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Abstract

In this paper, we derive the extended magnetohydrodynamic models based on the
moment closure of the Vlasov-Maxwell equation. We adopt the Grad type moment
expansion which was firstly proposed in [12] for the Boltzmann equation. A new
regularization method [5] for the Grad’s moment system of the Boltzmann equation
was recently proposed to achieve the globally hyperbolicity so that the local well-
posedness of the moment system is attained. For the Vlasov-Maxwell equation, the
moment expansion of the convection term is exactly the same as that in the Boltzmann
equation, thus the new developed regularization applies. The moment expansion of
the electromagnetic force term in the Vlasov-Maxwell equation turns to be a linear
source term, which can preserve the properties of the distribution function in the
Vlasov-Maxwell equation perfectly.

Keywords: Moment closure; Vlasov-Maxwell equation; Boltzmann equation; Ex-
tended magnetohydrodynamics

1 Introduction

The collisionless plasmas has been studied in a wide variety of fields, such as in lab-
oratory plasma physics, space physics, and astrophysics. Evolution of collisionless plas-
mas and self-consistent electromagnetic fields is fully described by the Vlasov-Maxwell
equations. Thanks to recent development in computational technology, self-consistent
numerical simulations of collisionless plasmas have been successfully performed from the
first-principle Vlasov-Maxwell system of equations. There are two numerical methods to
solve the Vlasov equation, including the popular Particle-In-Cell (PIC) method [4] and
direct Vlasov simulation.

The PIC method has been used for a wide variety of plasma phenomena, which approx-
imates the plasma by a finite number of macro-particles. The trajectories of the macro-
particles are calculated from the equation of motion, which are continuous in space. The
electromagnetic fields are calculated on grid points in space. Though the PIC method
can often give satisfying results even with a relatively small number of particles, the PIC
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method inherently has the large statistical noise due to an approximation of the distribu-
tion function by a finite number of particles. This noise only decreases reciprocal to the
number of particles, making it difficult to study such as particle acceleration and thermal
transport processes, in which a small number of high energy particles play an important
role.

The direct Vlasov simulation is to solve the advection equation by directly discretiza-
tion on grid points in both spatial space and phase space. It has been widely known
that a numerical solution of the advection equation suffers from spurious oscillations and
numerical diffusion, while a highly accurate scheme is required to preserve characteristics
of the Vlasov equation, saying the Liouville theorem, as much as possible. Though there
are a lot of study [17, 18, 20, 24, 28] on the direct simulation, no standard scheme for the
Vlasov simulation has been established so far.

On the other hand, traditional approaches to modelling space plasmas use various levels
of approximations such as the Euler, the Navior-Stokes, magnetohydrodynamics (MHD),
Chew-Goldberger-Low [10] (CGL), and finite Larmor radius (FLR) models. The intrinsic
limitations of the models are seldom discussed, due in part to the difficulty in assessing
such limits. By studying the manner in which they are derived from kinetic equations,
it can be found that the difficulties involve representing nonequilibrium condition, wave-
particle interactions, anisotropies and low collisionality. Mathematically, this is translated
into the problem of closure of moments, since any finite number of velocity moments
of the Boltzmann equation does not constitute a closed set and the equation governing
the evolution of the velocity moment of order n contains the moment of order n + 1.
Considerable efforts have gone into developing methods for closing various sets of moment
equations. A variety of quasi-fluid descriptions have recently been introduced to describe
intermediate collisional regimes. For example, recent attempts include neoclassical and
anomalous transport in electrostatic turbulence [23], a fluid model of Landau damping
[14], anisotropic fluid plasma closure [11], fluid descriptions of ion acoustic waves [29], and
a MHD Vlasov study of toroidal Alfvén eigenmodes [25]. Actually, the moment closure
problem is originated in the Boltzmann equation.

The moment closure method of Boltzmann equation can be tracked back to Grad’s
work in 1949 [12], where a 13-moment model was given as an extension of the classic Euler
equations. In [13], its major deficiencies were found soon, including the appearance of
subshocks in the structure of a strong shock wave and the loss of global hyperbolicity.
In the later study, a number of regularizations were attempted to solve or alleviate these
problems, such as Levermore’s work [16]. Jin and Slemrod [15] gave a regularization of the
Burnett equations via relaxation, which resulted in a set of equations containing the same
variables with Grad’s 13-moment theory, and no subshocks appeared in the structure
of shock waves. By integrating the moment method with Chapman-Enskog expansion,
Struchtrup and Torrilhon [22, 21] regularized Grad’s system to give the R13 equations.
The R13 system removes the discontinuities in the shock wave and extends the region of
hyperbolicity considerably [26].

Due to the complexity of the explicit expressions, systems with large number of mo-
ments are not investigated until recently. In [27], Torrilhon and his coworkers developed
a software named ETXX [2] which is able to generate moment systems with almost any
number of moments in one-dimensional space. And in [3], some numerical results for a
shock tube were carried out to show the behavior of characteristic waves in the extended
thermodynamics. A numerical method solving large moment systems was proposed in [7],
and therein the regularization technique in [22] was applied to general moment systems.
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In [8], the order of magnitude method was also integrated into large moment systems.
In [6], the authors focused on the one-dimensional velocity space, and the characteris-
tic polynomial of the quasi-linear coefficient matrix was found to be very simple; thus a
brand-new regularized model with global hyperbolicity was proposed by the correction
of the characteristic speed. Such regularization was extended to the multi-dimensional
velocity space in [5].

It is clear that the moment expansion of the spatial convective term in Boltzmann
equation can be extended to the Vlasov-Maxwell equation. The resulting convective term
in the moment system expanded from the drift term of the Vlasov-Maxwell equation has
exactly the same format as that of the Boltzmann equation. Thus the method of the
hyperbolic regularization in [5] can be applied to the Vlasov-Maxwell equation to achieve
the global hyperbolicity. The major difference of the Vlasov-Maxwell equation from the
Boltzmann equation is the acceleration to the particles due to the electromagnetic field.
The moment expansion of the distribution function turns the acceleration term into a linear
source term, with compact sparse coefficient matrix. In this source term, the coefficient
matrix is block diagonal for the moments with the same order, thus the evolutions of the
moments with different orders are separated. It is shown that a weighted l2 norm of the
moments of the same order is invariant in time accelerated by the magnetic field alone.
As a result, the high order moments due to the source term are not growing at all. This
makes that the derived moment system is formulated as a quasi-linear system, plus a linear
source term which induces no growth of the high order moments. Since the convection
term in the system is guaranteed to be globally hyperbolic by the regularization, the local
well-posedness of the system is partially achieved.

The rest of this paper is arranged as follows: in Section 2 we present the elementary
formula of Vlasov-Maxwell equation. The moment expansion of Vlasov-Maxwell equation
is carried out in Section 3 and the system obtained is closed by truncation of the expansion
and regularized using method in [5] in Section 4 to achieve the final hyperbolic moment
system. In Section 5, we discuss an exact Vlasov-Maxwell equilibria with sheath-like
magnetic field for better understanding of the structure of the derived moment system.
Concluding remarks are in the last section.

2 The Vlasov-Maxwell Equations

The evolution of the distribution function fs of electrically charged particles of type
s (electron or ion), each particle having the charge qs and mass ms, is described by the
nonrelativistic Vlasov equation

∂fs
∂t

+ p · ∇xfs +
F s

ms
· ∇pfs = 0, x ∈ R3, p ∈ R3, (1)

where the acceleration term in the phase space is

F s = qs[E + p× (B+Bext)]. (2)

The part qsE is the Column force and the part qsp × (B + Bext) is the Lorentz force.
Here, the magnetic field is separated into two parts, where Bext is an external magnetic
field, and B is the self-consistent part of the magnetic field, created by the plasma. One
Vlasov equation is needed for each species of particles.
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The particles interact via the electromagnetic field. The charge and current densities,
ρ and j, act as sources of self-consistent electromagnetic fields according to the Maxwell
equations

∇x ·E =
ρ

ε0
∇x ·B = 0

∇x ×E = −∂B

∂t

∇x ×B = µ0j +
1

c2
∂E

∂t
.

(3)

The charge and current densities are related to the particle number densities ns and
mean velocities us as

ρ =
∑
s

qsns (4)

and
j =

∑
s

qsnsus, (5)

respectively, where the particle number densities and mean velocities are obtained as
moments of the particle distribution functions, as

ns(t,x) =

∫
fs(t,x,p) dp (6)

and

us(t,x) =
1

ns(t,x)

∫
pfs(t,x,p) dp, (7)

respectively.
The Vlasov equation (1) together with the Maxwell equations (3) and the constitutive

equations form a closed, coupled system of nonlinear partial differential equations and
integral equations. The system conserves the energy norm

‖fs‖2 =
∫ ∫

f2
s dp dx, (8)

the total number of particles

Ns =

∫ ∫
fsdpdx, (9)

the total linear momentum

P =

∫ [∫
p (mifi +mefe) dp+ εE ×B

]
dx, (10)

and the total energy

W =

∫ [∫
1

2
p2 (mifi +mefe) dp+

1

2

(
εE2 +

B2

µ0

)]
dx. (11)

For example, when the density of electrons are not extremely high, we can assume that
the equilibrium distribution is a Maxwellian distribution,

feq(t,x,p) =
n(t,x)

(2πkBT (t,x))
3/2

exp

(
−(p− u(t, x))2

2kBT (t,x)

)
(12)
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where kB is the Boltzmann constant, T (t,x) is the particle temperature, which is related
with the distribution function as below:

3n(t,x)kBT (t,x) =

∫
|p− u|2f(t,x,p) dp. (13)

3 Grad Moment System

In this section, we derive the moment system of the Vlasov equation using the Grad
type moment expansion.

3.1 Hermite expansion of the distribution function

Following the method in [7, 8], we expand the distribution function into Hermite series
as

f(t,x,p) =
∑
α∈N3

fα(t,x)HT ,α

(
p− u(t,x)√

T (t,x)

)
, (14)

where α = (α1, α2, α3) is a three-dimensional multi-index. The basis functions HT ,α are
the 3-dimensional Hermite functions defined by

HT ,α(ξ) =

3∏
d=1

1√
2π

T −αd+1

2 Heαd
(ξd) exp

(
−
ξ2d
2

)
, (15)

where Hen(x) is the Hermite polynomial of order n

Hen(x) = (−1)n exp

(
x2

2

)
dn

dxn
exp

(
−x2

2

)
. (16)

For convenience, Hen(x) is taken as zero if n < 0, thusHT ,α(ξ) is zero when any component
of α is negative. The parameter T in the expansion is the scaled local temperature as

T (t,x) = kBT (t,x). (17)

It is clear that the equilibrium distribution feq is coincidently equal to the first term
of expansion, i.e.,

feq(t,x,p) = f0(t,x)HT ,0

(
p− u(t,x)√

T (t,x)

)
, (18)

where f0(t,x) = n(t,x).
The definition of the Hermite function (15) shows that each basis function is an expo-

nentially decaying function multiplied by a multi-dimensional Hermite polynomial shifted
by the local macroscopic momentum u and scaled by the square root of the local temper-
ature T .

If one uses arbitrary known function u′(t,x) and T ′(t,x) in (14) to expand the distri-
bution function f(t,x,p) as

f(t,x,p) =
∑
α∈N3

f ′
α(t,x)HT ′,α

(
p− u′(t,x)√

T ′(t,x)

)
, (19)
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then the following relations between the macroscopic quantities u, T , the coefficients fα,
and u′, T ′, the coefficients f ′

α can be derived as follows,

n = f0 = f ′
0, (20a)

nu = nu′ + (f ′
ed
)Td=1,2,3, (20b)

n|u− u′|2 + 3nT =
3∑

d=1

(T ′f ′
0 + 2f ′

2ed
), (20c)

where ed is the unit vector with its d-th entry to be 1. It is clear that the coefficients fα
expanded using parameters u and T satisfy the following conditions:

fei = 0,
3∑

d=1

f2ed = 0, i = 1, 2, 3. (21)

Moreover, if we define the heat flux qi and the pressure tensor P = {pij}, i, j = 1, 2, 3
with

qi =
1

2

∫
R3

|p− u|2(pi − ui)f dp, (22)

pij =

∫
R3

(pi − ui)(pj − uj)f dp, (23)

then direct calculations give us the relations between them and the coefficients fα in (14)
as

qi = 2f3ei +

3∑
d=1

f2ed+ei , (24)

pij −
1

3
δij

3∑
d=1

pdd = (1 + δij)fei+ej . (25)

By the definition of the temperature (13) and (17) and the definition of the tensor pressure
(25), the scaled temperature T is a linear combination of pij as

nT =
1

3

3∑
d=1

pdd. (26)

With the relation (25), we then have

pij = δijnT + (1 + δij)fei+ej . (27)

3.2 Moment expansion of the Vlasov equation

Now we are ready to derive the moment system by taking the moments of the Vlasov
equation. The general method to get the moment system is to first multiply the Vlasov
equation (1) by polynomials of momentum p of different order and then integrate both
sides over momentum p on R3. One equivalent way is as follows. First, we substitute the
expansion of the distribution function (14) into the Vlasov equation (1), then we collect
the coefficients of the basis functions of the same order on both sides, and finally we
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equate them to yield the derived moment system. It should be noted that the Hermite
function (15) used in this paper depends also on the time t and position x through u(t,x)
and T (t,x), which is different from the general expansion using the Hermite functions
depending only on the momentum p [19]. For convenience, we list some useful relations
of Hermite polynomials as below [1]:

1. Orthogonality:

∫
R
He l(x)Hen(x) exp(−x2/2) dx = l!

√
2πδl,n;

2. Recursion relation: Hen+1(x) = xHen(x)− nHen−1(x);

3. Differential relation: He ′n(x) = nHen−1(x).

And the following equality can be derived from the last two relations:

[Hen(x) exp(−x2/2)]′ = −Hen+1(x) exp(−x2/2). (28)

Especially, we have

∂

∂pj
HT ,α

(
p− u√

T

)
= −HT ,α+ej

(
p− u√

T

)
. (29)

With these relations, the part
∂f

∂t
+ p · ∇xf

of (1) is expanded as

∑
α∈N3

{(
∂fα
∂t

+
3∑

d=1

∂ud
∂t

fα−ed +
1

2

∂T
∂t

3∑
d=1

fα−2ed

)

+
3∑

j=1

[(
T
∂fα−ej

∂xj
+ uj

∂fα
∂xj

+ (αj + 1)
∂fα+ej

∂xj

)

+

3∑
d=1

∂ud
∂xj

(
T fα−ed−ej + ujfα−ed + (αj + 1)fα−ed+ej

)
+

1

2

∂T
∂xj

3∑
d=1

(
T fα−2ed−ej + ujfα−2ed + (αj + 1)fα−2ed+ej

) ]}
HT ,α

(
p− u√

T

)
.

(30)

The acceleration term E · ∇pf is expanded as

−
∑
α∈N3

3∑
d=1

Edfα−edHT ,α

(
p− u√

T

)
. (31)

The term p×B · ∇pf is expanded as

−
∑
α∈N3

3∑
d,k,m=1

εdkm

[
ukBmfα−ed + (αk + 1)Bmfα−ed+ek

]
HT ,α

(
p− u√

T

)
, (32)

where the Levi-Civita symbol εdkm is defined as

εdkm =


+1, if (d, k,m) ∈ {(1, 2, 3), (3, 1, 2), (2, 3, 1)},
−1, if (d, k,m) ∈ {(1, 3, 2), (3, 2, 1), (2, 1, 3)},
0, if d = k or k = m or m = d,
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i.e., εdkm is 1 if (d, k,m) is an even permutation of (1, 2, 3), −1 if it is an odd permutation,
and 0 if any index is repeated.

Collecting the three terms (30), (31) and (32), we can get the following general moment
equations with a slight rearrangement by matching the coefficients of the same weight
function:

∂fα
∂t

+

3∑
d=1

∂ud
∂t

+

3∑
j=1

uj
∂ud
∂xj

− q

m
Ed −

q

m

3∑
k,m=1

εdkmukBm

 fα−ed

−
3∑

d,k,m=1

q

m
εdkm (αk + 1)Bmfα−ed+ek

+
1

2

∂T
∂t

+

3∑
j=1

uj
∂T
∂xj

 3∑
d=1

fα−2ed

+
3∑

j,d=1

[∂ud
∂xj

(
T fα−ed−ej + (αj + 1)fα−ed+ej

)
+

1

2

∂T
∂xj

(
T fα−2ed−ej + (αj + 1)fα−2ed+ej

) ]
+

3∑
j=1

(
T
∂fα−ej

∂xj
+ uj

∂fα
∂xj

+ (αj + 1)
∂fα+ej

∂xj

)
= 0.

(33)

By setting α = 0 in (33), we deduce the mass conservation

∂n

∂t
+

3∑
j=1

(
uj

∂n

∂xj
+ n

∂uj
∂xj

)
= 0. (34)

By setting α = ed, with d = 1, 2, 3 and noting that fed = 0 in (33), we obtain

n

∂ud
∂t

+
3∑

j=1

uj
∂ud
∂xj

− q

m
Ed −

q

m

3∑
k,m=1

εdkmukBm


+n

∂T
∂xd

+ T ∂n

∂xd
+

3∑
j=1

(δjd + 1)
∂fed+ej

∂xj
= 0,

(35)

which is simplified as

n

∂ud
∂t

+
3∑

j=1

uj
∂ud
∂xj

− q

m
Ed −

q

m

3∑
k,m=1

εdkmukBm

+
3∑

j=1

∂pjd
∂xj

= 0. (36)

By setting α = 2ed, with d = 1, 2, 3 and noting that fed = 0, we obtain

∂f2ed
∂t

+
n

2

∂T
∂t

+

3∑
j=1

uj
∂T
∂xj

+ nT ∂ud
∂xd

+
∑
j,l

(1 + 2δjd)f2ed−el+ej

∂ul
∂xj

− q

m

3∑
k,m=1

εdkmBmfed+ek +

3∑
j=1

uj
∂f2ed
∂xj

+ (1 + 2δjd)
∂f2ed+ej

∂xj
= 0.

(37)
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Noting that

3∑
d=1

f2ed = 0, we sum the upper equations over d to get

n

∂T
∂t

+

3∑
j=1

uj
∂T
∂xj

+
2

3

3∑
j=1

(
∂qj
∂xj

+

3∑
d=1

pjd
∂ud
∂xj

)
= 0. (38)

Since nT =
1

3

3∑
d=1

pdd, we have

∂T
∂xj

=
1

3n

3∑
d=1

∂pdd
∂xj

− T
n

∂n

∂xj
, j = 1, 2, 3. (39)

Substituting (36), (38) and (39) into (33), we eliminate the time derivatives of u and T
and the spatial derivatives of T . Then the quasi-linear form of the moment system reads:

∂fα
∂t

+

3∑
j=1

(
T
∂fα−ej

∂xj
+ uj

∂fα
∂xj

+ (αj + 1)
∂fα+ej

∂xj

)

+

3∑
j=1

3∑
d=1

∂ud
∂xj

(
T fα−ed−ej + (αj + 1)fα−ed+ej −

pjd
3n

3∑
k=1

fα−2ek

)

−
3∑

j=1

3∑
d=1

fα−ed

n

∂pjd
∂xj

− 1

3n

(
3∑

k=1

fα−2ek

)
3∑

j=1

∂qj
∂xj

+

3∑
j=1

((
− T
2n

∂n

∂xj
+

1

6n

3∑
d=1

∂pdd
∂xj

)
3∑

k=1

(
T fα−2ek−ej + (αj + 1)fα−2ek+ej

))

=

3∑
d,k,m=1

q

m
εdkm (αk + 1)Bmfα−ed+ek , ∀ |α| ≥ 2.

(40)

With (27), we can have the equations for pij by (40). Precisely, we have the equation
for pii/2, i = 1, 2, 3, as

∂pii/2

∂t
+

3∑
j=1

uj
∂pii/2

∂xj
+

3∑
j=1

(
1

2
+ δij

)
ρT ∂uj

∂xj
+

3∑
j=1

3∑
d=1

(2δij + 1)f2ei−ed+ej

∂ud
∂xj

+

3∑
j=1

(2δij + 1)
∂f2ei+ej

∂xj
=

q

m

3∑
k,m=1

εikmBmfei+ek , i = 1, 2, 3.

(41)

If i 6= j, we have pij = fei+ej , thus its equation is already in (40).
We collect the equations (34), (36), (41) and (40) together to obtain a moment system

with an infinite number of equations. Noting that the relation between ud and fed given in
(20) and the definition of qi and of pij given in (25), one can see that the obtained system
is quasi-linear for fα.
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4 Moment Closure with Global Hyperbolicity

The moment system derived from the Vlasov equation consists of (34), (36), (41) and
(40). It is clear that this is a system with an infinite number of equations taken n, ud, pij
and fα, |α| ≥ 3, as unknowns. To obtain a system with finite unknowns, we will truncate
the expansion (14) and close the system following the method in [5].

With a truncation of (14), (40) will result in a finite moment system. Precisely, we
let M ≥ 3 be a positive integer and only the coefficients in the set M = {fα}|α|≤M are

considered. Let FM (u, T ) denotes the linear space spanned by all HT ,α

(
p−u(t,x)√

T (t,x)

)
’s with

|α| ≤ M , and the expansion (14) is truncated as

f(t,x,p) ≈
∑

|α|≤M

fα(t,x)HT ,α

(
p− u(t,x)√

T (t,x)

)
, (42)

with f(t,x,p) ∈ FM (u, T ) and fα ∈ M. The moment equations which contain ∂fα/∂t
with |α| > M are disregarded in (40). Then, (34), (36), (41) and (40) with 2 ≤ |α| ≤ M
lead to a system with a finite number of equations.

Following [5], we let
SM = {α ∈ N3 | |α| ≤ M}.

Then for any α ∈ SM , let

N (α) =

3∑
i=1

(∑3
k=4−i αk + i− 1

i

)
+ 1 (43)

be the ordinal number of α in SM , and the cardinal number of set SM be

N = N (Me3) =

(
M + 3

3

)
,

which is the total number of moments if a truncation with |α| ≤ M is applied.
Let w = (w1, · · · , wN )T ∈ RN and for each i, j ∈ {1, 2, 3} and i 6= j,

w1 = n, wN (ei) = ui, (44a)

wN (2ei) =
pii
2
, wN (ei+ej) = pij , (44b)

wN (α) = fα, 3 ≤ |α| ≤ M. (44c)

The moment system (34), (36), (41) and (40) is collected in quasi-linear format as

∂w

∂t
+

3∑
j=1

Mj(w)
∂w

∂xj
= Gw, (45)

by taking the derivatives of fα+ej (|α| = M) to be zero, where Mj and G are N × N
matrices. The entries of Mj are given as the coefficients of the terms in (34), (36), (41)
and (40) with derivatives of w. The entries of G arise from the electromagnetic force
term. From (36), it is clear that

GN (ei),1 = − q

nm

Ei +
3∑

k,m=1

εikmukBm

 , i = 1, 2, 3. (46)
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The other nonzero entries of G are as

GN (α−ed+ek),N (α) = − q

m

3∑
m=1

εdkmαdBm, (47)

which is derived from

GN (α),N (α−ed+ek) =
q

m

3∑
m=1

εdkm (αk + 1)Bm. (48)

All other entries of G vanish except for the ones specified above.
In (45), we following Grad [12] take ∂fα+ej/∂xj(|α| = M) as zero to make the system

to be closed. It has been pointed out in [5] that it is not appropriate to set ∂fα+ej/∂xj = 0
(|α| = M) as the closure since the system is lack of hyperbolicity if the distribution function
is far away from the equilibrium. To obtain a system with global hyperbolicity, we have
to adopt the regularization given in [5]. For any α with |α| = M , we define

Rj
M (α) = (αj + 1)

[
3∑

d=1

fα−ed+ej

∂ud
∂xj

+
1

2

(
3∑

d=1

fα−2ed+ej

)
∂T
∂xj

]
. (49)

and

M̂j
∂w

∂xj
= Mj

∂w

∂xj
−
∑

|α|=M

Rj
M (α)IN (α), for any admissible w, (50)

where Ik is the k-th column of the N ×N identity matrix. We regularize the system (45)
as

∂w

∂t
+

3∑
j=1

M̂j(w)
∂w

∂xj
= Gw. (51)

It has been proved in [5] that

Theorem 1. The regularized moment system (51) is hyperbolic for any w with positive
temperature. Precisely, for a given unit vector n = (n1, n2, n3), the matrix

3∑
j=1

njM̂j(w) (52)

is diagonalizable with real eigenvalues as

u · n+Ck,m

√
T , 1 ≤ k ≤ m ≤ M + 1, (53)

where Ck,m is a root of m-order Hermite polynomial, and satisfies C1,m < · · · < Cm,m.
The structure of the N eigenvectors can be fully clarified.

Based on this theorem, the regularized moment system (51) is locally well-posed due
to the hyperbolicity. We would like to mention here that the regularization here actually
does not add any new terms to the system (45). On the contrary, it has erased the terms
in (40) with a factor αj + 1 in its coefficient for the equations of fα with |α| = M only.

Let us turn to the source term Gw coming from the phase space acceleration due to
the electromagnetic force term. We first point out that the matrix G is block diagnal as

G = diag{0,G1,G2, · · · ,GM},

11



where
Gm =

[
GN (α),N (β)

]
, |α| = |β| = m, 1 ≤ m ≤ M,

and the nonzero entries of G1 is given by (46), and the nonzero entries of Gm, 2 ≤ m ≤ M

are given by (47). Omiting the convective term
3∑

j=1

Mj(w)
∂w

∂xj
in (45) temporarily, let us

consider the system with the source term only

∂w

∂t
= Gw. (54)

We define a diagonal matrix D with diagonal entries

DN (α),N (α) = α! ,
3∏

d=1

αd!. (55)

It is clear that D can be divided into

D = diag{0,D1,D2, · · · ,DM},

where
Dm = diag{DN (α),N (α)}, |α| = m.

Correspondingly, the vector w is divided into

w = [n,w1,w2, · · · ,wM ]T ,

where
w1 = [u1, u2, u3]

T , and wm = [wN (α)]
T , |α| = m, 2 ≤ m ≤ M.

We note that such a partition requires a re-permutation of the entries of w. We have the
following properties

Theorem 2. The solution of system (54) satisfies

∂

∂t

(
1

2

3∑
i=1

u2i

)
= − q

nm

3∑
i=1

uiEi, (56)

∂

∂t

(
1

2
wT

mDmwm

)
= 0, 2 ≤ m ≤ M. (57)

Proof. We notice that
3∑

i,k,m=1

εikmuiukBm = 0,

thus (56) is obtained. As for (57), we have

∂

∂t

(
1

2
wT

mDmwm

)
= wT

mDm
∂wm

∂t
= wT

mDmGmwm.

12



Notice that the matrix DmGm is a diagnol block of the matrix DG, and each one of its
nonzero entries satisfies

(DG)N (α),N (α−ed+ek) = α!GN (α),N (α−ed+ek) (58)

=
q

m

3∑
m=1

εdkm(αk + 1)Bm(αd)!αk!αm! (59)

=
q

m

3∑
m=1

εdkmαdBm(αd − 1)!(αk + 1)!αm! (60)

= −(α− ed + ek)!GN (α−ed+ek),N (α) (61)

= −(DG)N (α−ed+ek),N (α). (62)

It is turned out that DmGm is a skew-symmetric matrix, thus

wT
mDmGmwm = 0.

This ends the proof.

Since the Coulomb force provides an acceleration on the mean velocity only, which is

the term
q

m
Ei inG1, the Lorentz force inG1 exerting on the mean velocity is perpendicular

to the mean velocity clearly. The result in Theorem 2 indicates that the Lorentz force will
not change the magnitude of the high order moments for any order m ≥ 2, too, taking
the matrix Dm as the l2 weight. One may observe that the Lorentz force in the Vlasov
equation will rotate the distribution function in the velocity space only, and here we see
such behavior is preserved in the moment system we derived.

5 An Exact Vlasov-Maxwell Equilibrium

Knowledge of the exact Vlasov-Maxwell equilibrium is often necessary when analyzing
the stability of a plasma [9]. In this section, we present a simple example of exact Vlasov-
Maxwell equilibrium. This makes it possible to examine the residual of the moment
system if we substitute the exact solution into the moment system. The moment system
we derived is then partially validated once it is observed that the residual of the system
is very small.

For simplicity, we consider a situation in which all quantities vary only in the x1
direction, and the magnetic field has components B2 and B3 in the x2 and x3 directions.
The equilibrium is characterized by a zero electric field. We require exact charge neutrality,

ni(x1) = ne(x1), (63)

where ni and ne denote the ion and electron number densities.
The magnetic field can be derived from a vector potential, A, and

B3 =
dA2

dx1
,

B2 = − dA3

dx1
.

(64)
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Maxwell’s equations (3) for the magnetic field become

d2A2

dx21
= −µ0j2,

d2A3

dx21
= −µ0j3,

(65)

where j(x1) is the current density. The constants of the motion for particles of species,
s(s = i or e), are the Hamiltonian

Hs =
ms|p|2

2
, (66)

and the x2 and x3 components of momentum,

P2,s = msp2 + qsA2,
P3,s = msp3 + qsA3.

(67)

To find a self-consistent equilibrium, we must solve the coupled Vlasov-Maxwell equa-
tions. The Vlasov equations (1) are easily satisfied by making the distribution functions
depend only on constants of the motion. We assume it is of the form

fs = exp(−βsHs)gs(P2,s, P3,s), (68)

where the βs are constants and the gs are functions that satisfy (see details in [9])

1

m2
s

(
2π

msβs

)1/2 ∫
exp

{
− βs
2ms

[
(P2 − qsA2)

2 + (P3 − qsA3)
2
]}

gs(P2, P3) dP2 dP3

=
βeβiU(A2, A3)

µ0(βe + βi)
.

Consider a situation in which the magnetic field is unidirectional, we can take A3 = 0.
Let us assume that

U(A2) = D exp
(
−γq2sA

2
2

)
, (69)

where D and γ are constants, so that the potential now resembles a “hill”. If we let

δs =
1

4γ
− ms

2βs
, (70)

then the distribution functions are given by

fs(Hs, P2,s) =
m2

sβsn0

4π2

(
πβs

2γδsms

)1/2

exp

(
−
P 2
2,s

4δs
− βsHs

)
, (71)

where n0 is the density at x1 = +∞.
Using the expression of fs(x1,p), we obtain density ns(x1) by (4), mean velocity us(x1)

by (5) and temperature Ts(x1) by (13)

ns =

∫
R3

fs(t, x1,p) dp = n0 exp
(
−γq2sA

2
2

)
, (72)

us =
1

ns

∫
R3

pfs(t, x1,p) dp =

(
0,

−2γqs
βs

A2, 0

)
, (73)

Ts =
1

3ns

∫
R3

(p− us)
2fs(t, x1,p) dp =

(
1

msβs
− 2γ

3β2
s

)
. (74)
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And the pressure tensor Ps(x1) by (23)

Pij,s =

∫
R3

(pi − ui,s)(pj − uj,s)fs dp = 0, if i 6= j, (75)

P11,s =
ns

msβs
, nsT1,s, (76)

P22,s =
4δsγ

msβs
ns =

(
1

msβs
− 2γ

β2
s

)
ns , nsT2,s, (77)

P33,s =
ns

msβs
, nsT3,s, (78)

Ts =
1

3ns
(P11,s + P22,s + P33,s) =

1

3
(T1,s + T2,s + T3,s) . (79)

Then we have

fs(x1,p) =
ns√

(2π)3T1,sT2,sT3,s
exp

(
−(p1 − u1,s)

2

2T1,s
− (p2 − u2,s)

2

2T2,s
− (p3 − u3,s)

2

2T3,s

)
. (80)

Let us calculate the moments and plug them into our moment equations and find the
residual is going to zero as the order goes to infinity. We expand fs(x,p) into the Hermite
series

fs(x,p) =
∑
α

fα,sHTs,α

(
p− us√
Ts(x)

)
. (81)

The expression of fα,s can be calculated as

fα,s =


3∏

d=1

(Td,s − Ts)kd

(2kd)!!
ns, if α = (2k1, 2k2, 2k3), ki = 0, 1, 2, · · ·

0 otherwise.

(82)

It is clear that
lim

|α|→∞
fα,s = 0, (83)

Actually all the moment equations which are not modified by closure are satisfied by
the moments of fs(x,p). We need only examine the moment equations of order |α| = M in
the regularized moment system of order M which has been modified due to the truncation
and closure. Substituting the exact moments into the regularized moment system and
calculating the residual yields

Res(α) =
3∑

j=1

Rj
M (α) +

3∑
j=1

(αj + 1)
∂fα+ej ,s

∂xj
(84)

where the closure term Rj
M (α) is defined in (49) and the truncation term

∑3
j=1(αj +

1)
∂fα+ej ,s

∂xj
is easy to be identified by observing the original moment equation (40). The
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residue (84) is reduced into

Res(α) = (α1 + 1)

(
du2,s
dx1

fα−e2+e1,s +
∂fα+e1,s

∂x1

)

=



(T1,s − Ts)
α1+1

2 (T2,s − Ts)
α2−1

2 (T3,s − Ts)
α3
2

(α1 − 1)!!(α2 − 1)!!α3!!
ns

du2,s
dx1

, if α = (2k1 − 1, 2k2 + 1, 2k3), ki > 0

(T1,s − Ts)
α1+1

2 (T2,s − Ts)
α2
2 (T3,s − Ts)

α3
2

(α1 − 1)!!α2!!α3!!

dns

dx1
, if α = (2k1 − 1, 2k2, 2k3), ki > 0

0, others.

The residue goes to zero as the truncation order M going to infinity, i.e.,

lim
|α|→∞

Res(α) = 0. (85)

6 Conclusion

We extend the moment closure method [5] for the Boltzmann equation to the Vlasov-
Maxwell system and a hyperbolic moment system is derived. The systems for arbitrary
number of moments are obtained at once by a systematic approach. We are developing
the numerical method for the moment system obtained.
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