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Abstract. Let T (S) be the Teichmüller space of a hyperbolic Riemann sur-

face S. In this paper, it is shown that, if µ is an extremal Beltrami differential
on S of landslide-type, then there exist infinitely many geodesic rays, all of
which tangent to each other at the basepoint of T (S) but intersect at [µ].

§1. Introduction

Let T (S) be the Teichmüller space of a hyperbolic Riemann surface S and let
Belt(S) be the Banach space of bounded measurable Beltrami differentials µ =
µdz/dz on S with L∞-norms. Suppose M(S) is the open unit ball of Belt(S).

For any µ in M(S), fµ stands for a quasiconformal mapping of S onto fµ(S),
whose complex dilatation is µ. Two elements µ and ν in M(S) are said to be
Teichmüller equivalent, denoted by µ ∼ ν, if and only if, there exits a conformal
mapping ψ of fµ(S) onto fν(S) such that (fν)−1 ◦ ψ ◦ fµ is homotopic to the
identity mapping (Mod ∂S). The Teichmüller space T (S) is defined as M(S)/ ∼,
i.e.,

T (S) := {[µ] : µ ∈ M(S)},
where [µ] is the Teichmüller equivalence class of µ.

A Beltrami differential µ ∈ M(S) is said to be extremal, if and only if,

∥µ∥∞ ≤ ∥µ′∥∞, ∀µ′ ∈ [µ].

As is well-known, T (S) is a complex manifold. When S is compact with genus
g > 1, or more generally speaking, when S is of (g, n)-type with 3g − 3 + n > 0,
T (S) is finite-dimensional. Otherwise, it is infinite-dimensional.

T (S) has a natural metric dT (·, ·), which is coincides with the Kobayashi metric
and can be induced from a Finsler form.

The geometry of the Teichmüller metric has been studied by many authors,
for example, [7],[1],[16],[2],[3],[9],[10] and many others, including some preprints
[19],[14] and [17].

This paper is a further study on angels between two geodesic rays in Teichmüller
spaces, which is firstly defined in [19].
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To state our question and results, we need some notation and terminologies.
Suppose µ ∈ M(S) \ {0} is extremal. Then the mapping 1

γµ : [0, 1) → T (S); r 7→ [rµ/∥µ∥∞]

is an isometry embedding with respect to the Poincaré matric and the Teichmüller
metric, respectively. We called γµ a geodesic ray. The restriction γµ|[0,∥µ∥∞] of γµ
is called a geodesic segment between [0] and [µ].

Suppose both µ and ν are extremal with

∥µ∥∞ = ∥ν∥∞ = k ̸= 0. (1.1)

Following [19] (or see [12]), if the limit

lim
r→0+

dT ([rµ], [rν])

r
(1.2)

exists, the angel < γµ, γν > at [0] between two geodesic rays γµ and γν is defined
as follows :

< γµ, γν >:= 2 arcsin

(
1

2
lim

r→0+

dT ([rµ], [rν])

rk

)
. (1.3)

For the reason why we definite the angle < γµ, γν > like this, refer to [12].
If < γµ, γν >= 0, we say γµ is tangent to γν at [0], or say γµ and γν are tangent

to each other at [0]. Naturally, in this case, we also say geodesic segment γµ|[0,k]
is tangent to the geodesic segment γν |[0,k] at [0], or say they are tangent to each
other at [0].

It is natural to ask the following question that was firstly proposed in [14]:

Are there two distinct geodesic rays γµ and γν that tangent at [0] but intersect
at another point?

If T (S) is finite-dimensional, the answer to this question is no. However, for the
infinite-dimensional case, it is yes. The following theorem provides an affirmative
answer to this question: There exist infinitely many geodesic rays that start at [0]
and intersect at another point [µ] in T (S).

Theorem 1.1 Suppose µ ∈ M(S) \ {0} is extremal with the following property:

µ(z) ≡ 0, ∀z ∈ U (1.4)

where U is an open subset of S. Then there exits a family F = {να : 0 < α < δ} of
extremal Beltrami differentials να in [µ] such that each geodesic rays γνα is tangent
to γµ, namely

< γµ, γνα >= 0, ∀ α ∈ (0, δ).

Moreover, if α ̸= α′ and both of them are in (δ0, δ), then geodesic ray γα is distinct
from γα′ .

Remark 1.1 : It is known that condition (1.4) implies the existence of infinitely
many geodesic segments connecting [0] and [µ] ( see [18] or [11]). Now Theorem
1.1 tells us that condition (1.4) implies much more: such segments can be required
to be tangent to each other.

Remark 1.2 : For any infinite-dimensional Teichmüller space, one can easily show
the existence of such a µ in Theorem 1.1. So such a geometric phenomenon appears
in any infinite-dimensional Teichmüller space.

1Here we regard the interval [0, 1) as a non-Euclidean ray in the Poincaré disk D.
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Remark 1.3 : By a result [20] of Z. Zhou, if there is an open set V of S such that

sup{|µ|(z) : z ∈ V } < ∥µ∥∞ (1.5)

then (1.4) holds for some open subset U of S. So condition (1.4) can be replaced
by (1.5).

An extremal Beltrami differential µ with condition (1.5) is said to be of landslide
type. So Theorem 1.1 holds for any extremal Beltrami differential of landslide type.

Remark 1.4 : Recently we got a preprint of paper [17] by Y-L. Shen and Y. Hu.
In their interesting paper, it is shown that the limit (1.2) always exists for any
Beltrami differentials µ and ν and

lim
r→0+

dT ([rµ], [rν])

r
= sup

ϕ∈Q1(S)

∣∣∣∣∫
S

[µ− ν]ϕ

∣∣∣∣ ,
where Q1(S) := {ϕ ∈ Q(S) : ∥ϕ∥ = 1}. Moreover, they answered a question on
triangles posted in [12], by showing the following fact: In an infinite-dimensional
Teichmüller space, there is an equiangular triangle whose inner angle θ may take
any given values in [0, π]. Now our paper investigates two-sided polygons whose
sides are geodesic segments.

§2. Preliminary and notation

Without loss of generality, throughout this paper we assume that S is a Riemann
surface whose universal covering surface is the open unit disc D := {z ∈ C : |z| < 1}.
The corresponding covering map of S is denoted by π : D → S and the covering
transformation group of π is denoted by Γ.

For convenient sake, we identify S with D/Γ and all discussions on S are trans-
formed to D with the action of Γ. For example, the Banach space Belt(S) is regarded
as the Banach space of functions µ(z) ∈ L∞(D) that satisfy the following condition:

µ(γ(z))
γ′(z)

γ′(z)
= µ(z), for a.e. z ∈ D and ∀γ ∈ Γ. (2.1)

The ideal boundary ∂S of S is regarded as ∂D/Γ.
With this agreement, for each element µ ∈ M(S), there is a uniquely determined

quasiconformal mapping of D onto itself that keeps 1, i and −1 fixed, whose complex
dilatation is µ. Such a quasiconformal mapping is denoted by fµ. Actually, fµ

represents a quasiconformal mapping of S onto Sµ := D/Γµ with the complex
dilatation µ, where

Γµ := {fµ ◦ γ ◦ (fµ)−1 : ∀γ ∈ Γ}.

Sometimes we need to deal with some other Riemann surface expect for S. In
this case, a quasiconformal mapping of this Riemann surface onto another one is
also expressed as a quasiconformal mapping of D onto itself that is compatible with
a group.

It is known that a quasiconformal mapping fµ : S → Sµ can be extended to
S = S ∪∂S as a homeomorphism of S onto Sµ. Such an extension of fµ is denoted

by f̂µ.
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With this notation, the Teichmüller equivalence can be simply expressed as fol-
lows: µ ∼ ν, if and only if,

f̂µ|∂D = f̂ν |∂D .

Let µ be any element ofM(S). As usually,K(fµ) denotes the maximal dilatation
of fµ, namely

K(fµ) :=
1 + ∥µ∥∞
1− ∥µ∥∞

.

In this paper, we define

K([µ]) := inf{K(fµ
′
) : µ′ ∼ µ},

and call it the extremal maximal dilatation of [µ]. We also need the notation of the
boundary dilatation. Let h([µ]) be defined as

h([µ]) := inf{h(µ′) : µ′ ∼ µ},

where h(µ′) is the boundary norm of µ′, that is

h(ν) := inf
E
{∥ν|S\E∥∞},

where E ranges over all compact subsets of S.
By Q(S) we denote the Banach space of integrable holomorphic quadratic dif-

ferentials ϕ = ϕ(z)dz2 on S with L1−norms ∥ϕ∥. According to our agreement that
S is identified with D/Γ, a holomorphic quadratic differential ϕ on S is regarded as
a holomorphic function ϕ(z) on D that satisfies the following condition:

ϕ(γ(z))[γ′(z)]2 = ϕ(z), ∀ γ ∈ Γ.

The norm ∥ϕ∥ will be written in both ways:

∥ϕ∥ =

∫
S

|ϕ|, or ∥ϕ∥ =

∫∫
Ω

|ϕ(z)|dxdy (z = x+ iy),

where Ω is a fundamental domain of Γ.
The Banach dual space of Q(S) is the tangent space to T (S) at [0], which is

usually called the infinitesimal Teichmüller space of S and denoted by B(S). More
precisely, two elements µ and ν of Belt(S) are called infinitesimal Teichmüller
equivalent, denoted by µ ≈ ν, if and only if,∫

S

(µ− ν)ϕ = 0, ∀ϕ ∈ Q(S).

The infinitesimal Teichmüller equivalence class of µ is denoted by [µ]B. Then B(S)
is defined as the quotient space Belt(S)/ ≈, namely B(S) = {[µ]B : µ ∈ Belt(S)}.
[µ]B has a standard sup norm:

∥[µ]B∥ := sup
ϕ∈Q1(S)

∣∣∣∣∫
S

µϕ

∣∣∣∣ ,
where Q1(S) = {ϕ ∈ Q(S) : ∥ϕ∥ = 1}.
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§3. Proof of Theorem 1.1

To show Theorem 1.1, we need some lemmas. The first lemma is a generalization
of the Polygon Inequality of Reich-Strebel. For its proof, refer to [9].

Lemma 3.1 Let S̃ be a hyperbolic Riemann surface and T (S̃) the Teichmüller

space of S̃. Suppose σ̃ is a Beltrami differential on S̃ with ∥σ̃∥ < 1 and [σ̃] is the

Teichmüller equivalence class of σ̃ (Mod ∂S̃). Then we have

K([σ̃]) ≤ sup
ϕ̃∈Q1(S̃)

∫
S̃

∣∣∣1 + σ̃ ϕ̃

|ϕ̃|

∣∣∣2
1− |σ̃|2

|ϕ̃|,

where Q1(S̃) := {ϕ̃ ∈ Q(S̃) : ∥ϕ̃∥ = 1}.
In what follows, we will use the notation “O” in the following sense: Suppose f(r)

and g(r) are two complex valued functions of r ∈ (0, 1). We say f(r) = O(|g(r)|)
(as r → 0+), if there are two constants C(> 0) and r0 with 0 < r0 < 1 such that

|f(r)| ≤ C|g(r)|, provided 0 < r < r0.

The constants C and r0 are called the constants contained in the “O”.

The second lemma is a special case of the “good approximations” . For its proof,
refer to [15].

Lemma 3.2 Suppose {σr : r ∈ (0, 1)} is a family of elements in M(X) with the
following condition

∥σr∥∞ ≤ 3r (0 < r < 1). (3.1)

Then we have

|fσr (z)− z| = O(r) (as r → 0+), ∀z ∈ D 2 (3.2)

and

∥∂zfσr − 1∥L2(D) = O(r) (as r → 0+). (3.3)

The constants contained in the “O”s in (3.2) and (3.3) are universal.

Remark 3.1 : In the general case, (3.1) should be |σr| ≤ Mr, where M > 0 is
a constant. However, for our discussion below, M = 3 is good enough and in this
case, the constants contained in “O” are universal.

As a consequence of (3.3) we have the following:

Corollary 3.1 For any sequence {rn} in (0,1) with rn → 0 as n→ ∞, there is
a subsequence {rnk

} of {rn} such that

∂zf
rnk (z) → 1, for a. e. z ∈ Ω. (3.4)

The third lemma is new version of the main inequality of Reich-Strebel (see [13]):

Lemma 3.3 Let µ and ν be arbitrarily given two elements of M(X). Suppose
κ is a Beltrami differential on fµ(X), such that fκ ∼ fν ◦ (fµ)−1(Mod ∂fµ(X)).

2Here fσr actually is a quasiconformal mapping of D onto D that is compactible with the group
Γ (see §2).
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Let τ be the Beltrami coefficient of fκ ◦ fµ. Then for any ϕ ∈ Q(X) with ∥ϕ∥ = 1,
we have

1 ≤
∫
X

∣∣∣1− µ ϕ
|ϕ|

∣∣∣2
1− |µ|2

∣∣∣1− κ ◦ fµΩµ(ϕ)
ϕ
|ϕ|

∣∣∣2
1− |κ ◦ fµ|2

∣∣∣1− ν1 ◦ fτΩτ (ϕ)
ϕ
|ϕ|

∣∣∣2
1− |ν1 ◦ fτ |2

|ϕ|,

where ν1 is the Beltrami coefficient of (fν)−1,

Ωµ(ϕ) :=
∂zfµ

∂zfµ
1− µϕ/|ϕ|
1− µϕ/|ϕ|

and Ωτ (ϕ) :=
∂zfτ

∂zfτ
1− τϕ/|ϕ|
1− τϕ/|ϕ|

.

Proof of Theorem 1.1 . We divide our proof into four parts.

Part A : Contraction of the family F := {να : 0 < α < δ}.

Suppose µ is the given Beltrami differential on S in Theorem 1.1; namely, µ ∈
M(S) \ {0} is extremal and

µ(z) ≡ 0, ∀z ∈ U,

where U is an open subset of S.
Let π : D → S be the covering mapping of S and Γ the covering transformation

group of π. Suppose Ω is a fundamental domain of Γ. Without loss of generality,
one may assume that π−1(U) ∩ Ω contains a disk

D := {z ∈ D : |z − z0| < ρ}

with D ⊂ Ω. So we have

µ(z) ≡ 0, ∀z ∈ D. (3.5).

We look at the following function:

ηα(z) := z + α(z − z0)(|z − z0|2 − ρ2)|z − z0|2, z ∈ D,

where α is a real parameter. A simple computation shows

∂zηα = α(z − z0)
2(2|z − z0|2 − ρ2)

and

∂zηα = 1 + α(3|z − z0|2 − 2ρ2)|z − z0|2.
Let τα := ∂zηα/∂zηα. Then we have

τα(z) = (z − z0)
2hα(|z − z0|), ∀z ∈ Dα, (3.6)

where hα is a function of r ∈ [0, ρ) :

hα(r) :=
α(2r2 − ρ2)

1 + α(3r2 − 2ρ2)
.

Now we assume that 0 < α < δ and δ is sufficiently small, such that

|∂zηα|(z) >
1

2
and |∂zηα|(z) <

∥µ∥∞
2

, ∀z ∈ D.

This leads to

|τ(z)| < ∥µ∥∞ < 1 ∀z ∈ D. (3.7)

Clearly, ηα satisfies the following Beltrami equation

∂zηα(z) = τα(z)∂zηα(z), ∀z ∈ D.
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On the other hand, by the definition of ηα, the restriction of ηα to ∂D is an identity
mapping of ∂D. Therefore ηα is a quasiconformal mapping of D onto itself.

Now for each fixed α, we define a quasiconformal mapping gα of Ω onto itself:

z 7→ gα(z) :=

{
ηα(z), as z ∈ D;

z, as z ∈ Ω \D.

Let Γ(D) := ∪γ∈Γ γ(D) and D := Γ(D)/Γ. It is clear that gα induces a quasi-
conformal mapping g̃α of S onto itself, which is an identity mapping of S \D. The
complex dilatation of g̃α is denoted by τ̃α. Obviously, we have

τ̃α(z) ≡ 0, ∀z ∈ S \D. (3.8)

Now να is defined to be the complex dilatation of fµ ◦ g̃α. In the other words,

fνα = fµ ◦ g̃α. (3.9)

From (3.7) we see that ∥να|D∥∞ ≤ ∥µ∥∞. On the other hand, να(z) = µ(z) as
z ∈ S \D. So να is extremal.

Then F = {να : 0 < α < δ} is the family of extremal Beltrami differentials.
In the following parts of the proof, we will show each element να in F satisfies the
requirements of Theorem 1.1.

Part B : Proof of ∥[µ− να]B∥ = 0.

In this part, we want to show

∥[µ− να]B∥ ≡ sup
ϕ∈Q1(S)

∣∣∣∣∫
S

(µ− να)ϕ

∣∣∣∣ = 0, (3.10)

where Q1(S) := {ϕ ∈ Q(S) : ∥ϕ∥ = 1}.
By the chain rule of complex dilatations, from (3.9) we have

να =
τ̃α + µ ◦ g̃αωg̃α

1 + τ̃αµ ◦ g̃αωg̃α

, (3.11)

where ωg̃α = ∂z g̃α/∂z g̃α.
Recalling the fact that g̃α|S\D is an identity mapping, we see ωg̃α |S\D = 1. On

the other hand, µ|D ≡ 0. So it follows from (3.11) that

να(z) =

{
τ̃α(z), as z ∈ D;

µ(z), as z ∈ S \D.
(3.12)

Because µ|D ≡ 0 and τ̃α(z) = 0 when z ∈ S \D, (3.12) leads to

να(z)− µ(z) = τ̃α(z), ∀z ∈ S. (3.13)

In particular, we have

να(z)− µ(z) = τα(z), ∀z ∈ Ω. (3.14)
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Then it follows from (3.13) and (3.14) that

sup
ϕ∈Q1(S)

∣∣∣∣∫
S

(ν̃α − µ)ϕ

∣∣∣∣
= sup

ϕ∈Q1(Ω)

∣∣∣∣∫∫
Ω

(να(z)− µ(z))ϕ(z)

∣∣∣∣ dxdy,
= sup

ϕ∈Q1(Ω)

∣∣∣∣∫∫
Dα

τα(z)ϕ(z)

∣∣∣∣ dxdy,
(3.15)

where Q1(Ω) is the set of all local expressions in terms of parameters in Ω of
elements in Q1(S).

Let ϕ be any elementary in Q1(Ω) and let its restriction to D be

ϕ|D(z) =
∞∑

n=0

an(z − z0)
n.

We have ∫∫
D

τα(z))ϕ|D(z)dxdy

=

∫∫
D

hα(|z − z0|)
∞∑

n=0

an(z − z0)
n+2dxdy

=

∫ ρ

0

hα(r)rdr

∫ 2π

0

∞∑
n=0

anr
nei(n+2)θdθ = 0.

(3.16)

Then (3.10) follows from (3.15) and (3.16).

Part C: Proof of < γµ, γνα >= 0.

Now we are going to show < γµ, γνα >= 0 by using (3.10).

Remak 3.2 : If one uses the result of [17], the conclusion < γµ, γνα >= 0 can
be gotten directly from (3.10). However, so far [17] has not published yet. For the
completeness of this paper, here we give a proof that is different from [17].

Suppose Sr is the Riemann surface frµ(S) and σα,r is the complex dilatation of
frνα ◦ (frµ)−1. Then σα,r is a Beltrami differential on Sr and

fσα,r = frνα ◦ (frµ)−1. (3.17)

Let K([σα,r]) be the extremal maximal dilatation of [σα,r]. Then the Teichmüller
distance between [rµ] and [rνα] is

dT ([rµ], [rνα]) =
1

2
logK([σα,r]).

Now we apply Lemma 3.1 with the following notation changes: S̃ and σ̃ in
Lemma 3.1 are replaced by Sr and σα,r, respectively. Then we get

K([σα,r]) ≤ sup
ϕr∈Q1(Sr)

∫
Sr

∣∣∣1 + σα,r
ϕr

|ϕr|

∣∣∣2
1− |σα,r|2

|ϕr|, (3.18)

where Q1(Sr) := {ϕr ∈ Q(Sr) : ∥ϕr∥ = 1}.
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By the chain rule of complex dilatations and (3.17), we have

σα,r ◦ frµ =
rνα − rµ

1− r2µνα
ωfrµ ,

where ωfrµ = ∂zfrµ/∂zf
rµ. Then we get

∥σα,r∥∞ ≤ 2r

1− r2
(0 < r < 1),

and hence, from (3.18),

K([σα,r]) ≤ sup
ϕ∈Q1(Sr)

∫
Sr

∣∣∣∣1 + σα,r
ϕr
|ϕr|

∣∣∣∣2 |ϕr|+O(r2)

= 1 + 2 sup
ϕ∈Q1(Sr)

Re

∫
Sr

σα,rϕr +O(r2) (as r → 0+),

where the constants contained in the “O”s here are universal. Then a simple
computation shows

0 ≤ dT ([rµ], [rνα]) ≤
1

2
log[1 + (K([σα,r])− 1)]

≤ 1

2
(K([σα,r])− 1)

≤ sup
ϕr∈Q1(Sr)

Re

∫
Sr

σα,rϕr +O(r2)(as r → 0+).

(3.19)

Let Ω be the fundamental domain of Γ which is the same as in Part A. Let
Ωr := frµ(Ω). It is a fundamental domain of the group

Γr := {frµ ◦ γ ◦ (frµ)−1 : ∀γ ∈ Γ}.

Then (3.19) can be rewritten as

0 ≤ dT ([rµ], [rνα])

≤ sup
ϕr∈Q1(Ωr)

Re

∫∫
Ωr

σα,r(ζ)ϕr(ζ)dξdη +O(r2)(as r → 0+),
(3.20)

where Q1(Ωr) is the set of local expressions in Ωr of all ϕr ∈ Q1(Sr). The constants
contained in the “O” here are universal.

It is easy to see the frµ is a good approximation of the identity mapping. By
Lemma 3.2, we see

|frµ(z)− z| = O(r) (as r → 0+), ∀z ∈ D,

where the constants contained in the “O” are universal. Then we have

σα,r ◦ frµ(z) =
rνα(z)− rµ(z)

1− r2µ(z)να(z)
ωfµr (z)

= r[να(z)− µ(z)]ωfrµ(z) +O(r2) (as r → 0+),

where ωfrµ = ∂zfrµ/∂zf
rµ and the constants contained in the “O” are universal.
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Noting the facts that να(z)−µ(z) = 0 when z ∈ Ω\D and µ(z) = 0 when z ∈ D,
we have ∫∫

Ωr

σr(z)ϕr(z)dxdy =

∫∫
Ω

σr ◦ frµ(z)ϕr ◦ frµ(z)Jr(z)dxdy

=

∫∫
D

rνα(z)ωfrµ(z)ϕr ◦ frµ(z)Jr(z)dxdy

+O(r2) (as r → 0+),

(3.21)

where Jr = |∂zfrµ|2 − |∂zfrµ|2. Then it follows from (3.20) and (3.21) that

0 ≤ dT ([rµ], [rνα])

r

≤ sup
ϕr∈Q1(Ωr)

Re

∫∫
D

να(z)ωfµr (z)ϕr ◦ fµr (z)Jr(z)dxdy

+O(r) (as r → 0+).

(3.22)

The constants contained in the “O” here are universal.
Now we choose a sequence {rn} in (0, 1) with rn → 0+ (as n→ ∞) such that

lim sup
r→0+

dT ([rµ], [rνα])

r
= lim

n→∞

dT ([rnµ], [rnνα])

rn
.

Then from (3.22) we get

dT ([rnµ], [rnνα])

rn
≤ Irn +O(rn → 0+) (as rn → 0+), (3.23)

where

Irn := sup
ϕrn∈Q1(Ωrn )

Re

∫∫
D

να(z)ωfrnµ(z)ϕrn ◦ frnµ(z)Jrn(z)dxdy.

Now for each fixed rn, we choose a ψrn ∈ Q1(Ωrn) such that

Re

∫∫
D

να(z)ωfrnµ(z)ψrn ◦ frnµ(z)Jrndxdy > Irn − 1

n
, (3.24)

Noting the fact that the constants contained in “O” in (3.23) are universal, from
(3.24) we get

lim sup
r→0+

dT ([rµ], [rνα])

r

≤ lim sup
n→∞

Re

∫∫
D

να(z)ωfrnµ(z)ψrn ◦ frnµ(z)Jrn(z)dxdy.
(3.25)

Now we look at the family Φ := {ψrn(z) : z ∈ Ω}. For any open subset V of Ω
with V ⊂ Ω, when n is sufficiently, frnµ(V ) ⊂ Ω and∫∫

V

|ψrn(z)|dxdy ≤
∫
Srn

|ψrn | = 1. (3.26)

This means that Φ is a normal family. We can choose a subsequence of {ψrn}, which
is uniformly convergent on any compact subset of Ω. Without loss of generality, we
may assume that such a subsequence is {ψrn} itself.
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We suppose the limit function of {ψrn} is ϕ0. Then ϕ0(z) is holomorphic on Ω.
By the Fatou lemma and (3.26), we see∫∫

V

|ϕ0(z)|dxdy ≤ 1.

for any open set V with V ⊂ Ω. This implies∫∫
Ω

|ϕ0(z)|dxdy ≤ 1. (3.27)

Now we claim that

ψ0(z) = ψ0(γ(z))[γ
′(z)]2, ∀γ ∈ Γ & ∀z ∈ Ω. (3.28)

In fact, for any fixed γ ∈ Γ, let γrn = frnµ ◦ γ ◦ (frnµ)−1. We have

ψrn(z) = ψrn(γrn(z))[γ
′
rn(z)]

2 (∀z ∈ Ω), (3.29)

It is easy to check by using Lemma 3.2 that

γrn → γ and γ′rn → γ′ (as n→ ∞).

Then we can get (3.28) by taking the limits of both sides in (3.29).
From (3.28) we see that ϕ0(z)dz

2 represents a quadratic differential on S.
Because ψrn is locally uniformly convergent to ϕ0 in Ω and frnµ is a good

proximation of the identity mapping, ψrnµ ◦ frnµ uniformly converges to ϕ0 on D
On the other hand, by Lemma 3.2, one may choose a subsequence of ωfrnµ and
assume such a subsequence is ωfrnµ itself, such that

ωfrnµ(z) → 1 (as r → 0+) for a.e. z ∈ D.

Using Lemma 3.2 again, it is easy to see that∫∫
D
|Jrn(z)− 1|dxdy

=

∫∫
D
|∂zfrn(z)|2 − 1 + |rnµ(z)|2∥dxdy → 0 as n→ ∞.

Similarly as above, choosing a subsequence of Jrn and assuming such subsequence
is Jfrn itself, we may assume

Jrn(z) → 1 (as r → 0+) for a.e. z ∈ D.

By using the Lebesgue Theorem, we get

lim
n→∞

∫∫
D

|να(z)[ωfrnµ(z)ψrn ◦ frnµ(z)Jrn(z)− ϕ0(z)]|dxdy = 0,

which implies

lim
n→∞

Re

∫∫
D

να(z)ωfrnµ(z)ψrn ◦ frnµ(z)Jrn(z)dxdy

= lim
n→∞

Re

∫∫
D

να(z)ϕ0(z)dxdy.

(3.30)

Then it follows from (3.25) and (3.30) that

lim sup
r→0+

dT ([rµ], [rνα])

r
≤ Re

∫∫
D

να(z)ϕ0(z)dxdy. (3.31)
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In Party B, we have shown ∫∫
D

να(z)ϕ0(z)dxdy = 0.

So it follows from (3.31) that

lim sup
r→0+

dT ([rµ], [rνα])

r
= 0,

which clearly implies

lim
r→0+

dT ([rµ], [rνα])

r
= 0.

By the definition of angles, we have < γµ, γνα >= 0. This means each γνα is tangent
to γµ at [0].

Part D : Proof of the conclusion that γνα ̸= γνα′ (α ̸= α′).

To complete the proof of Theorem 1.1, we need to show that, if α ̸= α′, the
geodesic ray γα is distinct from γα′ . The proof is based on Lemma 3.3, i.e., the
generalized main inequality of Reich-Strebel [13].

Now we apply Lemma 3.3 with the following notation changes: µ and ν are
replaced by rνα and rνα′(0 < r < 1), respectively. Let ϕ be any given element in
Q(S) with ∥ϕ∥ = 1. Then we have

1 ≤
∫∫

Ω

∣∣∣1− rνα
ϕ
|ϕ|

∣∣∣2
1− r2|να|2

∣∣∣1− κr ◦ frναΩrνα(ϕ)
ϕ
|ϕ|

∣∣∣2
1− |κr ◦ frνα |2

×

∣∣∣1− νr,1 ◦ fτrΩτr (ϕ)
ϕ
|ϕ|

∣∣∣2
1− |ν1,r ◦ fτr |2

|ϕ|dxdy,

(3.32)

where κr,τr, Ωrνα(ϕ) and Ωτr (ϕ) are the corresponding terms of κ, τ , Ωµ(ϕ) and
Ων(ϕ) in Lemma 3.3, respectively, and ν1,r is the complex dilatation of (frνα′ )−1.

Noting the fact that |Ωκr (ϕ)| = 1, we have∣∣∣1− κr ◦ frναΩrνα(ϕ)
ϕ
|ϕ|

∣∣∣2
1− |κr ◦ frνα |2

≤ K(fκr ).

Then from (3.32) we get

1

K(fκr )
≤

∫∫
Ω

∣∣∣1− rνα
ϕ
|ϕ|

∣∣∣2
1− r2|να|2

∣∣∣1− νr,1 ◦ fτrΩτr (ϕ)
ϕ
|ϕ|

∣∣∣2
1− |ν1,r ◦ fτr |2

|ϕ|dxdy,

which implies

1

K([κr])
≤

∫∫
Ω

∣∣∣1− rνα
ϕ
|ϕ|

∣∣∣2
1− r2|να|2

∣∣∣1− νr,1 ◦ fτrΩτr (ϕ)
ϕ
|ϕ|

∣∣∣2
1− |ν1,r ◦ fτr |2

|ϕ|dxdy,

where K([κr]) is the extremal maximal dilatation of [κr].
Let

Lr :=

∫∫
Ω

∣∣∣1− rνα
ϕ
|ϕ|

∣∣∣2
1− r2|να|2

∣∣∣1− νr,1 ◦ fτrΩτr (ϕ)
ϕ
|ϕ|

∣∣∣2
1− |ν1,r ◦ fτr |2

|ϕ|dxdy.
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Then we have
1

K([κr])
≤ Lr. (3.33)

Now we take κr to be the complex dilatation of frνα′ ◦ (frνα)−1, namely

fκr = frνα′ ◦ (frνα)−1. (3.34)

According to the assumption in Lemma 3.3, τr should be the complex dilatation of
fκr ◦ frνα . So from (3.34) we get fτr = fκr ◦ frνα = frνα′ , namely

τr = rνα′ . (3.35)

Because νr,1 is the dilatation of (frνα′ )−1, so we have

νr,1 ◦ frνν′
α = −rνα′ωfrν

α′ . (3.36)

Then we get

νr,1 ◦ frνα′Ωrνα′ (ϕ)
ϕ

|ϕ|
= −rνα′

1− rνα′ϕ/|ϕ|
1− rνα′ϕ/|ϕ|

ϕ

|ϕ|
.

A simple computation shows

1− rνα′ϕ/|ϕ|
1− rνα′ϕ/|ϕ|

= 1− rνα′ + rνα′ +O(r2) (as r → 0+),

So we have

νr,1 ◦ frνα′Ωrνα′ (ϕ)
ϕ

|ϕ|

= [−rνα′ + r2|να′ |2 − r2(να′)2]
ϕ

|ϕ|
+O(r3), (as r → 0+).

(3.37)

Then it follows from (3.35) to (3.37) that

Lr =

∫∫
Ω

∣∣∣1− rνα
ϕ
|ϕ|

∣∣∣2
1− r2|να|2

∣∣∣1 + [rνα′ + r2|να′ |2 − r2(να′)2] ϕ
|ϕ|

∣∣∣2
1− r2|να′ |2

|ϕ|dxdy

+O(r3) (as r → 0+).

A further computation shows

Lr =

∫∫
Ω

1 + r2|να|2 + r2|ν′α|2

(1− r2|να|2)(1− r2|να′ |2)
|ϕ|dxdy

+

∫∫
Ω

2Re
(
r2|να′ |2 ϕ

|ϕ|

)
− 2Re

{[
r(να − να′)− r2(να′)2

]
ϕ
|ϕ|

}
(1− r2|να|2)(1− r2|να′ |2)

|ϕ|dxdy

+O(r3) (as r → 0+).

(3.38)

By the construction of F = {να : 0 < α < δ}, we see that both να(z) and να′(z)
are zero when z is in Ω \D. So we have∫∫

Ω

r(να − να′)− r2(να′)2

(1− r2|να|2)(1− r2|να′ |2)
ϕdxdy

=

∫∫
D

r(να − να′)− r2(να′)2

(1− r2|να|2)(1− r2|να′ |2)
ϕdxdy.

(3.39)

Noting the fact that

(1− r2|να|2(z))(1− r2|να′ |2(z)) (z ∈ D)
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is a function of |z − z0| and and the facts that

να = hα(|z − z0|)(z − z0)
2 and να′ = hα′(|z − z0|)(z − z0)

2,

similarly as done in Part B, we have∫∫
D

r(να − να′)

(1− r2|να|2)(1− r2|να′ |2)
ϕdxdy = 0, ∀r ∈ (0, 1). (3.40)

Noting the fact that (να′)2 = [hα′(|z − z0|)]2(z − z0)
4, the same discussion leads to∫∫

D

r2(να′)2

(1− r2|να|2)(1− r2|να′ |2)
ϕdxdy = 0, ∀r ∈ (0, 1). (3.41)

Then it follows from (3.38),(3.40) and (3.41) that

Lr =

∫∫
Ω

1 + r2|να|2 + r2|ν′α|2

(1− r2|να|2)(1− r2|να′ |2)
|ϕ|dxdy

+

∫∫
Ω

2r2|να′ |2Re
[

ϕ
|ϕ|

]
(1− r2|να|2)(1− r2|να′ |2)

|ϕ|dxdy +O(r3) (as r → 0+).

Then we have

1− Lr =

∫∫
Ω

2r2|να|2 + 2r2|να′ |2
{
1− Re

[
ϕ
|ϕ|

]}
(1− r2|να|2)(1− r2|να′ |2)

|ϕ|+O(r3)

(as r → 0+).

(3.42)

Because 1− Re(ϕ/|ϕ|) ≥ 0, it is easy from (3.42) to see

lim
r→0+

1− Lr

r
= 0 and lim

r→0+

1− Lr

r2
> 0.

This implies

1− Lr > 0, as r(> 0) is sufficiently small. (3.43)

However, from (3.33) we have

1− 1

K([κr])
≥ 1− Lr ∀r ∈ (0, 1). (3.44)

Then it follows from (3.43) and (3.44) that

1− 1/K([κr]) > 0, as r(> 0) is sufficiently small.

In the other words, if r(> 0) is sufficiently small, K([κr]) > 1.
However K([κr]) = e2dT ([rνα],[rνα′ ]). So what we have shown is

dT ([rνα], [rνα′ ]) > 0, as r(> 0) is sufficiently small.

Therefore, γνα and γνα′ are distinct.

The proof of Theorem 1.1 is completed. �
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