Initial-oblique derivative boundary value problem for nonlinear parabolic equations of second order

Guo Chun Wen
LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
E-mail: wengc@math.pku.edu.cn

Abstract

In this article, we discuss that an initial-oblique derivative boundary value problem for nonlinear uniformly parabolic complex equation of second order

$$
A_{0} u_{z \bar{z}}-\operatorname{Re}\left[Q u_{z z}+A_{1} u_{z}\right]-\hat{A}_{2} u-u_{t}=A_{3}+G\left(z, t, u, u_{z}\right) \text { in } G,
$$

in a multiply connected domain, the above boundary value problem will be called Problem O. If the above complex equation satisfies the conditions similar to Condition C^{\prime} and (1.12), and the boundary conditions satisfy the conditions similar to (1.4)-(1.7) and (1.11), then we can obtain some solvability results of Problem O in G.

Key Words: Initial-oblique derivative problem, nonlinear parabolic complex equations, multiply connected domains
AMS Mathematics Subject Classification: 35K60, 35K55, 35K20

1. Formulation of initial-oblique derivative problems for second order parabolic complex equations

Let D be an $(N+1)$-connected bounded domain in the $z=x+\mathrm{i} y$ plane \mathbb{C} with the boundary $\Gamma=\sum_{j=0}^{N} \Gamma_{j} \in C_{\mu}^{2}(0<\mu<1)$. Without loss of generality, we may consider that D is a circular domain in $|z|<1$ with the boundary $\Gamma=\sum_{j=0}^{N} \Gamma_{j}$, where $\Gamma_{j}=\left\{\left|z-z_{j}\right|=\gamma_{j}\right\}, j=0,1, \cdots, N, \Gamma_{0}=\Gamma_{N+1}=\{|z|=1\}$ and $z=0 \in D$. Denote $G=D \times I$, in which $I=\{0<t \leq T\}$. Here T is a positive constant, and $\partial G=\partial G_{1} \cup \partial G_{2}$ is the parabolic boundary of G, where $\partial G_{1}, \partial G_{2}$ are the bottom $\{z \in D, t=0\}$ and the lateral boundary $\{z \in \Gamma, t \in \bar{I}\}$ of the domain G respectively.

We consider the nonlinear nondivergent parabolic equation of second order

$$
\begin{equation*}
\Phi\left(x, y, t, u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}\right)-u_{t}=0 \text { in } G \tag{1.1}
\end{equation*}
$$

where Φ is a real-valued function of $x, y, t(\in G), u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}(\in \mathbb{R})$. Under certain conditions, the equation (1.1) can be reduced to the complex form

$$
\begin{equation*}
A_{0} u_{z \bar{z}}-\operatorname{Re}\left[Q u_{z z}+A_{1} u_{z}\right]-\hat{A}_{2} u-u_{t}=A_{3} \tag{1.2}
\end{equation*}
$$

where $z=x+\mathrm{i} y, \Phi=\Psi\left(z, t, u, u_{z}, u_{z z}, u_{z \bar{z}}\right)$, and

$$
\begin{align*}
& A_{0}=\int_{0}^{1} \Psi_{\tau u_{z \bar{z}}}\left(z, t, u, u_{z}, \tau u_{z z}, \tau u_{z \bar{z}}\right) \mathrm{d} \tau=A_{0}\left(z, t, u, u_{z}, u_{z z}, u_{z \bar{z}}\right), \\
& Q=-2 \int_{0}^{1} \Psi_{\tau u_{z z}}\left(z, t, u, u_{z}, \tau u_{z z}, \tau u_{z \bar{z}}\right) \mathrm{d} \tau=Q\left(z, t, u, u_{z}, u_{z z}, u_{z \bar{z}}\right), \\
& A_{1}=-2 \int_{0}^{1} \Psi_{\tau u_{z}}\left(z, t, u, \tau u_{z}, 0,0\right) \mathrm{d} \tau=A_{1}\left(z, t, u, u_{z}\right), \tag{1.3}\\
& \hat{A}_{2}=-\int_{0}^{1} \Psi_{\tau u}(z, t, \tau u, 0,0,0) \mathrm{d} \tau=A_{2}(z, t, u)+|u|^{\sigma}, \\
& A_{3}=-\Psi(z, t, 0,0,0,0)=A_{3}(z, t),
\end{align*}
$$

where σ is a positive constant (see [4]).
Suppose that the equation (1.2) satisfies the following conditions, namely
Condition C. (1) $A_{0}\left(z, t, u, u_{z}, u_{z z}, u_{z \bar{z}}\right), Q\left(z, t, u, u_{z}, u_{z z}, u_{z \bar{z}}\right), A_{1}\left(z, t, u, u_{z}\right), A_{2}(z$, $t, u), A_{3}(z, t)$ are measurable for any continuously differentiable function $u(z, t) \in$ $C^{1,0}(\bar{G})$ and measurable functions $u_{z z}, u_{z \bar{z}} \in L_{2}\left(G^{*}\right)$ and satisfy the conditions

$$
\begin{gather*}
0<\delta \leq A_{0} \leq \delta^{-1} \tag{1.4}\\
\left|A_{j}\right| \leq k_{0}, j=1,2, L_{p}\left[A_{3}, \bar{G}\right] \leq k_{1}, p>4 \tag{1.5}
\end{gather*}
$$

where G^{*} is any closed subset in the domain G.
(2) The above functions with respect to $u \in \mathbb{R}, u_{z} \in \mathbb{C}$ are continuous for almost every point $(z, t) \in G$ and $u_{z z} \in \mathbb{C}, u_{z \bar{z}} \in \mathbb{R}$.
(3) For almost every point $(z, t) \in G$ and $u \in \mathbb{R}, u_{z}, U^{j} \in \mathbb{C}, V^{j} \in \mathbb{R}, j=1,2$, there is

$$
\begin{gather*}
\Psi\left(z, t, u, u_{z}, U^{1}, V^{1}\right)-\Psi\left(z, t, u, u_{z}, U^{2}, V^{2}\right) \\
=\tilde{A}_{0}\left(V^{1}-V^{2}\right)-\operatorname{Re}\left[\tilde{Q}\left(U^{1}-U^{2}\right)\right], \delta<\tilde{A}_{0} \leq \delta^{-1}, \tag{1.6}\\
\sup _{G}\left(\tilde{A}_{0}^{2}+|\tilde{Q}|^{2}\right) / \inf _{G} \tilde{A}_{0}^{2} \leq q<4 / 3 . \tag{1.7}
\end{gather*}
$$

In (1.4)-(1.7), $\delta(>0), q(\geq 1), k_{0}, k_{1}, p(>4)$ are non-negative constants. For instance the nonlinear parabolic complex equation

$$
\begin{aligned}
& u_{z \bar{z}}=G\left(z, t, u, u_{z}, u_{z z}\right)+\left(1+|u|^{4}\right) u+u_{t} \\
& G\left(z, t, u, u_{z}, u_{z z}\right)=\left\{\begin{array}{l}
u_{z z}^{2} / 8 \text { for }\left|u_{z z}\right| \leq 1 \\
u_{z z}^{-2} / 8 \text { for }\left|u_{z z}\right|>1
\end{array}\right.
\end{aligned}
$$

satisfies Condition C. In this article, the notations are the same as in References [1-8].

Now we explain the derivation of $3 / 4$ in the condition (1.7). Let $\Lambda=r \inf _{G} A_{0}^{2}>0$, thus $\inf _{G} \tilde{A}^{2}=\inf _{G} A_{0}^{2} / \Lambda=\inf _{G} A_{0}^{2} /\left(r \inf _{G} A_{0}^{2}\right)=1 / r$. By the requirement below, we
need the inequality

$$
\eta=\sup _{G}\left[\left(\tilde{A}_{0}-1\right)^{2}+|\tilde{Q}|^{2}\right]<\frac{1}{4} \text {, i.e. } \sup _{G}\left[\tilde{A}_{0}^{2}+|\tilde{Q}|^{2}-2 \tilde{A}_{0}\right]<\frac{1}{4}-1,
$$

so it is sufficient that

$$
\frac{\sup _{G}\left[A_{0}^{2}+|Q|^{2}\right]}{r^{2} \inf _{G} A_{0}^{2}}<\frac{2}{r}-\frac{3}{4} \text {, i.e. } \frac{\sup _{G}\left[A_{0}^{2}+|Q|^{2}\right]}{\inf _{G} A_{0}^{2}}<2 r-\frac{3}{4} r^{2}=f(r) .
$$

We can find the maximum of the function $f(r)=2 r-\left(3 r^{2}\right) / 4$ on $(0, \infty)$, due to $f^{\prime}(r)=2-(3 r) / 2=0$. It is easy to see that $f(r)$ takes its maximum on $(0, \infty)$ at the point $r=4 / 3$, and then $f(4 / 3)=2(4 / 3)-(3 / 4)(4 / 3)^{2}=4 / 3$, leading to the inequality (1.7). (see [2,4])

In this article, we mainly discuss the nonlinear parabolic equation of second order

$$
\begin{equation*}
A_{0} u_{z \bar{z}}-\operatorname{Re}\left[Q u_{z z}+A_{1} u_{z}\right]-\hat{A}_{2} u-u_{t}=A_{3}+F\left(z, t, u, u_{z}\right), \tag{1.8}
\end{equation*}
$$

satisfying Condition C^{\prime}, in which the coefficients $A_{j}(j=0,1,2,3), Q$ of equation (1.8) satisfy the conditions (1.4)-(1.7) and $F\left(z, t, u, u_{z}\right)$ satisfies the the condition:

$$
\begin{equation*}
\left|F\left(z, u, u_{z}\right)\right| \leq B_{1}(z)\left|u_{z}\right|^{\eta}+B_{2}(z)|u|^{\tau},\left|B_{j}\right| \leq k_{0}, j=1,2, \tag{4}
\end{equation*}
$$

for positive constants η, τ, k_{0}. We can see that $F\left(z, t, u, u_{z}\right)$ implies the nonlinear items.
Problem O. The so-called initial-oblique derivative boundary value problem for the equation (1.8) is to find a continuous solution $u(z, t) \in C^{1,0}(\bar{G})$ of (1.8) in \bar{G} satisfying the initial-boundary conditions

$$
\left\{\begin{array}{l}
u(z, 0)=g(z) \text { on } \partial G_{1}=D \tag{1.10}\\
\frac{\partial u}{\partial \nu}+b_{1}(z, t) u=b_{2}(z, t) \text { on } \partial G_{2}, \text { i.e. } \\
2 \operatorname{Re}\left[\overline{\lambda(z, t)} u_{z}\right]+b_{1}(z, t) u=b_{2}(z, t) \text { on } \partial G_{2},
\end{array}\right.
$$

where ν is the unit vector at every point on ∂G_{2}. There is no harm in assuming that ν is parallel to the plane $t=0$. In addition, $g(z), b_{j}(z, t)(j=1,2)$ and $\lambda(z, t)=$ $\cos (\nu, x)-\mathrm{i} \cos (\nu, y)$ are known functions satisfying the conditions

$$
\left\{\begin{array}{l}
C_{\alpha}^{2}\left[g, \partial \Gamma_{1}\right] \leq k_{2}, \frac{\partial g}{\partial \nu}+b_{1}(z, 0) g=b_{2}(z, 0) \text { on } \partial G_{1} \times\{t=0\}, \tag{1.11}\\
C_{\alpha, \alpha / 2}^{1,0}\left[\eta, \partial G_{2}\right]=C_{\alpha, \alpha / 2}^{0,0}\left[\eta, \partial G_{2}\right]+C_{\alpha, \alpha / 2}^{0,0}\left[\eta_{z}, \partial G_{2}\right] \leq k_{0}, \eta=\left\{b_{1}, \lambda\right\}, \\
C_{\alpha, \alpha / 2}^{2,1}\left[b_{2}, \partial G_{2}\right] \leq k_{3}, b_{1}(z, t) \geq 0, \cos (\nu, n)>0 \text { on } \partial G_{2},
\end{array}\right.
$$

in which n is the unit outward normal vector at every point on $\partial G_{2}, \alpha(1 / 2<\alpha<$ $1), k_{0}, k_{2}, k_{3}$ are non-negative constants. The above initial-boundary value problem is the initial-oblique derivative boundary value problem (Problem O). In particular, Problem O with the condition $\nu=n, a_{1}(z, t)=1, a_{2}(z, t)=0$ on ∂G_{2} is the so-called initial-Neumann boundary value Problem, which will be called Problem N. Problem O for (1.2) with $A_{3}(z, t)=0$ and $g(z)=0, b_{2}(z, t)=0$ is called Problem O_{0}.

In order to discuss the uniqueness of solutions of Problem O for the equation (1.2), we add the condition: For any $u^{j} \in \mathbb{R}, u_{z}^{j}(j=1,2), U \in \mathbb{C}, V \in \mathbb{R}$, there is

$$
\begin{gather*}
\Psi\left(z, t, u^{1}, u_{z}^{1}, U, V\right)-\Psi\left(z, t, u^{2}, u_{z}^{2}, U, V\right) \\
=\tilde{A}_{0}\left(u_{1}-u_{2}\right)_{z \bar{z}}-\operatorname{Re}\left[\tilde{Q} u_{z z}+\tilde{A}_{1}\left(u^{1}-u^{2}\right)_{z}+\tilde{A}_{2}\left(u^{1}-u^{2}\right)\right] \text { on } \partial G_{2} \tag{1.12}
\end{gather*}
$$

where $\tilde{A}_{)}, \tilde{Q}$ satisfy (1.7) and $\tilde{A}_{j}(j=1,2)$ satisfy

$$
\begin{equation*}
\left|\tilde{A}_{j}\right|<\infty \text { in } \bar{G}, j=1,2 \tag{1.13}
\end{equation*}
$$

Theorem 1.1. Suppose that the equation (1.2) satisfies Condition C and (1.12). Then the solution $u(z, t)$ of Problem O for (1.2) is unique. Moreover the homogeneous Problem O (Problem O_{0}) of equation (1.2) with $A_{3}=0$ only has the trivial solution.
Proof. Let $u_{j}(j=1,2)$ be two solutions of Problem O for (1.2). It is easy to see that $u=u_{1}(z, t)-u_{2}(z, t)$ is a solution of the following initial-boundary value problem

$$
\begin{gather*}
\tilde{A}_{0} u_{z \bar{z}}-\operatorname{Re}\left[\tilde{Q} u_{z z}+\tilde{A}_{2} u_{z}\right]-\tilde{A}_{3} u-u_{t}=0 \text { in } G, \tag{1.14}\\
\left\{\begin{array}{l}
u(z, 0)=0 \text { on } D \\
\frac{\partial u}{\partial \nu}+b_{1}(z, t) u=0 \text { on } \partial G_{2},
\end{array}\right. \tag{1.15}
\end{gather*}
$$

where

$$
\left\{\begin{array}{l}
\tilde{A}_{0}=\int_{0}^{1} \Psi_{s}(z, t, v, p, q, s) \mathrm{d} \tau, s=u_{2 z \bar{z}}+\tau\left(u_{1}-u_{2}\right)_{z \bar{z}}, q=u_{2 z z}+\tau\left(u_{1}-u_{2}\right)_{z z} \tag{1.16}\\
\tilde{Q}=-2 \int_{0}^{1} \Psi_{q}(z, t, v, p, q, s) \mathrm{d} \tau, p=u_{2 z}+\tau\left(u_{1}-u_{2}\right)_{z}, v=u_{2}+\tau\left(u_{1}-u_{2}\right) \\
\tilde{A}_{1}=-2 \int_{0}^{1} \Psi_{p}(z, t, v, p, q, s) \mathrm{d} \tau, \tilde{A}_{2}=-\int_{0}^{1} \Psi_{v}(z, t, v, p, q, s) \mathrm{d} \tau
\end{array}\right.
$$

Introducing a transformation $v=v(z, t)=u \mathrm{e}^{-B t}$, where B is an undetermined real constant, the complex equation (1.14) and the initial-boundary condition (1.15) can be reduced to the form

$$
\begin{align*}
& \tilde{A}_{0} v_{z \bar{z}}- \operatorname{Re}\left[\tilde{Q} V_{z z}+\tilde{A}_{1} v_{z}\right]-\left(\tilde{A}_{2}+B\right) v-v_{t}=0 \tag{1.17}\\
&\left\{\begin{array}{l}
v(z, 0)=0 \text { in } D \\
\frac{\partial v}{\partial \nu}+b_{1}(z, t) v=0 \text { on } \partial G_{2}
\end{array}\right. \tag{1.18}
\end{align*}
$$

Let the above equation be multiplied by v, thus an equation of v^{2}

$$
\begin{gather*}
\frac{1}{2}\left[\tilde{A}_{0}\left(v^{2}\right)_{z \bar{z}}-\operatorname{Re}\left[\tilde{Q}\left(v^{2}\right)_{z z}-\left(v^{2}\right)_{t}\right]\right. \tag{1.19}\\
=\tilde{A}_{0}\left|v_{z}\right|^{2}-\operatorname{Re}\left[\tilde{Q}\left(v_{z}\right)^{2}+\frac{1}{2} \tilde{A}_{1} \operatorname{Re}\left(v^{2}\right)_{z}\right]+\left(\tilde{A}_{2}+B\right) v^{2}
\end{gather*}
$$

can be obtained. If the maximum of v^{2} occurs at an inner point $P_{0} \in G$ with $\left|v\left(P_{0}\right)\right|^{2} \neq 0$, then in a neighborhood of P_{0}, the right hand side of $(1.19) \geq\left[B-k_{0}\right] v^{2}$. Moreover, we choose the constant B such that $B>k_{0}$. By using the maximum principle (see $[3,4]$), the function v^{2} can not take the positive maximum in G. If v^{2} takes the positive maximum at a point $P_{0} \in \partial G_{2}$, then we have

$$
\begin{equation*}
\left.\left[\frac{1}{2} \frac{\partial v^{2}}{\partial \nu}+b_{1}(z, t) v^{2}\right]\right|_{P=P_{0}}>0 \tag{1.20}
\end{equation*}
$$

This contradicts (1.18). Hence we derive that $u=0$, i.e. $u_{1}-u_{2}=0$ in \bar{G}. Similarly we can prove the other part in this theorem.
2. A prior estimate of solutions of the initial-oblique derivative problem of second order parabolic complex equations

Theorem 2.1. If the equation (1.2) satisfies condition C , then the solution $u(z, t)$ of Problem O for (1.2) satisfies the estimate

$$
\begin{equation*}
\hat{C}_{\beta, \beta / 2}^{1,0}[u, \bar{G}]=C_{\beta, \beta / 2}^{1,0}\left[|u|^{\sigma+1}, \bar{G}\right] \leq M_{1},\|u\|_{W_{2}^{2,1}(G)} \leq M_{2}, \tag{2.1}
\end{equation*}
$$

where $\beta(0<\beta \leq \alpha), k=k\left(k_{0}, k_{1}, k_{2}, k_{3}\right), M_{j}=M_{j}(\delta, q, p, \beta, k, G)(j=1,2)$ are non-negative constants only dependent on $\delta, q, p, \beta, k, G$.
Proof. We shall prove that the following estimate holds

$$
\begin{equation*}
\hat{C}^{1,0}[u, \bar{G}]=C^{1,0}\left[|u|^{\sigma+1}, \bar{G}\right] \leq M_{3}=M_{3}(\delta, q, p, \beta, k, G) . \tag{2.2}
\end{equation*}
$$

If (2.2) is not true, then there exists a sequence of parabolic equations

$$
\begin{equation*}
A_{0}^{m} u_{z \bar{z}}-\operatorname{Re}\left[Q^{m} u_{z z}+A_{1}^{m} u_{z}\right]-\hat{A}_{2}^{m} u-u_{t}=A_{3}^{m} \text { in } G, \tag{2.3}
\end{equation*}
$$

and a sequence of initial-boundary conditions

$$
\left\{\begin{array}{l}
u(z, 0)=g^{m}(z) \text { on } D, \tag{2.4}\\
\frac{\partial u}{\partial \nu}+b_{1}^{m} u=b_{2}^{m} \text { on } \partial G_{2},
\end{array}\right.
$$

with $\left\{A_{0}^{m}\right\},\left\{Q^{m}\right\},\left\{A_{1}^{m}\right\},\left\{\hat{A}_{2}^{m}\right\},\left\{A_{3}^{m}\right\}$ in G satisfying Condition C and $g^{m}, b_{1}^{m}, b_{2}^{m}$ satisfying (1.11), where $\left\{A_{0}^{m}\right\},\left\{Q^{m}\right\},\left\{A_{1}^{m}\right\},\left\{\hat{A}_{2}^{m}\right\},\left\{A_{3}^{m}\right\}$ in G weakly converge to $A_{0}^{0}, Q^{0}, A_{1}^{0}, \hat{A}_{2}^{0}, A_{3}^{0}$ and $\left.\left.\left\{g^{m}(z)\right\}, b_{1}^{m}(z, t)\right\}, b_{2}^{m}(z, t)\right\}$ in $D, \partial G_{2}$ uniformly converge to $g^{0}(z), b_{1}^{0}(z, t), b_{2}^{0}(z, t)$ respectively, and the initial-boundary value problem (2.3)-(2.4) have the solution $u^{m}(z, t) \in \hat{C}^{1,0}(\bar{G})(m=1,2, \cdots)$ such that $\hat{C}^{1,0}\left[u^{m}, \bar{G}\right]=H_{m} \rightarrow$ ∞ as $m \rightarrow \infty$. There is no harm in assuming that $H_{m} \geq \max \left[k_{1}, k_{2}, k_{3}, 1\right]$. Let $U^{m}=$ u^{m} / H_{m}, it is easy to see that U^{m} satisfies the complex equation and initial-boundary
conditions

$$
\left\{\begin{array}{l}
A_{0}^{m} U_{z \bar{z}}^{m}-\operatorname{Re}\left[Q^{m} U_{z z}^{m}+A_{1}^{m} U_{z}^{m}\right]-\hat{A}_{2}^{m} U^{m}-U_{t}^{m}=A_{3}^{m} / H_{m} \text { in } G \tag{2.5}\\
U^{m}(z, 0)=g^{m}(z) / H_{m} \text { on } D \\
\frac{\partial U^{m}}{\partial \nu}+b_{1}^{m} U^{m}=b_{2}^{m} / H_{m} \text { on } \partial G_{2}
\end{array}\right.
$$

We can see that the some coefficients in the above equation and boundary conditions satisfy the condition C and

$$
\begin{aligned}
& \left|u^{(m)}\right|^{\sigma+1} / H_{m} \leq 1, L_{p}\left[A_{3}^{(m)} / H_{m}, \bar{G}\right] \leq 1 \\
& C_{\alpha}\left[g^{(m)}(z) / H_{m}, D\right] \leq 1,\left|b_{2}^{(m)} / H_{m}\right| \leq 1
\end{aligned}
$$

Hence by Theorem 5.3.1, [7], we can obtain the estimates

$$
\begin{equation*}
\hat{C}_{\beta, \beta / 2}^{1,0}\left[u^{m}, \bar{G}\right] \leq M_{4},\left\|u^{m}\right\|_{W_{2}^{2,1}(G)} \leq M_{5} \tag{2.6}
\end{equation*}
$$

in which $\beta(0<\beta \leq \alpha), M_{j}=M_{j}(\delta, q, p, \beta, k, G)(j=4,5)$ are non-negative constants. Thus from $\left\{U^{m}\right\},\left\{U_{z}^{m}\right\}$ we can select the subsequences $\left\{U^{m_{k}}\right\},\left\{U_{z}^{m_{k}}\right\}$, such that they uniformly converge to U^{0}, U_{z}^{0} in \bar{G} and $\left\{U_{z \bar{z}}^{m_{k}}\right\},\left\{U_{z z}^{m_{k}}\right\},\left\{U_{t}^{m_{k}}\right\}$ weakly converge to $U_{z \bar{z}}^{0}, U_{z z}^{0}, U_{t}^{0}$ in G respectively, and U^{0} is a solution of the following initial-boundary value problem

$$
\left\{\begin{array}{l}
A_{0}^{0} U_{z \bar{z}}^{0}-\operatorname{Re}\left[Q^{0} U_{z z}^{0}+A_{1}^{0} U_{z z}^{0}+\hat{A}_{2}^{0} U^{0}\right]-U_{t}^{0}=0 \text { in } G \tag{2.7}\\
U^{0}(z, 0)=0 \text { on } D \\
\frac{\partial U_{0}}{\partial \nu}+b_{1}^{0} U^{0}=0 \text { on } \partial G_{2}
\end{array}\right.
$$

From Theorem 1.1, we see that $U^{0}=0$. However, from $\hat{C}^{1,0}\left[U^{m}, \bar{G}\right]=1$, there exists a point $\left(z^{*}, t^{*}\right) \in \bar{G}$, such that $\left|U^{0}\left(z^{*}, t^{*}\right)\right|+\left|U_{z}^{0}\left(z^{*}, t^{*}\right)\right|>0$. This contradiction shows that the estimate (2.2) is true. Moreover, by using the method from (2.2) to (2.6), two estimates in (2.1) can be derived.

Theorem 2.2. Suppose that Condition C^{\prime} holds. Then any solution $u(z, t)$ of Problem O for (1.8) satisfies the estimates

$$
\begin{equation*}
\hat{C}_{\beta, \beta / 2}^{1,0}[u, \bar{G}]=C_{\beta, \beta / 2}^{1,0}\left[\mid u^{\sigma+1}, \bar{G}\right] \leq M_{6} k^{\prime},\|u\|_{W_{2}^{2,1}(G)} \leq M_{7} k^{\prime} \tag{2.8}
\end{equation*}
$$

where $\beta(0<\beta \leq \alpha), k^{\prime}=k_{1}+k_{2}+k_{3}+k_{0}\left(\left|u_{z}\right|^{\eta}+|u|^{\tau}\right), M_{j}=M_{j}\left(\delta, q, p, \beta, k_{0}, G\right)$ $(j=6,7)$ are non-negative constants.

Proof. If $k^{\prime}=0$, i.e. $k_{0}=k_{1}=k_{2}=k_{3}=0$, from Theorem 1.1, it follows that $u(z)=0$ in \bar{G}. If $k^{\prime}>0$, it is easy to see that $U(z)=u(z) / k^{\prime}$ satisfies the complex equation and boundary conditions

$$
\begin{equation*}
A_{0} U_{z \bar{z}}-\operatorname{Re}\left[Q U_{z z}+A_{1} U_{z}\right]-\hat{A}_{2} U-U_{t}=\left[A_{3}+F\left(z, t, u, u_{z}\right)\right] / k^{\prime} \tag{2.9}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
U(z, 0)=\frac{g(z)}{k^{*}}, \quad z \in D, \tag{2.10}\\
\frac{\partial U}{\partial \nu}+b_{1}(z, t) U=\frac{b_{2}(z, t)}{k^{*}},(z, t) \in \partial G_{2} .
\end{array}\right.
$$

Noting that

$$
L_{p}\left[A_{3}(z, t) / k^{\prime}, \bar{G}\right] \leq 1, C_{\alpha}^{1}\left[g / k^{\prime}, D\right] \leq 1, C_{\alpha, \alpha / 2}^{1,0}\left[b_{2} / k^{\prime}, \partial G_{2}\right] \leq 1
$$

and according to the proof of Theorem 2.1, we have

$$
\begin{equation*}
\hat{C}_{\beta, \beta / 2}^{1,0}[U, \bar{G}] \leq M_{6},\|U\|_{W_{2}^{2,1}(G)} \leq M_{7} \tag{2.11}
\end{equation*}
$$

From the above estimates, it immediately follows that two estimates in (2.8) hold.

3. Solvability of the initial-oblique derivative problem of second order parabolic complex equations

We consider the complex equation (1.8) namely the equation

$$
\begin{align*}
& A_{0} u_{z \bar{z}}-\operatorname{Re}\left[Q u_{z z}\right]-u_{t}=f\left(z, t, u, u_{z}\right), f\left(z, t, u, u_{z}\right)= \\
= & \operatorname{Re}\left[Q u_{z z}+A_{1} u_{z}\right]+\hat{A}_{2} u+A_{3}+F\left(z, t, u, u_{z}\right) \text { in } G, \tag{3.1}
\end{align*}
$$

in which $A_{0}=A_{0}\left(z, t, u, u_{z}, u_{z z}\right), Q=Q\left(z, t, u, u_{z}, u_{z z}\right), A_{1}=A_{1}\left(z, t, u, u_{z}\right), \hat{A}_{2}=$ $A_{2}(z, t, u)+|u|^{\sigma}, A_{3}=A_{3}(z, t)$.
Theorem 3.1. Suppose that equation (1.8) satisfies Condition C^{\prime} and (1.12).
(1) When $0<\eta, \tau<1$, Problem O for (1.8) has a solution $u(z, t) \in C^{1,0}(\bar{G})$.
(2) When $\min (\eta, \tau)>1$, Problem O for (1.8) has a solution $u(z, t) \in C^{1,0}(\bar{G})$, provided that

$$
\begin{equation*}
M_{8}=L_{p}\left[A_{3}, \bar{G}\right]+C_{\alpha}^{2}[g, \bar{D}]+C_{\alpha, \alpha / 2}^{2,1}\left[b_{2}, \partial G_{2}\right] \tag{3.2}
\end{equation*}
$$

is small enough.
(3) When $F\left(z, t, u, u_{z}\right)$ in (1.8) possesses the form

$$
\begin{equation*}
F\left(z, u, u_{z}\right)=\operatorname{Re} B_{1} u_{z}+B_{2}|u|^{\tau} \text { in } D \tag{3.3}
\end{equation*}
$$

in which $0<\tau<\infty, L_{p}\left[B_{j}, \bar{D}\right] \leq k_{0}(<\infty, p>4, j=1,2)$ with a positive constant k_{0}, if $\tau<1$, and if $\tau>1$ and M_{8} in (3.2) is small enough, then (1.8) has a solution $u(z, t) \in C^{1,0}(\bar{G})$.
Proof. (1) Consider the algebraic equation for t

$$
\begin{equation*}
M_{6}\left[k_{1}+k_{0}\left(t^{\eta}+t^{\eta}\right)+k_{2}+k_{3}\right]=t \tag{3.4}
\end{equation*}
$$

Because $0<\eta, \tau<1$, the the above equation has a solution $t=M_{9}>0$, which is also the maximum of t in $(0,+\infty)$. Now, we introduce a closed, bounded and convex subset B of the Banach space $C^{1,0}(\bar{G})$, whose elements are of the form $u(z)$ satisfying the condition

$$
\begin{equation*}
C^{1,0}\left[|u(z)|^{n+1}, \bar{G}\right] \leq M_{9} \tag{3.5}
\end{equation*}
$$

We choose an arbitrary function $u(z) \in B$ and substitute it into the proper positions in the following equation and initial-boundary conditions (Problem O^{h}) with the parameter $h \in[0,1]$

$$
\left\{\begin{array}{l}
A_{0} u_{z \bar{z}}-\operatorname{Re}\left[Q u_{z z}\right]-u_{t}-h f\left(z, t, u, u_{z}\right)=A(z, t),(z, t) \in G \tag{3.6}\\
u(z, 0)=g(z), \quad z \in D \\
\frac{\partial u}{\partial \nu}+h b_{1}(z, t) u=b(z, t), \quad(z, t) \in \partial G_{2}
\end{array}\right.
$$

where $A(z, t)$ are any measurable functions with the condition $A(z, t) \in L_{p}(\bar{G})$, $p>4$, and $b(z, t)$ is a continuously differentiable function with the condition $b(z, t) \in$ $C_{\beta, \beta / 2}^{1,0}\left(\partial G_{2}\right)$. When $h=0$, according to Theorem 4.3, Chapter IV, [4], we see that there exists a solution $u_{0}(z, t) \in B=\hat{C}_{\beta, \beta / 2}^{1,0}(\bar{G}) \cap W_{2}^{2,1}(G)$ of Problem O^{0}. Suppose that when $h=h_{0}\left(0 \leq h_{0}<1\right)$, Problem $\mathrm{O}^{h_{0}}$ for (3.6) is solvable. We shall prove that there exists a positive constant ε independent of h_{0}, such that for any $h \in E=$ $\left\{\left|h-h_{0}\right| \leq \varepsilon, 0 \leq h \leq 1\right\}$, Problem O^{h} for (3.6) possesses a solution $u(z, t) \in B$. Let the above problem be rewritten in the form

$$
\left\{\begin{array}{l}
A_{0} u_{z \bar{z}}-\operatorname{Re}\left[Q u_{z z}\right]-u_{t}-h_{0} f\left(z, t, u, u_{z}\right) \tag{3.7}\\
=\left(h-h_{0}\right) f\left(z, t, u, u_{z}\right)+A(z, t) \text { in } G \\
u(z, 0)=g(z) \text { on } D \\
\frac{\partial u}{\partial \nu}+h_{0} b_{1} u=\left(h_{0}-h\right) b_{1}+b(z, t) \text { on } \partial G_{2}
\end{array}\right.
$$

We arbitrarily choose a function $u^{0}(z, t) \in B$ and substitute it into the position of u on the right hand side of (3.7). It is easily seen that

$$
\begin{align*}
& \left(h-h_{0}\right) f\left(z, t, u^{0}, u_{z}^{0}\right)+A(z, t) \in L_{p}(\bar{G}) \\
& \left(h_{0}-h\right) b_{2}(z, t)+b(z, t) \in C_{\alpha, \alpha / 2}^{0,0}\left(\partial G_{2}\right) \tag{3.8}
\end{align*}
$$

By the hypothesis of h_{0}, there exists a solution $u^{1}(z, t) \in B$ of Problem O^{h} corresponding to

$$
\left\{\begin{array}{l}
A_{0} u_{z \bar{z}}-\operatorname{Re}\left[Q u_{z z}\right]-u_{t}-h_{0} f\left(z, t, u, u_{z}\right) \tag{3.9}\\
=\left(h-h_{0}\right) f\left(z, t, u^{0}, u_{z}^{0}\right)+A(z, t) \text { in } G, \\
u(z, t)=g(z) \text { in } D, \\
\frac{\partial u}{\partial \nu}+h_{0} b_{1} u=\left(h_{0}-h\right) u^{0}+b(z, t) \text { on } \partial G_{2}
\end{array}\right.
$$

By using the successive iteration, we obtain a sequence of solutions $u^{m}(z, t)(m=1,2$, $\cdots) \in B$ of Problem O^{h}, which satisfy

$$
\left\{\begin{array}{l}
A_{0} u_{z \bar{z}}^{m+1}-\operatorname{Re}\left[Q u_{z z}^{m+1}\right]-u_{t}^{m+1}-h_{0} f\left(z, t, u^{m+1}\right) \tag{3.10}\\
=\left(h-h_{0}\right) f\left(z, t, u^{m}\right)+A(z, t) \text { in } G \\
u^{m+1}(z, 0)=g(z) \text { on } D \\
\frac{\partial u^{m+1}}{\partial \nu}+h_{0} b_{1} u^{m+1}=\left(h_{0}-h\right) b_{1} u^{m}+b(z, t) \text { on } \partial G_{2}, \\
m=1,2, \cdots
\end{array}\right.
$$

According to the way in the proof of Theorem 2.2, we can obtain

$$
C^{1,0}\left[u^{m+1}, \bar{G}\right]=\left\|u^{m+1}\right\| \leq\left\|h-h_{0}\right\| M_{10} C^{1,0}\left[u^{m}, \bar{G}\right],
$$

where $M_{10}=M_{10}(\delta, q, p, \beta, k, G) \geq 0$. Setting $\varepsilon=1 / 2\left(M_{10}+1\right)$, we have

$$
\left\|u^{m+1}\right\|=C^{1,0}\left[u^{m+1}, \bar{G}\right] \leq \frac{1}{2}\left\|u^{m}\right\| \text { for } h \in E .
$$

Hence when $n \geq m>N+2(>2)$, there are

$$
\begin{gathered}
\left\|u^{m+1}-u^{m}\right\| \leq 2^{-N}\left\|u^{1}-u^{0}\right\| \\
\left\|u^{n}-u^{m}\right\| \leq 2^{-N} \sum_{j=1}^{\infty} 2^{-j}\left\|u^{1}-u^{0}\right\|=2^{-N+1}\left\|u^{1}-u^{0}\right\| .
\end{gathered}
$$

This shows that $\left\|u^{n}-u^{m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. By the completeness of the Banach space B, there exists $u^{*} \in B$, such that $\left\|u^{n}-u^{*}\right\| \rightarrow 0$ as $n \rightarrow \infty$ and u^{*} is the solution of Problem O^{h} with $h \in E$. Thus from the solvability of Problem O^{0}, we can derive the solvability of Problem O^{1}, in particular Problem O^{1} with $A=0$ and $b(z, t)=0$, i.e. Problem O for (3.1) has a solution. This completes the proof.
(2) For the case $\min (\eta, \tau)<1$, due to M_{8} in (3.2) is small enough, from

$$
M_{6}\left[k_{1}+k_{0}\left(t^{\eta}+t^{\tau}\right)+k_{2}+k_{3}\right]=t,
$$

a solution $t=M_{11}>0$ can be solved, which is also a maximum. Now we consider a subset B_{*} in the Banach space $C^{1}(\bar{D})$, i.e.

$$
B_{*}=\left\{u(z) \mid C^{1,0}[u, \bar{G}] \leq M_{11}\right\},
$$

and apply a similar method as before. We can prove that there exists a solution $u(z) \in B_{*}=C^{1,0}(\bar{G})$ of Problem O for (1.8) with the constant $\min (\eta, \tau)>1$.
(3) By using the similar method as in proofs of (1) and (2), we can verify the solvability of Problem O for (1.8) with the conditions $0<\tau<1$ and $1<\tau<\infty$ as in (3) of the theorem.

References

[1] Vekua, IN: Generalized Analytic Functions. Pergamon, Oxford (1962)
[2] Alkhutov, YuA, Mamedov, IT: The first boundary value problem for non-divergence second order parabolic equations with discontinuous coefficients. Math. USSR Sbornik, 59, pp. 471-495 (1988)
[3] Ladyzhenskaja, OA, Solonnikov, VA, Uraltseva, NN: Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc., Providence, RI (1968)
[4] Wen, GC: Linear and Nonlinear Parabolic Complex Equations. World Scientific Publishing Co., Singapore (1999)
[5] Wen, GC, Begehr, H: Boundary Value Problems for Elliptic Equations and Systems. Longman Scientific and Technical Company, Harlow (1990)
[6] Wen, GC: Conformal Mappings and Boundary Value Problems. Translations of Mathematics Monographs 106, Amer. Math. Soc., Providence, RI(1992)
[7] Wen, GC, Chen, DC., Xu, ZL: Nonlinear Complex Analysis and its Applications. Mathematics Monograph Series 12. Science Press, Beijing (2008)
[8] Wen, GC: Recent Progress in Theory and Applications of Modern Complex Analysis. Science Press, Beijing (2010)

