A REMARK ON GEODESIC GEOMETRY
OF TEICHMULLER SPACES

LI ZHONG

ABSTRACT. Let 7(S) be the Teichmiiller space of a hyperbolic Riemann sur-
face S. In this paper, it is shown that, if p is an extremal Beltrami differential
on S of landslide-type, then there exist infinitely many geodesic rays, all of
which tangent to each other at the basepoint of 7(S) but intersect at [u].

§1. INTRODUCTION

Let 7(S) be the Teichmiiller space of a hyperbolic Riemann surface S and let
Belt(S) be the Banach space of bounded measurable Beltrami differentials py =
pdz/dz on S with La-norms. Suppose M(S) is the open unit ball of Belt(S).

For any p in M(S), f* stands for a quasiconformal mapping of S onto f#(S),
whose complex dilatation is p. Two elements p and v in M(S) are said to be
Teichmiiller equivalent, denoted by p ~ v, if and only if, there exits a conformal
mapping ¢ of f#(S) onto f¥(S) such that (f*)~! o o f* is homotopic to the
identity mapping (Mod 9S). The Teichmiiller space T(S) is defined as M(S)/ ~,

T(S) :={[p] - p € M(S)},

where [u] is the Teichmiiller equivalence class of p.
A Beltrami differential u € M(S) is said to be extremal, if and only if,

litlloo < |1 ooy V" € 1]

As is well-known, 7(S) is a complex manifold. When S is compact with genus
g > 1, or more generally speaking, when S is of (g,n)-type with 3¢ —3 +n > 0,
T(S) is finite-dimensional. Otherwise, it is infinite-dimensional.

T (S) has a natural metric dr(-, ), which is coincides with the Kobayashi metric
and can be induced from a Finsler form.

The geometry of the Teichmiiller metric has been studied by many authors,
for example, [7],[1],[16],[2],[3],[9],[10] and many others, including some preprints
[19],[14] and [17].

This paper is a further study on angels between two geodesic rays in Teichmiiller
spaces, which is firstly defined in [19].
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To state our question and results, we need some notation and terminologies.
Suppose p € M(S) \ {0} is extremal. Then the mapping *

Vo - [07 D =T(S); re— [T,U'/H,UJHOC]
is an isometry embedding with respect to the Poincaré matric and the Teichmiiller
metric, respectively. We called ~, a geodesic ray. The restriction v,(o,u)] ©f Vu
is called a geodesic segment between [0] and [u].
Suppose both p and v are extremal with

P @)
Following [19] (or see [12]), if the limit
lim dr([rpl, [rv]) (1.2)
r—04 r

exists, the angel < 7,,7v, > at [0] between two geodesic rays =y, and =, is defined

as follows : 1 dr([rul, [rv])
B (L gy Gz V)
< Vs Yo >1= 2arcsin (2 T1_1)%1+ ok > :

(1.3)
For the reason why we definite the angle < ~,,7, > like this, refer to [12].

If < vu,7 >=0, we say v, is tangent to v, at [0], or say v, and v, are tangent
to each other at [0]. Naturally, in this case, we also say geodesic segment 7,(o,)
is tangent to the geodesic segment 7, [j0.x at [0], or say they are tangent to each

other at [0].
It is natural to ask the following question that was firstly proposed in [14]:

Are there two distinct geodesic rays v, and v, that tangent at [0] but intersect
at another point?

If T(S) is finite-dimensional, the answer to this question is no. However, for the
infinite-dimensional case, it is yes. The following theorem provides an affirmative
answer to this question: There exist infinitely many geodesic rays that start at [0]
and intersect at another point [u] in 7(S).

Theorem 1.1 Suppose pp € M(S)\ {0} is extremal with the following property:
uw(z)=0, VzeU (1.4)

where U is an open subset of S. Then there exits a family F = {vo : 0 < a < 0} of
extremal Beltrami differentials v, in [p] such that each geodesic rays 7y, is tangent
to vy, namely

<Yy Ye >=0, Va €(0,9).
Moreover, if a # o and both of them are in (5o,0), then geodesic ray 7, is distinct
from v .

Remark 1.1: It is known that condition (1.4) implies the existence of infinitely
many geodesic segments connecting [0] and [u] ( see [18] or [11]). Now Theorem
1.1 tells us that condition (1.4) implies much more: such segments can be required
to be tangent to each other.

Remark 1.2: For any infinite-dimensional Teichmiiller space, one can easily show
the existence of such a p in Theorem 1.1. So such a geometric phenomenon appears
in any infinite-dimensional Teichmiiller space.

Here we regard the interval [0,1) as a non-Euclidean ray in the Poincaré disk D.
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Remark 1.3: By a result [20] of Z. Zhou, if there is an open set V of S such that

sup{[ul(2) : z € V} < lpllo (1.5)

then (1.4) holds for some open subset U of S. So condition (1.4) can be replaced
by (1.5).

An extremal Beltrami differential p with condition (1.5) is said to be of landslide
type. So Theorem 1.1 holds for any extremal Beltrami differential of landslide type.

Remark 1.4 : Recently we got a preprint of paper [17] by Y-L. Shen and Y. Hu.
In their interesting paper, it is shown that the limit (1.2) always exists for any
Beltrami differentials p and v and

/m*4¢
s

o Gl )

r—0+ r ¢EQ1(S)
where 91(S5) := {¢ € Q(S) : ||¢|| = 1}. Moreover, they answered a question on
triangles posted in [12], by showing the following fact: In an infinite-dimensional
Teichmiiller space, there is an equiangular triangle whose inner angle 6 may take
any given values in [0,7]. Now our paper investigates two-sided polygons whose
sides are geodesic segments.

)

§2. PRELIMINARY AND NOTATION

Without loss of generality, throughout this paper we assume that S is a Riemann
surface whose universal covering surface is the open unit disc D := {z € C : |z| < 1}.
The corresponding covering map of S is denoted by 7 : D — S and the covering
transformation group of 7 is denoted by I'.

For convenient sake, we identify .S with D/T" and all discussions on S are trans-
formed to D with the action of I'. For example, the Banach space Belt(S) is regarded
as the Banach space of functions u(z) € Lo (D) that satisfy the following condition:

!/
u(’y(z))zlgg = u(z), for a.e. z € D and Vy €T (2.1)
The ideal boundary 0S5 of S is regarded as OD/T.

With this agreement, for each element p € M(S), there is a uniquely determined
quasiconformal mapping of D onto itself that keeps 1, i and —1 fixed, whose complex
dilatation is pu. Such a quasiconformal mapping is denoted by f#. Actually, f*#
represents a quasiconformal mapping of S onto S* := D/T'* with the complex
dilatation p, where

D= {fForyo (/)7 ¥y € T},

Sometimes we need to deal with some other Riemann surface expect for S. In
this case, a quasiconformal mapping of this Riemann surface onto another one is
also expressed as a quasiconformal mapping of D onto itself that is compatible with
a group.

It is known that a quasiconformal mapping f* : S — S* can be extended to
S = SUdS as a homeomorphism of S onto S¥. Such an extension of f* is denoted

by f”.
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With this notation, the Teichmiiller equivalence can be simply expressed as fol-
lows: p ~ v, if and only if,

Flop = f¥ o -
Let p be any element of M(S). As usually, K (f#) denotes the maximal dilatation
of f# namely
_ (el

KU = Tl

In this paper, we define

K ([u]) := mf{K(f") : ' ~ p},

and call it the extremal maximal dilatation of [u]. We also need the notation of the
boundary dilatation. Let h([u]) be defined as

h([w]) = inf{h(p) : &' ~ p},

where h(y') is the boundary norm of y/, that is
h(v) == mf{[[v[s\ell},

where E ranges over all compact subsets of S.

By 9(S) we denote the Banach space of integrable holomorphic quadratic dif-
ferentials ¢ = ¢(2)dz? on S with L;—norms ||¢||. According to our agreement that
S is identified with D/T", a holomorphic quadratic differential ¢ on S is regarded as
a holomorphic function ¢(z) on D that satisfies the following condition:

o(v(2)Y (2))? = é(2), Vvyel.

The norm ||¢|| will be written in both ways:

H¢>II=/S\¢I, or |\¢>||=//Q|¢<z>\dxdy (z =z +iy),

where (Q is a fundamental domain of T'.

The Banach dual space of Q(S) is the tangent space to T(S) at [0], which is
usually called the infinitesimal Teichmaiiller space of S and denoted by 9(S). More
precisely, two elements p and v of Belt(S) are called infinitesimal Teichmiiller
equivalent, denoted by p ~ v, if and only if,

/J’“‘ S D)e=0, Vée Qs).

The infinitesimal Teichmiiller equivalence class of u is denoted by [u]s. Then 2B(S)
is defined as the quotient space Belt(S)/ =, namely B(S) = {[u]s : p € Belt(S)}.

[,LL]‘B haS a Slalldard Sllp norm:
S

)|l == sup
$€Q1(S)

)

where Q1(S) = {6 € Q(S) : [l¢]] = 1}.
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83. PROOF OF THEOREM 1.1

To show Theorem 1.1, we need some lemmas. The first lemma is a generalization
of the Polygon Inequality of Reich-Strebel. For its proof, refer to [9].

Lemma 3.1 Let S be a hyperbolic Riemann surfcice and T(S”) the Teichmiiller
space of S. Suppose & is a Beltrami differential on S with |[c|| < 1 and [5] is the
Teichmiiller equivalence class of & (Mod 0S). Then we have

K(5) < suwp [‘ o] 3l

¢EQ1 1—laf?
where Q1(S) := {¢ € Q(5) : ||9|| = 1}.

In what follows, we will use the notation “O” in the following sense: Suppose f(r)
and g(r) are two complex valued functions of r € (0,1). We say f(r) = O(|g(r)|)
(as r — 0+), if there are two constants C'(> 0) and rg with 0 < 79 < 1 such that

|f(r)| < Clg(r)], provided 0 < r < r.
The constants C and rqg are called the constants contained in the “O”.

The second lemma is a special case of the “good approzimations’ . For its proof,
refer to [15].

Lemma 3.2 Suppose {o, : 7 € (0,1)} is a family of elements in M(X) with the
following condition

lorlloo <3r (0<r<1). (3.1)
Then we have
|fo7(2) — 2| =O(r) (asr — 0+), VzeD 2 (3.2)
and
10217 = UlLom) = O(r) (as r — 0+). (3.3)

The constants contained in the “O7s in (3.2) and (3.3) are universal.

Remark 3.1 : In the general case, (3.1) should be |o,| < Mr, where M > 0 is
a constant. However, for our discussion below, M = 3 is good enough and in this
case, the constants contained in “O” are universal.

As a consequence of (3.3) we have the following:

Corollary 3.1 For any sequence {r,} in (0,1) with r,, — 0 as n — oo, there is
a subsequence {ry, } of {rn} such that

O.f™(2) = 1, fora. e ze€Q. (3.4)

The third lemma is new version of the main inequality of Reich-Strebel (see [13]):

Lemma 3.3 Let p and v be arbitrarily given two elements of M(X). Suppose
K is a Beltrami differential on f*(X), such that f* ~ f¥ o (f*)~1(Mod df*(X)).

2Here f°r actually is a quasiconformal mapping of D onto D that is compactible with the group
T (see §2).
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Let 7 be the Beltrami coefficient of f* o f*. Then for any ¢ € Q(X) with ||¢|| =1,
we have

s |7 o | o |
< 1= u| 1= ko @] L-ne e
< | o

]2 1—|ko frf? 1—|vio f7? ’
where vy is the Beltrami coefficient of (f)™1,
Q.71 —pg/|g| .71 -19/l¢|
0, (¢) = STHOLOL G Q.(8) = S TONeL
A Ty A G N L sy P

Proof of Theorem 1.1 . We divide our proof into four parts.
Part A : Contraction of the family F :={v,: 0 < a < d}.

Suppose p is the given Beltrami differential on S in Theorem 1.1; namely, p €
M(S)\ {0} is extremal and

uw(z)=0, Vzel,

where U is an open subset of S.

Let 7 : D — S be the covering mapping of S and I' the covering transformation
group of w. Suppose (2 is a fundamental domain of I'. Without loss of generality,
one may assume that 7= (U) N Q contains a disk

D:={zeD:|z—z| <p}
with D C €. So we have
w(z)=0, VzeD. (3.5).
We look at the following function:
M=) i= 2+ alz — 20)(2 — zof* — )]z — 202, z€ D,
where « is a real parameter. A simple computation shows
Ozt = a2 — 20)*(2]z — 20f* = p%)
and
Dol = 1+ a(3]z — 20]? — 2p?)|2 — 20|
Let 74 := 0210/02M0. Then we have
Ta(2) = (2 — 20)%ha(|z — 20|), Vz € Dy, (3.6)
where h,, is a function of r € [0, p) :
2 _ 2
halr) =7 f((f(gr;—pz);ﬁ)‘

Now we assume that 0 < o < § and 4 is sufficiently small, such that

1 o0
Omal(z) > & and [oema(z) < W vz e p,

This leads to
|T(2)|] < |ulloo <1 Vze€ D. (3.7)

Clearly, n, satisfies the following Beltrami equation

0N (2) = Ta(2)0:ma(2), Vz € D.
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On the other hand, by the definition of 7, the restriction of 7, to 0D is an identity
mapping of dD. Therefore 7, is a quasiconformal mapping of D onto itself.
Now for each fixed «, we define a quasiconformal mapping g, of Q onto itself:

a(2), D;
i ga(2) = {7] (2) as z €

z, as z € Q\ D.

Let I'(D) := Uqer v(D) and © :=T'(D)/T. It is clear that g, induces a quasi-
conformal mapping g, of S onto itself, which is an identity mapping of S\ ®. The
complex dilatation of g, is denoted by 7. Obviously, we have

To(2) =0, Vze S\D. (3.8)
Now v, is defined to be the complex dilatation of f* o g,. In the other words,
fre = fFoge,. (3.9)

From (3.7) we see that |[V4|o|lcc < ||tt]lcc- On the other hand, v, (z) = p(z) as
2 €S\ D. So v, is extremal.

Then F = {v, : 0 < o < ¢} is the family of extremal Beltrami differentials.
In the following parts of the proof, we will show each element v, in § satisfies the
requirements of Theorem 1.1.

Part B : Proof of ||[t — va]s]| = 0.

In this part, we want to show

/S(u - Va)sb‘ =0, (3.10)

[l = va]sll = sup
$€Q1(S)

where Q1 (S5) :={¢ € Q(5) : [|¢]| = 1}.

By the chain rule of complex dilatations, from (3.9) we have

- Ta + 1O JaWi,

Vg = 2 L2 JokGa (3.11)
1+Tauogaw§a

where wg, = 0,00/0:Ga-
Recalling the fact that g.|s\o is an identity mapping, we see wj, |s\» = 1. On
the other hand, u|p = 0. So it follows from (3.11) that

) Tal2), as z € D;
val2) = {u(z), as z € S\ D. (3.12)

Because p|o =0 and 74(z) = 0 when z € S\ D, (3.12) leads to
Va(2) — u(2) = Talz), Vze€S. (3.13)
In particular, we have

Vo(2) — p(2) = 10(2), Vz e (3.14)
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Then it follows from (3.13) and (3.14) that

/S(ﬁa - u)cb’

sup
$€Q1(S)
= « - dxd ) .
¢£ﬁn[éww>uwww vy (3.15)
= « dxd )
¢£ﬁn[Lf@W@ vdy

where Q1(Q) is the set of all local expressions in terms of parameters in 2 of
elements in Q4 (S).
Let ¢ be any elementary in Q1(€) and let its restriction to D be

¢lp(2) = an(z = 20)™.
n=0

We have
//D Ta(2))9|p(2)dxdy

= // ha(lz = 201) Y an(z — 20)" 2 dady (3.16)
D n=0

P 2m )
= / ha(r)rdr/ Z anre’ 2049 — 0.
0 0 n=o

Then (3.10) follows from (3.15) and (3.16).
Part C: Proof of < vyu,vv, >=0.

Now we are going to show < 7,7, >= 0 by using (3.10).

Remak 3.2 : 1If one uses the result of [17], the conclusion < ~v,,7,, >= 0 can
be gotten directly from (3.10). However, so far [17] has not published yet. For the
completeness of this paper, here we give a proof that is different from [17].

Suppose S, is the Riemann surface f™*(S) and o4, is the complex dilatation of
e o (fr*)~1. Then o, is a Beltrami differential on S, and

frer = frreo (fr)Th (3.17)

Let K([oq,r]) be the extremal maximal dilatation of [0, ,]. Then the Teichmiiller
distance between [ru] and [rv,] is

dr([ril, [rva]) = 3 log K (o))

Now we apply Lemma 3.1 with the following notation changes: S and & in
Lemma 3.1 are replaced by S, and o, ,, respectively. Then we get

2

‘1 + Ga
K([Ua,r}) < sup / 0 2
6,€01(5) s, 1= |oar

where Q1(S,) := {¢, € Q(S;) : ||¢r]| = 1}.

[oaF (3.18)
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By the chain rule of complex dilatations and (3.17), we have

TV — T

Oa,r [¢] fru = Wfru7

1 — 120y,
where wyrn = 0, fT#/0, f™"*. Then we get

2r
1—1r2

10a,rlloo < 0<r<1),

and hence, from (3.18),

2

L P T)

1+ Oa,r 77
|

=142 sup Re/ Oardr +O(r?) (as r — 04),
¢E Ql(sr) Sr

K(oas)) < sup / T

$€Q1(Sr) /S

where the constants contained in the “O”s here are universal. Then a simple
computation shows

0 < dr([rul, [rva]) < 5 Yoall + (K (o)) ~ 1)
< %(K([Ja,r]) -1) (3.19)
< sup Re/ Cardr +O(r?)(as r — 04).
¢r€Q1(Sr) Sy

Let Q be the fundamental domain of I' which is the same as in Part A. Let
Q, := f(Q). It is a fundamental domain of the group

o= {f"oyo(f")': VyerT}.
Then (3.19) can be rewritten as
0 < dp([rul, [rval)

< sup Re // O () (Q)dedn + O(r?)(as r — 0+),
) Q

T $,€01 (0

(3.20)

r

where Q;(£2,) is the set of local expressions in 2, of all ¢, € Q1(S,.). The constants
contained in the “O” here are universal.

It is easy to see the f™* is a good approximation of the identity mapping. By
Lemma 3.2, we see

|f™(z) — 2| =0(r) (asr — 0+),Vz €D,
where the constants contained in the “O” are universal. Then we have

o FTH(3) = TVQ(Z) _T/”L(Z)
Tar e f1(2) =12 1271(2)va(2)
= rlva(2) — w(@)@Fw(2) + O(?) (as 1 — 0+),

Wur (2)

where wyrn = 0, fT# /0, f" and the constants contained in the “O” are universal.
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Noting the facts that v, (z) —pu(z) = 0 when z € Q\ D and u(z) = 0 when 2z € D,

we have
// Vo (2)Wpric(2)dr 0 [T (2)Jr (2)dady (3.21)

O(r?) (asr — 04),
where J, = |8Zf”‘|2 — |0=f"#|2. Then it follows from (3.20) and (3.21) that

o< drlrshlrve)

<  sup Re// Vo (2)Wpnr (2)@r 0 fH7(2)Jr(2)dady (3.22)

Pr€Q1(R2
+ O(r) (as r — 04).

The constants contained in the “O” here are universal.
Now we choose a sequence {r,} in (0,1) with r, — 0+ (as n — oo) such that

limsupM = lim M

r—0+ r n—oo Tn
Then from (3.22) we get
dr([rnpl, [Tnl/a])

" I, +O(r, —0+) (asr, — 0+), (3.23)

where

I, = sup  Re //D Vo (2)wfrmn (2) by, © M1 (2)dy,, (2)dxdy.

¢7-n €9, (an )

Now for each fixed r,,, we choose a ¢, € Q1(, ) such that

1
Re [[ va(@mm ()i, o £ ()0 dudy > I, (3.24)
D
Noting the fact that the constants contained in “O” in (3.23) are universal, from

(3.24) we get

s 208, )
r—0+ r

< limsup Re //D Vo (2)@frmu (2)y,, © [T (2) )y, (2)dzdy.

n—oo

(3.25)

Now we look at the family ® := {9, (2) : 2z € Q}. For any open subset V' of (2
with V' C Q, when n is sufficiently, f™#(V) C Q and

J[ W @ldsdy < [ =1 (3.26)
v o

This means that ® is a normal family. We can choose a subsequence of {t);., }, which
is uniformly convergent on any compact subset of 2. Without loss of generality, we
may assume that such a subsequence is {¢,. } itself.
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We suppose the limit function of {; } is ¢o. Then ¢o(z) is holomorphic on €.
By the Fatou lemma and (3.26), we see

/[ 1entlazay < 1.

for any open set V with V' C . This implies

J[ 1ov(eiazay < 1. (3.27)

Now we claim that

Yo(2) = ho(V(2))[ (2))*, ¥y el &Vze. (3.28)
In fact, for any fixed v € T, let 7,, = f™* oo (f™*)~1. We have
Yro (2) = Ur, (v, (D), ()P (V2 € Q) (3.29)

It is easy to check by using Lemma 3.2 that
Yr, =7 and 7, —7 (asn — 00).

Then we can get (3.28) by taking the limits of both sides in (3.29).
From (3.28) we see that ¢g(z)dz? represents a quadratic differential on S.
Because 1., is locally uniformly convergent to ¢o in  and f™* is a good
proximation of the identity mapping, ¥, , o f™* uniformly converges to ¢o on D
On the other hand, by Lemma 3.2, one may choose a subsequence of w¢rnn and
assume such a subsequence is wyrnn itself, such that

wiran(z) > 1 (asr — 0+) forae ze€D.

Using Lemma 3.2 again, it is easy to see that

[ 190102 = 1idzay

D

= // 10, f7(2)]* = 1 + |rup(2)|?||dedy — 0 as n — oo.
D

Similarly as above, choosing a subsequence of J, and assuming such subsequence
is Jyrn itself, we may assume

Jr(2) > 1 (asr—0+) forae z€D.

By using the Lebesgue Theorem, we get

i [ o E7e, © £, (2) = b0l dady =

n—o0

which implies

n—r oo

~ lim Re / /D Ve (2)0(2)dady.

Then it follows from (3.25) and (3.30) that

tim Re ([ va(@@pn(a)n, © £ (2),, (2)dndy
b (3.30)

lim sup dr(rpl, [rva]) < Re // Vo (2) o (2)dxdy. (3.31)
D

r—0+4 T
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In Party B, we have shown

/ / Ve (2)60(2)dady = 0.
D
So it follows from (3.31) that

d o
hmsup T([TI'LL [TV ]) — 0,
r—04 r
which clearly implies
hm dT([T/‘l'L [71]/&]) — 0.
r—04 r

By the definition of angles, we have < v,,v,, >= 0. This means each v, is tangent
to v, at [0].

Part D : Proof of the conclusion that v,, # V., (a # ).

To complete the proof of Theorem 1.1, we need to show that, if a # o/, the
geodesic ray 7y, is distinct from ~,/. The proof is based on Lemma 3.3, i.e., the
generalized main inequality of Reich-Strebel [13].

Now we apply Lemma 3.3 with the following notation changes: p and v are
replaced by rv, and rv, (0 < r < 1), respectively. Let ¢ be any given element in
Q(S) with ||¢|| = 1. Then we have

2

13// ‘1—7“1/&%‘2’1_,€Tofryaﬂwa(¢)%
0 1—

Pl A=k o [P

(3.32)
‘1 —Vpg0 anT,,,((b)I%)Q

X
L—|vi,o fr|?

|p|dxdy,

where £,,7, Qry, (¢) and Q. (¢) are the corresponding terms of , 7, ,(¢) and
Q,(¢) in Lemma 3.3, respectively, and v, is the complex dilatation of (f™=")~1.
Noting the fact that |Q,, (¢)| = 1, we have

& 2
1= ko o, ()]

1— |I€T0f”’0‘|2

< K(f).

Then from (3.32) we get
‘2

¢ |? é
1 ‘I—TVO[W‘ ’1_Vr,1ofTTQTr(¢)w
] < |p|dxdy,

Q

K(fsr 1—r2v,l? 1— vy 0 frr|?

which implies

1 N I ARy L O
K(m]) = //Q ||dady,

1= r2[ve? L= w0 frrf?

where K ([k,]) is the extremal maximal dilatation of [k,].
Let

L= //Q - 7"’/@%(2 Lo fm”@)%r 9| ddy.

1 —7r2vyl? 1—|vip0fm|?
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Then we have .

< L,. (3.33)
K([rr])
Now we take k, to be the complex dilatation of f™a’ o (f"«)~1 namely
fﬁr — fT”o/ ° (frva)—l. (334)

According to the assumption in Lemma 3.3, 7, should be the complex dilatation of
ffr o fr«. So from (3.34) we get f™ = frr o [T = f™a' namely

Tr =TVar- (3.35)
Because 1,1 is the dilatation of (f™')~!, so we have
vpao e = —rvg W (3.36)
Then we get
3 © 7 (0) 5 = = L= r7bllel &
o /19| o]

A simple computation shows

1—rva¢/|9| _— 2
— =1 —1rUy +1Vy + O(r as r — 0+),
Ty o :
So we have
Vr1© fTUa/era/(d))ﬁ;'
. (3.37)
= [~1Ve + 7V > — rQ(Va/)z]m +0(r%), (as T — 0+).
Then it follows from (3.35) to (3.37) that
2
‘1 ryaw‘ ’1—1— Voo + 172 Ve |2 — 12 (v )? ]|¢|
L, 7// TP T2 P |p|dxdy
r3) (as T — 0+).
A further computation shows
1+ 72 |ve)? +r?v) |2
L, = dxd
= [ T oy s
// 2Re 72|V |? |¢>|) — 2Re { [r(Va = Var) — 1% (var)?] %} Sldnd (3.38)
(= 2 a) (T = r2jvarP) i

r3) (as r — 0+).

By the construction of § = {v, : 0 < a < §}, we see that both v,(z) and v, (2)
are zero when z is in Q \ D. So we have

)
dxd
Il 1fr2|ua|2< — 2l ) *
(Ve — Var) — 12 (Var )2
dxdy.
// (1 = r2va)?) (1—r2|ua/|2)¢ vy
Noting the fact that

(1= r*lwal?(2))(1 = r*Jvar*(2)) (2 € D)

(3.39)
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is a function of |z — 2| and and the facts that

Vo = ha(lz = 20) (2 — 20)* and  ve = ha (|2 — 20]) (2 — 20)?,

similarly as done in Part B, we have

// 1—7’2|V | ) = ¢dvdy =0, re(0,1). (3.40)

1—7r2lvy?)

Noting the fact that (v/)? = [ha/ (|2 — 20])]%(2 — 20)*, the same discussion leads to

Ve )2
= 1). A1
// 1*7“2|Va| (1fr2|ya 2) ¢pdxdy =0, Vre(0,1) (3.41)
Then it follows from (3.38),(3.40) and (3.41) that

1 2 a2 2 2
L. —// R o kA Y

(1= 7r?pal?)(1 = r2[vas|?)

// 2r2|vo|*Re {ch\} \B|dady + O(3) (as 1 — 04).

(1= r2val?)(1 = r2fvar|?)

Then we have

. _// 222 + 202 |y |2 {1—Re[ H|¢|+O . .

(1= r2val?)(1 = r2fva|?)

(as r — 0+).

Because 1 — Re(¢/|#]) > 0, it is easy from (3.42) to see

rl_i}r& 1_7”7[” =0 and rl—i>%l+ 1;72LT >0
This implies
1—L,>0, asr(>0)is sufficiently small. (3.43)
However, from (3.33) we have
- K([lm) >1-L, Vre(o1). (3.44)

Then it follows from (3.43) and (3.44) that
1—-1/K([k;]) >0, asr(>0) is sufficiently small.

In the other words, if r(> 0) is sufficiently small, K ([«,]) > 1.
However K ([x,]) = e?dr(Irvallrvar) - So what we have shown is

dr([rval, [rver]) > 0, as r(> 0) is sufficiently small.

Therefore, v, and v,_, are distinct.

The proof of Theorem 1.1 is completed. O



(1]

2]
(3]

(4]
(5]
(6]
(7
(8]

9
[10]

(11]

(12]

(13]

[14]
[15]

[16]

[17)
18]

[19]

ON GEODESIC GEOMETRY IN TEICHMULLER SPACES 15

REFERENCES

C. J. Earle, I. Kra and S. L.Krushkal’, Holomorphic Motions and Teichmiiller spaces. Trans.
Amer. Math. Soc., 343, 927-948 (1994).

C. J. Earle, The Teichmiiller distance is differentiable. Duke Math. J., 44, 389-397 (1977).
C. J. Earle and Z. Li, Isometrically ebmbeded polydisks in infinite-dimensional Teichmiiller
spaces. Journal of Geometric Analysis, 9, 51-71 (1999).

F. P. Gardiner, Teichmdiller Theory and Quadratic Differentials. John Wiley & sons, New
York, 1987.

F. P. Gardiner and N. Lakic, Quasi-conformal Teichmdiiller theorem. American Mathemat-
ical Society, New York, 2000.

R. S. Hamilton, Extremal quasiconformal mappings with prescribed boundary values. Trans.
Amer. Math. Soc. 138, 399-406 (1969).

S. Kravetz, On the geometry of Teichmiiller space and the structure of their modular group-
s. Ann. Acad. Soc. Fenn., Ser. A.I. 278, 1-35 (1959).

S. L. Krushkal’, Extremal quasiconformal mappings. Silbirsk. Mat. Zh., 10, 573-583 (1969);
(English tranl. Siberian Math. J., 10, 411-418 (1969).)

N. Lakic, Strebel points. Comtempery Math., 211, 417-431 (1997).

Z. Li, Non-uniqueness of geodesics in infinite dimensional Teichmiiller spaces. Complex Vari-
ables, 16, 261-272 (1991).

Z. Li, Non-uniqueness of geodesics in infinite dimensional Teichmiiller spaces (II). Ann. Acd.
Soc. Fenn. Series A.I. Math.,18,335-367 (1993).

Z. Li and Y. Qi, Fundamental Inequalities of Reich-Streel and Triangles in a Teichmiiller
spaces, Contempory Mathematics ,Vol. 575:“Quasiconformal Mappings, Riemann surfaces,
and Teichmiiller Spaces” —in honor of Clifford Earle’s 75th birthday),pp 283-298.

Z. Li and Y. Qi, The generalized Main Inequality of Reich-Strebel and its applications, to
appear.

Z. Li and Y. Qi, Existence theorem on angels in Teichmiiller spaces (to appear).

O. Lehto and K. I. Virtanen Quasiconformal mappings in the plane, Springer-Verlage, Berlin
and New York,1973.

H. L. Royden, Report on the Teichmiiller metric. Proc. Amer. Math. Soc., 65, 497-499
(1970).

Y-L. Shen and Y. Hu, Angles in Teichmiiller spaces (preprint).

H. Tanigawa, Holomorphic familes of geodesic discs in infinite dimensional Teichmiiller s-
paces. Nagoya Math.,127,117-128 (1992).

Guowu Yao, A binary infinitesimal form of Teichmiiller metric, to appear.

Z. L1: SCHOOL OF MATHEMATICAL SCIENCES, PEKING UNIVERSITY, BEIJING 100871, CHINA.
E-mail address: 1izhong@math.pku.edu.cn



