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Abstract
In this paper, we investigate the adjoint equation in photoacoustic tomography with
variable sound speed, and propose three variational iterative algorithms. The basic
idea of these algorithms is to compute the original equation and the adjoint equation
iteratively. We present numerical examples and show the well performance of these
variational iterative algorithms.

1 Introduction

Photoacoustic Tomography or Thermoacoustic Tomography is a developing medical
imaging method in recent decades [24]. They are hybrid medical imaging methods charac-
terized by high resolution and contrast. The physical principle can be described as follows.
Light or a short electromagnetic energy irradiates the biological tissue and the energy is
absorbed by the tissue. The tissue heats up and results in the phenomenon of the thermal
expansion. This expansion leads to weak acoustic waves and these waves are measured by
ultrasound transducers located on an observation surface. The measured information is
used to recover the initial acoustic pressure, which is roughly proportional to the rate of
absorption [24]. Then the initial acoustic pressure is used to produce an image.

We describe the widely accepted mathematical model here [12, 17]. Let @ C R™ be an
open set with a smooth boundary, in applications, n = 2,3. Assume that the sound speed
c(x) is smooth, strictly positive and ¢(z) = 1 outside Q. Suppose u(z,t) is the solution of
the wave equation

ugp —cAu = 0, t>0, x € R”
U|t:0 = f (1)
Utli=o = 0

in which the function f is supported in €2 and the value of v could be collected at transducer’s
location x € S before a fixed measuring time 7', where S C 0f) is the closed observation
surface. The measured value could be modeled by an operator as follows

Kf:= U|Sx[0,T] (2)

The image reconstruction problem in photoacoustic tomography is to recover the initial
value f(z) by using the measured value K f
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Obviously, this is an inverse problem. A lot of work have been done when the sound
speed c(z) is constant and S = 01, and there are various types of reconstruction methods
to solve this problem (e.g filtered backprojection formulas, eigenfunction expansions and
time reversal). Actually, when n = 3 and the observation surface is spherical surface, the
first inversion formula has been found in [6]. Then in [23], a universal inversion formula has
been proposed in the case of the observation surface being spherical, planar and cylinadrical
surface. The eigenfunction expansion methods can work for any closed observation surface
with constant sound speed and the algorithm reconstructs the image faster than filtered
backprojection formulas. However, all of them would not be efficient for variable sound
speed [2, 13, 14]. There are many cases that the sound speed is variable [25]. If we apply
the reconstruction methods for constant speed on the variable sound speed condition, which
use the average sound speed as the constant sound speed, it may cause large image errors
[9]. Therefore, designing an effecient algorithm for photoacoustic tomography with variable
sound speed is an important work.

Several image reconstruction methods have been proposed to compensate for weak sound
speed variations. These methods assume that the photoacoustic wavefields propagate along
well-defined geometrical acoustic rays [16, 25]. However, these models possess limitations.
The ray-based propagation models will be effective only on length scales that are large com-
pared to the effective acoustic wavelength. These assumptions can be voilated in preclinical
and clinical applications [10].

For strong sound speed variations, the time reversal method has been proposed and it
works well in numerical experiments when the measuring time T is large enough, though
it gives the exact reconstruction result only when the sound speed is constant and the
dimension is odd [4, 9, 8, 26]. If these conditions are not simultaneously satisfied, it gives
the approximate results [8, 9], and the errors will increase when T' becomes small [8, 17]. The
Neumann series method is derived in [20, 21] and is proved to be an exact reconstruction
method under the variable sound speed circumstance, even though T is not large. This
method has been validated effecitve in numerical experiments [17]. In [3], the authors study
the adjoint operator of the appoximate photoacoustic tomography model with constant
sound speed and propose a conjugate gradient method. They use this method on the variable
sound speed condition in numerical experiments. When T is fixed, the conjugate gradient
method performs better than time reversal, but worse than Neumann series [3].

In this paper, we investigate the adjoint operator of the exact photoacoustic tomography
model with variable sound speed, and propose three variational iterative algorithms. We
present numerical examples and show that the proposed algorithms performs better than
time reversal and Neumann series, especially with noisy data.

This paper is organized as follows. In Section 2, we introduce some basic theories of
the hyperbolic equation. The adjoint of the imaging operator and the adjoint equation are
studied in Section 3. In Section 4, three variational iterative algorithms based on the adjoint
operator are proposed. Finally, numerical results are presented in Section 5, showing that
our proposed approaches reconstruct the better results than existing methods.

2 Preliminaries

Assume f € C§°(Q), c(x) € C*°(R™), and u is the smooth solution of the equation
(1), then according to the finite propagation speed theorem [5], there exists a ball U =
B(0,R),Q C U that wu is supported in U between time 0 and T. Therefore, we can study



the following the initial/boundary-value problem instead of the equation (1)

ug —Au = 0, (x,t) €U x[0,7T)
U|t:0 = f
3
Ule—o = 0 3)
u = 0, ze€dU

It is clear that if w is the smooth solution of the equation (1), it must be the solution of the
equation (3).
Let us study a general initial /boundary-value problem

ug — 2Au = h(x,t), (x,t) €U x (0,T)
uli=o = f(z)
4
urli=0 = g(z) )
u = 0, r €U

We introduce the time-dependent bilinear form
n
Blu,v;t] := / (vu- Vo + Z 2¢Cy, Uy, v)dx
U i=1

for u,v € H}(U) and 0 < ¢t < T. We say a function u € L*(0,T; H}(U)), with u; €
L2(0,T; L*(U)), uy € L?(0,T; H-Y(U)) is a weak solution of the equation (4) provided

[y uwvdz + Blu,v;t] = [, hvdx
Vo e HY(U) and a.e. 0 <t <T (5)
u(z,0) = f
w(z,0) = g

Theorem 2.1 [5]
Assume f € HY(U),g € L*(U),h € L?(0,T; L*(U)), then there exists a unique weak solution
of the equation (4). In fact

u € L0, T; HY(U)),u; € L°(0,T; L*(U)),
and we have the estimate

esssupg<; <7 (|[w()|z1 0y + [lwe ()| 22@))
< CUfaz @y + Ngllez@wy + 1Bl L2 0,m:22))

Theorem 2.2 [5] )
Assume f,g € C®(U), h € C=(Ur), and the m" — order compatibility conditions hold for
m e 07 ]‘7 DY

fo:=f e Hy(U), =g € H§(U)
o= S (0) ~ Lfos € HYW) (G m=20)
2 71h

92141 = L (-,0) — Lgoy—1 € HY(U) (if m=20+1)
the equation (4) has a unique solution

u e COO(UT)



If f e C§°(Q), then f € C§°(U). According to Theorem 2.2, the equation (3) has a
unique smooth solution @. Assume u is the smooth solution of the equation (1), thus

w=1u, (z,t)€U x|0,T]

3 Variational Approach
Define an operator W

W: HL Q) — L20,T; HE(U))
f— u

where u is the weak solution of the equation (3). Next, we define a projection operator P

P:L*0,T;Hy(U)) — L*(0,T3L%*(9))
u > ulsxo,r)

Then the forward operator K can be expressed K := PW

K: Hj(Q) — L*0,T;L*(9))
[ — ulsxm

We first prove that the operator K is a linear bounded operator from space Hg(£2) to
space L2(0,T; L?(S)). It is clear that this operator is a linear operator. Therefore, we only
need to prove the boundedness. Use the inequality in Theorem 2.1

K fllzz20,1:2205)) < l[wllz2(0,1:22(80))
||l r2(0,7;81 (2))
< ullp2(0,7 12 v))
< C||f||Hg )
= C[|fllm @)

<
<

If we have the value p(z,t) on S between time 0 and 7', the we can solve the inverse
problem

=arg min ||Kf — pl|? . 6

f g, K = pllT200,7522(8)) (6)

Therefore we need to look for the adjoint operator K* to solve this inverse problem.

Here, we introduce a special equation, which we call the adjoint equation of the equation

3)
uf, — c2Au* = p(x,1)0(5), (x,t) €S x(0,T)
u*|t:T = 0
7
uZ|t:T = 0 ( )
u* = 0 x e U

where S € 9Q,Q C U and p(x,t) € L*(0,T; L*(S)). §(S) is defined as follows

/ $0(S)dx = / pds(x),Yp € Hy(U)
U S



Before define the weak solution of the adjoint equation, we first define a test function set

D = {v|v is a weak solution of the equation (4);
h e L*(0,T5L*(U)), f € Hg(U), g € L*(U)}

It is obvious that C2([0,T]; C3(U)) C D. Since C?([0,T]; C3(U)) is dense in L?(0,T; H} (U)),
D is dense in L2(0,T; H(U)).

We say u* € L?(0,T; L*(U)) with u*(z,0) € L2(U), uj (z,0) € H=1(U) is a weak solution
of the equation (7) provided

fo Jiy e 2urhdedt — [ ¢ 2uf(x,0) fdx + [, ¢ *u*(x,0)gdx (8)
*fo fS Zpvds(x)dt, Vv GD

Theorem 3.1 Assume p(z,t) € L?(0,T;L?(S)), then there exists a unique weak solution
u* € L*(0,T; L2(U)) with u*(z,0) € L*(U), u;(z,0) € H-Y(U) of the equation (7), and we

have the estimate

e[|z 0,522y + 1w (2, 0)| 2wy + [ug (2, 0)|l -1 o)
< Cllp(z, )||z2(0,1:22(s))

Proof. Let us introduce three subsets in D

Dy = {v|h € L*(0,T; L*(U)), f =0, g =0}
Dy :={vlh =0, f € H}U), g=0}
Ds:={v|h=0, f=0, ge L*(U)}

It is easy to show that Dy C D, Dy C D, D3 C D.
First, we prove that there exist a unique solution u*(z,t) € L?(0,T; L*(U)) when the
test function v € Dy. For a given function h € L?(0,T; L?(U)), there exists v; € D; that

T T
/ /C_Zu*hda:dtz/ /C_2p’l)1d8(.%‘)dt (9)
o Ju 0o Js

According to Theorem 2.1

foT fs ¢ ?purds(z)dt < 1Pl L2(0,m;2 (s |[v1l|L2(0,7;L2(5))
<|lpllz20,7:L2(s))[v1llL2 (0,722 (802))
< Cillpllz2 0,2 sy llvill Lz 0,101 ()
< Cillpllzzo,:z2(s) vl L2 o, H2 (0))
< CallpllLz0,r;02(s)) 1Pl 20,7522 (1)

Then the right side of the equation (9) is a linear functional on L?(0,T; L?(U)). According
to Rieze Theorem, there exist a unique u* € L2(0,T; L*(U)).

Using the same proof process, we can get a unique function u} (x,0) € H=1(U), u*(z,0) €
L?(U), which we use the test function sets Da, Ds.

Next we prove that Vv € D, we have the equation (8). We first prove that for a given
vg € D, there exists v1 € Dy, vy € Doy, v3 € D3 that

Vg = U1 + Vg + U3

Since vy € D, there exists hg € L2(0,T; L*(U)), fo € H(U), go € L*>(U) that vg is the weak



solution of the equation

v —c2Av = hg, (z,t) €U x(0,T)
vli=o = fo
Vtli=o = 9o

v = 0, ze€dU

Assume v; is the weak solution of the equation

vy — 2Av = hg, (z,t) €U x (0,T)
U‘t:O = 0
Vile=o = 0
v = 0, ze€edU

Assume v is the weak solution of the equation

v —c2Av = 0, (x,t) €U x(0,7)
vli=o = fo
Vilt=o = 0

v = 0, zeodU

Assume vz is the weak solution of the equation

vy —Av = 0, (x,t) €U x (0,7)
’U|t:0 = 0
'Ut|t:0 = 9o
v = 0, xe€dU

(10)

(13)

According to Theorem 2.1, there exist v1 € Dy, vy € Do, v3 € D3. Write 0 = vy + v + v3,

then 7 is the weak solution of the equation (10), thus
1)0:17:1)1+U2+1)3
Then we have

Jo Jy € Puhdudt — [, e i (,0) fd + [, c7ut (2, 0)gde
= Jo Js ¢ *pvods(x)dt, Vv, € D

For a given f € H(Q), assume v is the weak solution of the equation (3), we have
Joy —¢2ui(x,0) fde = fT Js ¢ *puds(x)dt
= Jo Jspvds(z)dt,¥f e Hy(Q)

Define
K*p = —c?uj(,0)

Thus
<K"p, f >= (p,Kf)



4 Iterative Algorithms

4.1 Landweber Iteration

The Landweber iteration has been proposed in [7, 15], the authors suggest rewriting the
equation Kf = g in the form f = (I — 7K*K)f + 7K*g for some 7 > 0 and iterating this
equation

fo :=initial guess
fo=0-7K*K)f,_1 + 7TK*g

forn =1,2,---. This iteration scheme can be interperted as the steeptest descent algorithm
applied to the quadratic functional [11]
J(f) = IKf — gl (14)

4.2 Conjugate Gradient Method

A fast iterative algorithm for solving least squares problems is the conjugate gradient
method [11]

n = 0;
Jo:=0;
po = —K"g

begin conjugate gradient method
t = (Kfn—9,Kpn) .
n (IKpn || ’
fn+1 = fn — tupn;
_ K (Kfari—g)l?.

M = K (Kfu-9)2
Pn+1 = K*(KfnJrl - g) + appn;
n=n+1;

end conjugate gradient method

4.3 Total Variation Regularization

If the original image f is nearly piecewise constant with jump discontinuities, we can
minimize the Tikhonov-TV functional [1, 22]

Ta(f) = 5IKS gl +aTV () (15)

where

TV(f) := %u% /Q fdivddz,
€

and the space of the functions
V={7 e ClQ)| |V (x)] <1 for all z € Q}

The algorithm based on the steepest descent method to solve the equation (15) is given



as follows [19, 22]

n:=0;

fo :=initial guess;

begin steepest descent iterations
hn = K*(Kfn — 9) + aL(fn) fn;
fn+1 = fn = Thy;
n=n+1;

end steepest descent iterations

where a > 0,7 > 0, and

L(f)f =-v-@'(vf)vf)

with ¢(t) = 24/t + 32, where [3 is a small positive parameter. In our experiments, we choose
B =10"".

5 Numerical Experiments

In this section, we use the abbreviation OI for the original image, TR for time reversal,
NS for Neumann series, LI for Landweber iteration, CG for conjugate gradient method and
TV for total variation regularization, and will only show the two dimensional numerical
examples for reducing the cost of the computation. Set 2 = [~1.28,1.28]? and assume that
the observation surface S is 9€2. We work with three sound speeds, including constant sound
speed c1, non-trapping sound speed ¢y and trapping sound speed cs.

c(z) = 1.0

1.0 + 0.2sin(27x) + 0.1cos(2my), x €
) = { 1.0, z € R*\Q

0.5, |z| <0.5
cs(z) = x|, 05<|z]<1

1.0, Jz|>1

To avoid committing an ’'inverse crime’, a 512 x 512 grid with Azy, = Ay, = 0.005,
Atg = 0.5Az,/ max{c(z)} is employed to generate the measurement data. Then we use
mesh sizes Az = Ay = 0.01, At = 2Aty for reconstructions. The iterative parameter T
is set 1 for LI and TV. The regularization parameter « is set 5 x 1075 for noiseless data,
3 x 10~ for 10% noise and 5 x 10~% for 20% noise. All the initial values in LI, CG and TV
in the iterations are set 0.

The difficulty of computing the adjoint equation (7) is to compute the function g(z,¢)§(.S).
Since the observation surface S is 9Q2 and Az = Ay

Jrn 9(2,0)0(S)dx = 37 i;6(S)ijArAzx

Ti,j
fgg(xat)ds(x) ~ Z gi,jA‘r
x;, ;€S
Then §(S) can be approximately computed
O, Li,j ¢ S

s ={ %L LS

s



Therefore, the adjoint equation (7) can be computed

O — ED)ur; (1) = 29 4, e8
(5'“ — CzA ’ll,::](t) = 0, Ti5 ¢ S
wi (T) = 0

To improve the computation accuracy

u*(, —At) — u*(-, At)

—uy (1 0) = 2AL

It has been suggested in [3, 18] that we can use an arificial numerical atteuation to offset
spurious high-frequency effects and noise. Then the wave equation can be computed as

follows
Up4+1 — 2un + Up—1

At?
In our experiments, we set v = 1.8.
Finally, we give the computation of the function L(f™)f™ in TV [19]

Up — Up—1

— ?Au, = (Ax)TA( At )

nyfmy. . 1 T Aif:j
LU= —5 [A*(\/(Aif;pu(mmi Z,Ay_f{_;))2+,82)
v Y f
+A—(\/(Aif,;';)2+(m(Ai AT f1))2 452 )

where m(a,b) = minmod(a, b) and

AY fii = fij — fi—1y
ALfi; = fivr;— Jfij

and similarly for AY f;;, A fi;.

In this section, three phantoms are selected to test these algorithms, see Figure 1. In
our experiments, we show the numerical results both with noiseless and noisy data, where
10% and 20% additive white Gaussian noise respect to the maximum value of noiseless data
are added to the simulated data. In order to compare the performances of these different
algorithms, the best reconstructions are adopted by selecting the term numbers in NS,
iterative steps in LI, CG and TV in different situations, for the computation errors will
increase if we take too many terms or iterative steps.

5.1 Sound Speed ¢;

We start with the constant sound speed and reconstruct Phantom 1 and Phantom 3. We
set T'= 2 and use U = [—3.5,3.5]% as the computation domain.

The reconstructions and Y-slice diagrams of Phantom 1 with noiseless data are presented
in Figure 2, where we take 6 terms in NS, 13 iterative steps in LI, 5 iterative steps in CG
and 15 iterative steps in TV. Figure 3 shows the reconstructions and Y-slice diagrams of
Phantom 1 with 20% noise, where we take 2 terms in NS, 5 iterative steps in LI, 2 iterative
steps in CG and 8 iterative steps in TV.

The reconstructions and Y-slice diagrams of Phantom 3 with noiseless data are presented
in Figure 4, where we take 4 terms in NS, 8 iterative steps in LI, 3 iterative steps in CG and
8 iterative steps in TV. Figure 5 shows the reconstructions and Y-slice diagrams of Phantom
3 with 20% noise, where we take 2 terms in NS, 6 iterative steps in LI, 2 iterative steps in



Phantom 1 Phantom 2 Phantom 3

Figure 1: Original Images

Phantom Noise TR NS LI CcG TV
noiseless data  29.1% 3.7%  3.6%  3.5%  3.3%

Phantom 1 10% noise 29.4% 13.8% 11.9% 11.5% 7.4%
20% noise 30.2% 21.7% 20.2% 20.0% 13.2%

noiseless data 43.9% 26.0% 23.4% 23.4% 23.3%

Phantom 3 10% noise 44.1% 28.6% 25.8% 25.8% 23.8%
20% noise 43.9% 31.9% 31.2% 30.6% 27.5%

Table 1: L? error in sound speed c¢;

CG and 7 iterative steps in TV.

The L? errors of these methods in sound speed ¢; are presented at Table 1. We can see
that the reconstructions of Phantom 1 are much better than those of Phantom 3, especially
in the noisy case. The reason is that Phantom 1 has smooth boundaries between objects
while Phantom 3 has discontinuous boundaries, and computing the hyperbolic equation with
the discontinuous initial value can cause large computing errors.

5.2 Sound Speed c,

We still reconstruct Phantom 1 and Phantom 3 in sound speed cy. Set T' = 2 and use
U = [-3.5,3.5] as the computation domain.

The reconstructions and Y-slice diagrams with noiseless data are presented in Figure 6,
where we take 6 terms in NS, 13 iterative steps in LI, 6 iterative steps in CG and 14 iterative
steps in TV. Figure 7 shows the reconstructions and Y-slice diagrams with 20% noise, where
we take 3 terms in NS, 6 iterative steps in LI, 3 iterative steps in CG and 8 iterative steps
in TV.

The reconstructions and Y-slice diagrams of Phantom 3 with noiseless data are presented
in Figure 8, where we take 4 terms in NS, 8 iterative steps in LI, 3 iterative steps in CG and
8 iterative steps in TV. Figure 9 shows the reconstructions and Y-slice diagrams of Phantom
3 with 20% noise, where we take 2 terms in NS, 4 iterative steps in LI, 2 iterative steps in
CG and 5 iterative steps in TV.

The L? errors of these methods in sound speed ¢y are presented at Table 2.

10
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Figure 2: Reconstructions of Phantom 1 in sound speed ¢; with noiseless data. (a-f)The

original image and the solutions of TR, NS, LI, CG and TV. (g-1)Y-slices of TR, NS, LI,

CG, TV solutions (continuous lines) and the exact solutions (dashed lines).
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Figure 3: Reconstructions of Phantom 1 in sound speed ¢; with 20% noise. (a-f)The original
image and the solutions of TR, NS, LI, CG and TV. (g-1)Y-slices of TR, NS, LI, CG, TV

solutions (continuous lines) and the exact solutions (dashed lines).
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Figure 4: Reconstruction of Phantom 3 in sound speed ¢; with noiseless data. (a-f)The

original image and the solutions of TR, NS, LI, CG and TV. (g-1)Y-slices of TR, NS, LI,
CG, TV solutions (continuous lines) and the exact solutions (dashed lines).
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Figure 5: Reconstruction of Phantom 3 in sound speed ¢; with 20% noise. (a-f)The original
image and the solutions of TR, NS, LI, CG and TV. (g-1)Y-slices of TR, NS, LI, CG, TV
solutions (continuous lines) and the exact solutions (dashed lines).
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Figure 6: Reconstructions of Phantom 1 in sound speed ¢y with noiseless data. (a-f)The
original image and the solutions of TR, NS, LI, CG and TV. (g-1)Y-slices of TR, NS, LI,
CG, TV solutions (continuous lines) and the exact solutions (dashed lines).
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Figure 7: Reconstructions of Phantom 1 in sound speed ¢z with 20% noise. (a-f)The original
image and the solutions of TR, NS, LI, CG and TV. (g-1)Y-slices of TR, NS, LI, CG, TV

solutions (continuous lines) and the exact solutions (dashed lines).
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(@) 0l (b) TR (c) NS

Figure 8: Reconstruction of Phantom 3 in sound speed ¢, with noiseless data. (a-f)The
original image and the solutions of TR, NS, LI, CG and TV. (g-1)Y-slices of TR, NS, LI,
CG, TV solutions (continuous lines) and the exact solutions (dashed lines).
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Figure 9: Reconstruction of Phantom 3 in sound speed c¢o with 20% noise. (a-f)The original
image and the solutions of TR, NS, LI, CG and TV. (g-1)Y-slices of TR, NS, LI, CG, TV
solutions (continuous lines) and the exact solutions (dashed lines).
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Phantom Noise TR NS LI CcG TV
noiseless data  32.7% 3.9% 4.1% 4.0%  3.8%

Phantom 1 10% noise 33.0% 11.8% 11.6% 11.3% 7.4%
20% noise 33.7% 19.5% 19.6% 19.2% 12.8%

noiseless data 42.9% 26.6% 25.1% 24.9% 25.0%

Phantom 3 10% noise 43.4% 30.3% 29.2% 28.9% 27.4%
20% noise 42.9% 36.2% 36.9% 36.2% 33.5%

Table 2: L? error in sound speed ¢y

Phantom Noise TR NS LI CcG TV
noiseless data  42.6% 15.8% 14.9% 14.8% 14.5%
Phantom 3 10% noise 42.9% 22.9% 20.2% 20.4% 16.3%
20% mnoise 42.6% 29.0% 281% 28.1% 22.0%

Table 3: L? error in sound speed c3

5.3 Sound Speed c;3

In sound speed c3, we reconstruct Phantom 2. In this sound speed, we can not stably
reconstruct the initial value before any bounded time T'. However there is a unique solution
when T > 4 [20]. Therefore, we set T = 4 and use U = [-5.5,5.5]? as the computation
domain.

The reconstructions and Y-slice diagrams with noiseless data are presented in Figure
10, where we take 7 terms in NS, 11 iterative steps in LI, 4 iterative steps in CG and 12
iterative steps in TV. Figure 11 shows the reconstructions and Y-slice diagrams with 20%
noise, where we take 2 terms in NS, 4 iterative steps in LI, 2 iterative steps in CG and 8
iteratieve steps in TV.

The L? errors of these methods are presented at Table 3.

6 Conclusions

By investigating the adjoint equation with variable sound speed, we propose three image
reconstruction algorithms for photoacoustic tomography. These algorithms are executed by
iteratively computing the original equation and the adjoint equation. We worked with two
dimensional numerical examples and three different sound speeds, including constant sound
speed, non-trapping sound speed and trapping sound speed. All the numerical examples
demonstrate the well performance of the variational iterative algorithms. Especially, the
reconstructions of TV are significantly better than existing inversion methods in the case of
the noisy situation.
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Figure 10: Reconstructions of Phantom 2 in sound speed ¢z with noiseless data. (a-f)The

original image and the solutions of TR, NS, LI, CG and TV. (g-1)Y-slices of TR, NS, LI,
CG, TV solutions (continuous lines) and the exact solutions (dashed lines).

20



(@) ol (b) TR (c) NS

(d) Ll (e) CG H TV

(9) Ol (h) TR (i) NS

Figure 11: Reconstructions of Phantom 2 in sound speed ¢z with 20% noise. (a-f)The
original image and the solutions of TR, NS, LI, CG and TV. (g-1)Y-slices of TR, NS, LI,
CG, TV solutions (continuous lines) and the exact solutions (dashed lines).
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