement CPMD using standard velocity Verlet scheme
combined with RATTLE for the orthonormality constraints [30–32].

We present in Fig. 6 the error of CPMD simulation for different choices of fictitious electron mass µ.
We study the relative error of the phonon frequency errHooke

Ω , the relative error of position of the left-most
atom measured inL2 norm, i.e. errL

2

R . We observe in Fig. 6(a) linear convergence of CPMD to the BOMD
result as the parameter µ decreases. This is consistent with our analysis. Recall that in CPMD, µ plays
a similar role as ω−2 in TRBOMD. For the metallic example, the behavior is quite different, actually
Fig. 6(b) shows a systematic error as µ decreases. For metallic system, as the spectral gap vanishes, the
adiabatic separation between ionic and electronic degrees of freedom cannot be achieved no matter how
small µ is. The adiabatic separation for TRBOMD on the other hand relies on the choice of an effective
ρSCF, and hence TRBOMD also works for metallic system as Fig. 4 indicates.

The different behavior of CPMD for insulating and metallic systems is further illustrated by Fig. 7
which shows the trajectory of the position of the left-most atom during the simulation. The phase error is
apparent from the two subfigures. While the phase error decreases so that the trajectory approaches that
of BOMD for insulator in Fig. 7(a), the result in Fig. 7(b) shows a systematic error for metallic system.

6. Beyond the linear response regime: Non-equilibrium dynamics
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Figure 5. The unstable behavior of TRBOMD with the simple mixing for the insulator. The time

step is ∆t = 250, the final time is 2.50E+05 and ω = 1/∆t = 4.00E-03.
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(a) The energy drift.
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(b) The trajectory of the left most atom.

Figure 6. The absolute value of the error for CPMD as a function of µ in logarithmic scales. The

time step is ∆t = 20 and the final time is 6.00E+05.
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Figure 7. The trajectory of the position of the left-most atom. Dashed line is the result from BOMD

with converged SCF iteration. Colored solid lines are results from CPMD with fictitious electron

mass µ = 2500, 5000, 10000, and 20000. The time step is ∆t = 20, the trajectory plotted is within

the time interval [2.00E+05, 4.00E+05].
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(b) Metal.

The discussion so far has been limited to the linear response regime so that we can make linear
approximations for the degrees of freedom of both nuclei and electrons. In this case, as the system
becomes linear, explicit error analysis has been given. For practical applications, we will be also
interested in non-equilibrium nuclei dynamics so that the deviation of atom positions is no longer small.
In this section, we will investigate the non-equilibrium case using averaging principle (see e.g. [33,34]
for general introduction on averaging principle).

Let us first show numerically a non-equilibrium situation for the atom chain example discussed before.
Initially, the 32 atoms stay at their equilibrium position. We set the initial velocity so that the left-most
atom has a large velocity towards right and other atoms have equal velocity towards left. The mean
velocity is equal to 0, so the center of mass does not move. Fig. 8 shows the trajectory of positions of
the first three atom from the left. We observe that the results from TRBOMD agree very well with the
BOMD results with convergent SCF iterations. Let us note that in the simulation, the left-most atom
crosses over the second left-most atom. This happens since in our model, we have taken a 1D analog
of Coulomb interaction and the nuclei background charges are smeared out, and hence the interaction
is “soft” without hard-core repulsion. In Fig. 9, we plot the difference between ρSCF and the converged
electron density of the SCF iteration (denoted by ρKS) along the TRBOMD simulation. We see that the
electron density used in TRBOMD stays close to the ground state electron density corresponds to the
atom configuration.

To understand the performance of TRBOMD, recall that the equations of motion are given by

mR̈I(t) = −
∫
ρSCF(x;R(t), ρ(t))

∂Vion(x;R(t))

∂RI

dx,

ρ̈(x, t) = ω2(ρSCF(x;R(t), ρ(t))− ρ(x, t))
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Figure 8. Comparison of trajectories of the first three atoms from the left for a
non-equilibrium system. Different atoms are distinguished by color (blue for the initially
left-most atom; green for the initially second left-most atom; red for the initially third
left-most atom). Solid lines are results from BOMD(c); circled lines are results from
TRBOMD(7); dashed lines are results from BOMD(7). It is evident that while results
from BOMD with a non-convergent SCF iteration have a huge deviation, the results from
TRBOMD are hardly distinguishable from the “true” results from BOMD.
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To satisfy the adiabatic condition (49) from the linear analysis, ω here is a large parameter. As a result,
the time scales of the motions of the nuclei and of the electrons are quite different: The electronic degrees
of freedom move much faster than the nuclear degrees of freedom.

Let us consider the limit ω → ∞. In this case, we may freeze the R degree of freedom in the equation
of motion for ρ, as ρ changes on a much faster time scale. To capture the two time scale behavior, we
introduce a heuristic two-scale asymptotic expansion with faster time variable given by τ = ωt (with
some abuse of notations):

R(t) = R(t) and ρ(x, t) = ρ(x, t, τ), (70)

and hence
ρ̈(x, t) = ω2∂2τρ(x, t, τ) + 2ω∂τ∂tρ(x, t, τ) + ∂2t ρ(x, t, τ). (71)

Therefore, to the leading order, after neglecting terms of O(ω−1), we obtain

mR̈I(t) = −
∫
ρSCF(x;R(t), ρ(t, τ))

∂Vion(x;R(t))

∂RI

dx, (72)

∂2τρ(x, t, τ) = ρSCF(x;R(t), ρ(t, τ))− ρ(x, t, τ). (73)

For the equation of motion for ρ, note that as R only depends on t, the nuclear positions are fixed
parameters in Eq. (73).

To proceed, we consider the scenario that ρ(t, τ) is close to the ground state electron density
corresponding to the current atom configuration ρ∗(R(t)). We have seen from numerical examples
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Figure 9. The difference of ρSCF with the converged electron density of SCF iteration
(denoted by ρKS) measured in L1 norm along the TRBOMD simulation for a non-equilibrium
system.
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(Fig. 9) that this is indeed the case for a good choice of SCF iteration, while we do not have a proof of
this in the general case. Hence, we linearize the map ρSCF.

ρSCF(x;R, ρ) = ρ∗(x;R) +

∫
δρSCF

δρ
(x, y;R, ρ∗(R))(ρ(y)− ρ∗(y;R)) dy, (74)

and Eq. (73) becomes
∂2τρ(x, t, τ) = −K(R)(ρ(x, t, τ)− ρ∗(x;R(t))) (75)

where K(R) is the same as in (39) except it is now defined for each atom configuration R. Let us
emphasize that here we have only taken the linear approximation for the electronic degrees of freedom,
while keeping the possibly nonlinear dynamics of R. This is different from the linear response regime
considered before, where the nuclei motion is also linearized.

Under the stability condition (48), it is easy to see that for ρ(t, τ) satisfying Eq. (75), the limit of time
average

ρ(x;R(t)) = lim
T→∞

1

T

∫ T

0

ρSCF(x;R(t), ρ(t, τ)) dτ,

≈ ρ∗(x;R(t)) +

∫
δρSCF

δρ
(x, y;R, ρ∗(R))

(
lim
T→∞

1

T

∫ T

0

ρ(y; t, τ)− ρ∗(y;R(t)) dτ

)
dy

= ρ∗(x;R(t)).
(76)

Take the average of Eq. (72) in τ , we have

mR̈I(t) = −
∫
ρ(x;R(t))

∂Vion(x;R(t))

∂RI

dx. (77)

Because of Eq. (76), the above dynamics is given by

mR̈I(t) = −
∫
ρ∗(x;R(t))

∂Vion(x;R(t))

∂RI

dx (78)
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which agrees with the equation of motion of atoms in BOMD. As we have neglected O(ω−1) terms in
the averaging, the difference in trajectory of BOMD and TRBOMD is on the order of O(ω−1) for finite
ω.

Remark. If we do not make the linear approximation for the electronic degree of freedom, as the map
ρSCF is quite nonlinear and complicated, the analysis of the long time (in τ ) behavior of Eq. (73) is not
as straightforward. In particular, it is not clear to us whether the limit

ρ(x;R(t)) = lim
T→∞

1

T

∫ T

0

ρSCF(x;R(t), ρ(t, τ)) dτ (79)

exists or how close the limit is to ρ∗(x;R(t)) in a fully nonlinear regime. One particular difficulty lies
in the fact that unlike BOMD or CPMD, we do not have a conserved Lagrangian for the TRBOMD.
Actually, it is easy to construct much simplified analog of Eq. (73) that the average is different from ρ∗.
For example, if we consider the following analog which only has one degree of freedom ξ

ξ̈ = (ξ/2 + aξ2)− ξ, (80)

where (ξ/2 + aξ2) is the analog of ρSCF here and a > 0 is a small parameter which characterizes the
nonlinearity of the map. Note that

ξ̈ = −ξ/2 + aξ2 = −∂ξ(ξ2/4− aξ3/3). (81)

The motion of ξ is equivalent to a motion of a particle in an anharmonic potential. It is clear that if
initially ξ(0) ̸= 0, the long time average of ξ will not be 0. Furthermore, if initially, ξ(0) is too large, the
orbit is not closed (ξ escapes the well around ξ = 0). If phenomena similar to this occur for a general
ρSCF, then even in the limit ω → ∞, there will be a systematic uncontrolled bias between BOMD and
TRBOMD. This is in contrast with Car-Parrinello molecular dynamics, which agrees with BOMD in the
limit fictitious mass goes to zero (µ→ 0) if the adiabatic condition holds.

As a result of this discussion, in practice, when we apply TRBOMD to a particular system, we need to
be cautious whether the electronic degree of freedom remains around the converged Kohn-Sham electron
density, which is not necessarily guaranteed (in contrast to CPMD for systems with gaps).

7. Conclusion

The recently developed time reversible Born-Oppenheimer molecular dynamics (TRBOMD) scheme
provides a promising way for reducing the number of self-consistent field (SCF) iterations in molecular
dynamics simulation. By introducing auxiliary dynamics to the initial guess of the SCF iteration,
TRBOMD preserves the time-reversibility of the NVE dynamics both at the continuous and at the
discrete level, and exhibits improved long time stability over the Born-Oppenheimer molecular dynamics
with the same accuracy. In this paper we analyze for the first time the accuracy and the stability of the
TRBOMD scheme, and our analysis is verified through numerical experiments using a one dimensional
density functional theory (DFT) model without exchange correlation potential. The validity of the
stability condition in TRBOMD is directly associated with the quality of the SCF iteration procedure.
In particular, we demonstrate in the case when the SCF iteration procedure is not very accurate, the



Version June 15, 2013 submitted to Entropy 24 of 27

stability condition can be violated and TRBOMD becomes unstable. We also compare TRBOMD with
the Car-Parrinello molecular dynamics (CPMD) scheme. CPMD relies on the adiabatic evolution of
the occupied electron states and therefore CPMD works better for insulators than for metals. However,
TRBOMD may be effective for both insulating and metallic systems. The present study is restricted to
NVE system and to simplified DFT models. The performance of TRBOMD for NVT system and for
realistic DFT systems will be our future work.
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Appendix
Here we derive the perturbation analysis result in Eq. (50). When deriving the perturbation analysis

below, we use linear algebra notation and do not distinguish matrices from operators. We use the linear
algebra notation, replace all the integrals by matrix-vector multiplication, and drop all the dependencies
of the electron degrees of freedom x and y. For instance, Kρ̃ should be understood as

∫
K(x, y)ρ̃(y) dy.

We also denote ∂ρ∗

∂R
(x;R∗) simply by ∂ρ∗

∂R
, then Eq. (42) can be rewritten as(

¨̃
R
¨̃ρ

)
= A

(
R̃

ρ̃

)
=

(
A0 +

1

ϵ
A1

)(
R̃

ρ̃

)
. (82)

Here

A1 =

(
0 0

0 −K

)
(83)

is a block diagonal matrix, and

A0 =

(
−D L(

∂ρ∗

∂R

)T D −
(
∂ρ∗

∂R

)T L
)

=

(
I

−
(
∂ρ∗

∂R

)T
)(

−D L
)

(84)

is a rank-M matrix. I is a M ×M identity matrix. Now assume the eigenvalues and eigenvectors of A
follows the expansion

λ = λ0 + ϵλ1 + · · · , v = v0 + ϵv1 + · · · . (85)

Match the equation up to O(ϵ), and

A1v0 = 0, (86a)

A0v0 + A1v1 = λ0v0, (86b)

A0v1 + A1v2 = λ0v1 + λ1v0. (86c)
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Eq. (86a) implies that v0 ∈ KerA1. Apply the projection operator PKerA1 to both sides of Eq. (86b), and
use that v0 = PKerA1v0, we have

PKerA1A0PKerA1v0 = λ0PKerA1v0. (87)

or (
−D 0

0 0

)
v0 = λ0v0. (88)

From the eigen-decomposition of D in Eq. (46) we have λ0 = −Ω2
l for some l = 1, . . . ,M . For a fixed

l, the corresponding eigenvector to the 0-th order is

v0 = (vl,0)
T . (89)

From Eq. (86b) we also have

A1v1 = λ0v0 − A0v0 =

(
0

−Ω2
l

(
∂ρ∗

∂R

)T
vl

)
, (90)

and therefore

v1 = Ω2
l

(
0,K−1

[(
∂ρ∗

∂R

)T
vl

])T

(91)

Finally we apply v0 to both sides of Eq. (86c) we have

λ1 = (v0, A0v1)− (v0, λ0v1) = Ω2
l v

T
l L

[
K−1

[(
∂ρ∗

∂R

)T
vl

]]
. (92)

Therefore

λ = −Ω2
l + ϵΩ2

l v
T
l L

[
K−1

[(
∂ρ∗

∂R

)T
vl

]]
+O(ϵ2) (93)

In other words, the phonon frequency Ω̃l =
√
−λ up to the leading order is

Ω̃l = Ωl

(
1− 1

2ω2
vTl L

[
K−1

[(
∂ρ∗

∂R

)T
vl

]])
+O(1/ω4). (94)

which is Eq. (50).
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4. Deumens, E.; Diz, A.; Longo, R.; Öhrn, Y. Time-dependent theoretical treatments of the
dynamics of electrons and nuclei in molecular systems. Rev. Mod. Phys. 1994, 66, 917.

5. Tuckerman, M.E.; Ungar, P.J.; von Rosenvinge, T.; Klein, M.L. Ab initio molecular dynamics
simulations. J. Phys. Chem. 1996, 100, 12878–12887.

6. Parrinello, M. From silicon to RNA: The coming of age of ab initio molecular dynamics. Solid
State Commun. 1997, 102, 107–120.

7. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.
8. Kohn, W.; Sham, L. Self-consistent equations including exchange and correlation effects. Phys.

Rev. 1965, 140, A1133–A1138.
9. Remler, D.K.; Madden, P.A. Molecular dynamics without effective potentials via the

Car-Parrinello approach. Mol. Phys. 1990, 70, 921–966.
10. Car, R.; Parrinello, M. Unified approach for molecular dynamics and density-functional theory.

Phys. Rev. Lett. 1985, 55, 2471–2474.
11. Pastore, G.; Smargiassi, E.; Buda, F. Theory of ab initio molecular-dynamics calculations. Phys.

Rev. A 1991, 44, 6334–6347.
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