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Abstract. We study the effects of agent turnover and agent movement
on equilibrium selection in spatial coordination games with Pareto domi-
nant and risk dominant Nash equilibria. Our primary interest is in under-
standing how various dynamic processes influence equilibrium selection
in games with multiple equilibria. We use agent based models and best
response behaviors of agents to study our questions of interest. In gen-
eral, as in Hagmann and Tassier (2012) we find that allowing agents
to move increases the likelihood of attaining the Pareto dominant Nash
equilibrium. The effects of agent turnover are more nuanced with the
effects depending on the ability of agents to relocate on the lattice. In-
creasing the rate of turnover when movement is not allowed in the model
increases the likelihood of attaining the Pareto dominant Nash equilib-
rium. Increasing the rate of turnover when movement is allowed in the
model decreases the likelihood of attaining the Pareto dominant Nash
equilibrium in some circumstances.

Keywords: coordination games, equilibrium selection, agent movement,
agent-based modeling

1 Introduction

We study the attainment of equilibria in lattice based coordination games. As an
example of a coordination game, consider the following 2x2 normal form game:

Player 2
X Y

Player 1 X a, a b, c
Y c, b d, d

Throughout the paper we assume a > c, d > b such that there exist two pure
strategy Nash Equilibria, X,X and Y, Y . Thus agents attempt to coordinate
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with their play partners on one of the two Nash equilibria. Thus our game of
interest is a standard 2x2 coordination game. Further, we assume that a > d
such that X,X is the Pareto dominant Nash equilibrium. Harsanyi and Selton [1]
define equilibrium Y, Y to be a risk dominant Nash equilibrium if (a−c)(a−c) <
(d− b)(d− b) which is equivalent to a + b < c + d. Our primary interest in this
paper will be with payoffs assigned such that Y, Y qualifies as risk dominant. We
study equilibrium selection in these games using an agent-based model.

There exists a large literature on the long run selection of equilibria in these
coordination games. As examples, Ellison [2]; Kandori, Mailath, and Rob [3]; and
Young [4], study equilibrium selection in an evolutionary framework where agents
are randomly matched with game partners. They find that the risk dominant
Nash equilibrium is the unique stochastically stable equilibrium when agents
have a small probability of making mistakes in strategy selection. Morris [5]
studies the spread of a Pareto dominant Nash equilibrium where agents play a
spatial coordination game on various topologies. He finds that a Pareto dominant
equilibrium may be favored in some network based coordination games if the
number of neighbors in the network expands at an intermediate rate (quickly,
but not too quickly). In recent research, Hagmann and Tassier [6] add the ability
of agents to move in these coordination games. They find that allowing agents
to move greatly increases the likelihood of attaining the Pareto dominant Nash
equilibrium.

In this paper, we introduce agent turnover in two ways. In the first, we allow
agent to be born onto the lattice that we study. We begin with one agent and
introduce new agents at various rates. We do this while also controlling the
agents’ ability to move and investigate how the interaction of new agent arrival
rates and the ability to move affects equilibrium selection. In the second set of
experiments, once new agents are introduced onto the lattice, we begin allowing
some agents to “die” and new agents are born to replace them. We then study
how this turnover process influences equilibrium selection results.

2 The Model

Overview

In our model, agents populate a 12x12 lattice. The number of agents in the
model is less than the number of locations on the lattice so that there are some
vacant locations. These agents are defined by two variables: their location on
the grid and their strategy in the cooperation game described in the previous
section with the following specific payoffs:

Player 2
X Y

Player 1 X 2, 2 −2, 0
Y 0,−2 1, 1

An agent’s initial location on the lattice is determined randomly. Only one
agent can populate a lattice cell at any given time, and each agent can have



up to eight neighbors (other agents located in an adjacent cell, including the
diagonals). Agents located at the edge of the lattice have fewer neighbors (i.e.
the world is not a torus).3 Agents are introduced into the model at various rates
as described below.

An agent plays one strategy against all her neighbors and calculates the
average payoff. If there are no neighbors, the payoff is zero. After an agent’s first
round of play, she will, in some scenarios, adapt her strategy to be a best-response
to the game-play of the previous round.

We study a scenario in which agents, once created, exist until the end of the
simulation, and a second scenario in which turnover occurs. In this scenario, a
fixed number of randomly selected agents are terminated and replaced by newly
created successors. We also vary the ability of agents to move in each of these
scenarios.

Processes and scheduling

The initialization procedure creates one agent at a random location and assigns
strategy Y to her (the strategy that corresponds to the risk dominant Nash
equilibrium.) In the first round, k ∈ [1, 50] agents are created (spawned) at
random locations, and assigned strategy X with probability p ∈ [0, 1]. Both k
and p are deterministic and vary across treatments. All agents then play the
coordination game against all their neighbors, using only one strategy for all
matches, and calculate their average payoff. Subsequently, they test the other
strategy (e.g. an agent that played X will also calculate her average payoff for
Y) and compare the average payoff from playing against all neighbors. If the
payoff of the alternate strategy is higher, the agent will change her strategy for
the next round.

If movement is enabled (a condition set for all agents), then each agent will
choose an open spot on the grid at random. At that location, she will calculate
her potential payoff for both strategies. She will then compare the payoff from
the best performing strategy at the new random location against the payoff from
the best performing strategy at the current location. If the former is greater, she
will move to the new location and adapt that strategy; otherwise, she will stay
at the current location.

At that point, the current round ends and the process is repeated: new agents
are created, stochastically assigned an initial strategy, and agents again play
against their neighbors and, if movement is enabled, choose whether to relocate
to a new spot. If agent replacement is disabled, then this process is repeated until
the end of the simulation (when k additional agents do not fit on the lattice.)

With agent replacement, however, the process contains an additional compo-
nent. Once the number of agents exceeds 100, a round begins by first eliminating
k agents, chosen at random. Every agent has the same chance of being eliminated.
Once k agents are removed, the process continues as without replacement.

3 In our previous work with models of this type we have not found edge effects to be
significant.



Termination conditions vary based on whether or not the model allows for
replacement. In treatments where replacement does not take place, the simula-
tion ends once there are no longer enough open spots on the lattice to create k
new agents. With replacement, the simulation ends after a total of 300 rounds.4

3 Results

We present the results of four sets of simulations. First, we model an information
cascade where an agent initially determines a best-response strategy and plays
that strategy throughout the simulation. We explore what happens with and
without movement. Next, we allow agents to change strategies and compare
directly the rate of cooperation with and without movement if only one agent
is born per round. Then we show what happens to cooperation as this rate
increases, both with and without movement. Finally, we terminate randomly
selected agents and initialize new ones in their place. The results reported in
the figures and tables below are averages based on 5,000 runs for each set of
parameters and treatments.

3.1 Movement in an Information Cascade

We first model an information cascade, where agents can choose between play-
ing strategy X, corresponding to the Pareto dominant Nash equilibrium, and
strategy Y, corresponding to the Risk dominant Nash equilibrium. We consider
the former to be the superior good in the classical setup. We investigate whether
allowing agents to move increases coordination on X.

The setup is as follows. In every round, one new agent is created. If the agent
has no neighbors at her current location, she plays strategy X with some prob-
ability P (x), which we vary across experiments. If an agent has a neighbor, she
plays the strategy with the highest payoff given the neighbors’ strategies. Once
the strategy is so determined, the agent continues to play it for the remainder
of the simulation. We show the results for increases in P (x) from 10% to 90%
in increments of 10%.

We observe that allowing for movement significantly decreases the number
of agents that play the Pareto dominant Nash Equilibrium. The difference is
small for low probabilities of playing strategy X without neighbors, with 14%
and 17% of agents playing the Pareto dominent Nash equilibrium with and
without movement, respectively. As P (x) increases, so does the difference in
cooperation. If agents without neighbors play strategy X 90% of the time, then
79% of agents end up playing strategy X without movement, whereas only 59%
do with movement. We simulated the experiment for spawn rates up to 10 agents
per period, but did not find any differences in cooperation.

4 We find that 300 rounds are sufficient to generate stable behavior.



Table 1. Spawn rate = 1 agent per period. Movement decreases the likelihood of
attaining the Pareto dominant Nash equilibrium.

probGreen spawnRate coop move = false coop move = true similarity move = false similarity move = true

10 1 4.41% 5.34% 95.70% 96.44%
20 1 10.17% 9.73% 91.51% 94.30%
30 1 16.84% 13.94% 87.94% 92.44%
40 1 24.25% 18.38% 85.08% 90.51%
50 1 33.51% 23.20% 83.06% 88.54%
60 1 43.79% 29.24% 82.22% 86.41%
70 1 55.05% 36.20% 82.89% 84.35%
80 1 67.08% 46.01% 85.10% 82.49%
90 1 79.18% 59.03% 88.98% 81.67%

Fig. 1. Spawn rate = 1 agent per period. Movement decreases the likelihood of attaining
the Pareto dominant Nash equilibrium.



3.2 Movement in the Simple Model

We begin with the simplest of our models that allow agents to change strategies.
Here we ask if movement increases attainment of the Pareto dominant Nash
equilibrium when the first agent picks the strategy corresponding to the risk
dominant Nash equilibrium.

The setup is as follows. The first agent plays strategy Y, and in each subse-
quent round, one new agent is created (spawn rate = 1 agent per period). This
new agent initially plays strategy X (corresponding to the Pareto dominant Nash
equilibrium) with a probability P (x) which we vary across experiments. The ta-
ble and chart below compare the percentage of agents coordinating on the Pareto
dominant Nash equilibrium for P (x) in increments of 10%.

Table 2. Spawn rate = 1 agent per period. Movement greatly increases the likelihood
of attaining the Pareto dominant Nash equilibrium.

P(x) move = false move = true

100 81.06% 99.96%
90 28.25% 99.82%
80 7.16% 99.60%
70 1.60% 98.53%
60 0.20% 96.34%
50 0.04% 92.04%
40 0.00% 84.86%
30 0.00% 71.44%
20 0.00% 54.83%
10 0.00% 28.63%

We find that movement significantly increases the likelihood of coordinat-
ing on the Pareto dominant Nash equilibrium. Without movement, the Pareto-
dominant Nash equilibrium is achieved in 81% of runs if all newly created agents
begin by playing strategy X. However, even a small probability of playing strat-
egy Y greatly decreases the likelihood of attaining the Pareto dominant Nash
equilibrium. If P (x) = 0.9 the Pareto dominant Nash equilibrium is achieved
only 28% of the time. If P (x) < 70% the Pareto dominant Nash equilibrium is
almost never attained without movement. The initial agent playing strategy Y
has a significant and long lasting effect in this scenario.

With movement, however, the initial play by the first agent has a much
smaller effect. If P (x) ≥ 0.5 over 90% of runs result in the Pareto dominant
Nash equilibrium when movement is allowed. And even when new agents play
strategy X only 10% of the time, over 1/4 of runs end with the Pareto dominant
Nash equilibrium. Movement has a very strong effect leading toward the Pareto
dominant Nash equilibrium.



Fig. 2. Spawn rate = 1 agent per period. Movement greatly increases the likelihood of
attaining the Pareto dominant Nash equilibrium.

3.3 Varying the Spawn Rate

Our second set of simulations examines the effect of rate at which new agents are
introduced. We look at whether creating more agents in every round influences
the share of agents playing strategy X. To do so, we spawn 1, 2, 5, and 10 agents
per round. Again, we do so both without and with movement. The following
charts represent averages for 5,000 iterations for each set of parameters.

Table 3. Without movement increasing the spawn rate increases the likelihood of
attaining the Pareto dominant Nash equilibrium.

P(x) spawnRate = 1 spawnRate = 2 spawnRate = 5 spawnRate = 10

100 81.06% 83.86% 90.92% 94.51%
90 28.25% 35.06% 51.83% 68.34%
80 7.16% 11.04% 23.43% 39.13%
70 1.60% 2.48% 8.50% 18.14%
60 0.20% 0.51% 2.41% 6.76%
50 0.04% 0.08% 0.74% 2.26%
40 0.00% 0.01% 0.08% 0.63%
30 0.00% 0.01% 0.01% 0.14%
20 0.00% 0.00% 0.01% 0.03%
10 0.00% 0.00% 0.00% 0.01%

We find that increasing the rate of introduction increases the likelihood of
attaining the Pareto dominant Nash equilibrium when movement is not allowed.
As an example, when the probability of playing X, P (x), by new agents is 90%
and one new agent is introduced each period, only 28% of runs results in the



Table 4. Without movement increasing the spawn rate increases the likelihood of
attaining the Pareto dominant Nash equilibrium.

P(x) spawnRate = 1 spawnRate = 2 spawnRate = 5 spawnRate = 10

100 99.96% 99.96% 100.00% 100.00%
90 99.82% 99.90% 99.79% 99.92%
80 99.60% 99.50% 98.92% 98.16%
70 98.53% 98.10% 95.33% 89.96%
60 96.34% 94.05% 85.71% 69.10%
50 92.04% 88.19% 68.42% 42.04%
40 84.86% 77.23% 45.68% 20.41%
30 71.44% 60.75% 23.79% 7.66%
20 54.83% 39.38% 10.05% 2.70%
10 28.63% 18.30% 2.69% 0.58%

Fig. 3. Without movement increasing the spawn rate increases the likelihood of attain-
ing the Pareto dominant Nash equilibrium.



Fig. 4. When movement is allowed, increasing the spawn rate decreases the likelihood
of attaining the Pareto dominant Nash equilibrium.

Pareto dominant Nash equilibrium. If the rate of introduction is increased to 10
agents per period, 60% of runs result in the Pareto dominant Nash equilibrium.
However, if P (x) is not sufficiently large, then increases in the rate of introduc-
tion has an insignificant effect on the likelihood of attaining the Pareto dominant
Nash equilibrium. Conversely, for low values of P(x) and when agents are allowed
to move, we observe a significant and non-linear decrease in the rate of cooper-
ation with increasing spawn rates. For large values of P(x) (P (x) > 0.8), agents
are able to coordinate on the Pareto dominant Nash equilibrium in almost all
runs. But for intermediate and low levels of P (x) increasing the spawn rate de-
creases the likelihood of attaining the Pareto dominant Nash equilibrium. As an
example, at P (x) = 0.4 and a spawn rate of 1 agent per period, just under 85%
of runs result in coordination on the Pareto dominant Nash equilibrium. But,
with a spawn rate of 10 new agents per period, the likelihood of coordinating
on the Pareto dominant Nash equilibrium drops to 20%. With movement and a
high spawn rate, it appears that the likelihood of attaining the Pareto dominant
Nash equilibrium is closely tied to the probability of new agents playing strategy
X. With lower spawn rates, movement strongly favors the Pareto dominant Nash
equilibrium as long as P (x) is not very low.

3.4 Rates of replacement

Finally, we introduce agent replacement in our third set of simulations. The setup
follows that of the previous subsection with one difference. Once the model is
populated by at least 100 agents, k agents will be replaced in every round. We
report averages based on 1,000 iterations for each set of parameters both with
and without movement.

Similar to the previous section, if movement is not allowed, increasing the
spawn rate increases the likelihood of attaining the Pareto dominant Nash equi-



Table 5. Agent replacement: Without movement increasing the spawn rate increases
the likelihood of the Pareto dominant Nash equilibrium.

p(X) k = 1 k = 5 k = 10 k = 20 k = 30 k = 50

100 69.33% 70.64% 75.55% 98.09% 99.90% 100.00%
90 13.38% 8.41% 7.18% 26.03% 64.23% 98.34%
80 1.62% 0.45% 0.33% 1.82% 1.62% 87.23%
70 0.25% 0.14% 0.29% 1.06% 0.79% 33.00%
60 0.02% 0.08% 0.18% 0.65% 0.47% 10.33%
50 0.02% 0.05% 0.12% 0.47% 0.24% 4.80%
40 0.01% 0.05% 0.09% 0.27% 0.13% 2.07%
30 0.02% 0.02% 0.06% 0.14% 0.05% 0.97%
20 0.01% 0.01% 0.03% 0.06% 0.03% 0.35%
10 0.00% 0.01% 0.01% 0.03% 0.01% 0.08%

Table 6. Agent replacement: With movement increasing the spawn rate decreases the
likelihood of the Pareto dominant Nash equilibrium for low P (x)

p(X) k = 1 k = 5 k = 10 k = 20 k = 30 k = 50

100 99.90% 100.00% 100.00% 100.00% 100.00% 100.00%
90 100.00% 99.98% 99.97% 99.92% 99.94% 99.75%
80 99.70% 99.76% 99.91% 99.76% 99.73% 98.75%
70 98.51% 98.46% 98.98% 99.51% 95.58% 94.62%
60 98.07% 96.14% 96.25% 93.94% 39.99% 58.52%
50 93.26% 90.02% 78.60% 44.99% 0.49% 9.49%
40 86.13% 75.77% 47.82% 1.45% 0.24% 3.06%
30 74.99% 54.35% 15.09% 0.22% 0.06% 0.93%
20 58.87% 31.27% 2.30% 0.04% 0.04% 0.26%
10 30.56% 12.52% 0.01% 0.01% 0.00% 0.05%

Fig. 5. Agent replacement: Without movement increasing the spawn rate increases the
likelihood of the Pareto dominant Nash equilibrium.



Fig. 6. Agent replacement: With movement increasing the spawn rate decreases the
likelihood of the Pareto dominant Nash equilibrium for low P (x).

librium, as long as P (x) is large enough. For low P (x), the Pareto dominant
Nash equilibrium is very unlikely regardless of the spawn rate. On the other
hand, with movement, increasing the spawn rate decreases the likelihood of at-
taining the Pareto dominant Nash equilibrium for low values of P (x). As an
example, for P (x) = 0.40 and a spawn rate of 1 (k = 1), 86% of runs end in the
Pareto dominant Nash equilibrium. But, for a spawn rate of 50 (k = 50) only
3% of runs end in the Pareto dominant Nash equilibrium. For sufficiently large
values of P (x) with movement, almost all runs end in the Pareto dominant Nash
equilibrium regardless of spawn rate.

4 Conclusion

In this paper we investigate the effect of agent turnover in a spatial coordination
game. As in Hagmann and Tassier [6], we find that allowing agents to move
increases the likelihood of attaining a Pareto dominant Nash equilibrium. The
rate at which agents are born into the model has a complex relationship with the
ability of agents to move. We find that increasing the rate of introducing new
agents into the model increases the likelihood of attaining the Pareto dominant
Nash equilibrium when movement is not allowed and may decrease it when
movement is allowed. The complex nature of these results suggest that further
investigation into agent movement and equilibrium selection is warranted.
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Overview, Design Concepts, and Details

1 Purpose

The purpose of the model is to provide insights into the roles of agent movement,
the rates at which agents enter the world, and agent replacement in two-by-two
coordination games. The payoffs are set such that there exist both a Pareto-
dominant Nash equilibrium X,X and a risk-dominant Nash equilibrium Y, Y .
Agents receive a higher payoff from the Pareto-dominant Nash equilibrium, but
if they play the corresponding strategy and their partner does not do so as well,
they incur a loss. We consider the risk-dominant Nash equilibrium to be the
inferior strategy and model how changing certain parameters influences agents’
ability to coordinate on the superior equilibrium. For certain parameters of the
model, we get a scenario similar to information cascades, allowing us in the
future to link our findings on the role of agent movement to this rich topic.

2 Entities, state variables, and scales

The model world is a 12x12 grid. Each grid cell can only be occupied by one
agent at a time. Agents represent individual actors and are all homogeneous.
They are defined by two variables: their location on the lattice and the strategy
they played in the last round of the coordination game (or, in the first round,
the strategy they were initialized with).

3 Process overview and scheduling

Agents play a coordination game against all their neighbors. They use the same
strategy for all neighbors, and calculate their average payoff from the games. An
agent may have up to eight neighbors: left, right, up, down, and the diagonales.
If an agent has no neighbors, her payoff is 0. After the round is completed,
they calculate the payoff they had received, had they played the other strategy.
If the alternate payoff is greater, they adopt that strategy for the next round;
otherwise, their strategy remains unchanged. If movement is enabled, each agent
(in random order) will select an open spot at random and play both strategies
against all the neighbors at that new location. If the average payoff of either
strategy is greater than what the agent received at the current location, she will
move to the new spot and adapt the strategy with the highest average payoff.
Otherwise, the agent will stay at the current location. At that point (with and
without movement), new agents will be “born” according to the pre-determined
spawn rate, playing strategies 1 and 2 with some given probabilities. Once these
agents have spawned, agents again play their neighbors and the process repeats.
If replacement is enabled, then the above process repeats until there are at least
100 agents present in the world. Once that number is reached, k agents will be
terminated at random, where k is the pre-determined spawn rate. Then, k new



agents are spawned using the pre-determined probabilities for strategies X and
Y. The simulation ends after 300 rounds, at which point the final share of agents
playing X is recorded. Without replacement, agents will continue to spawn until
the grid no longer has sufficiently many open spaces to accommodate all the
agents set to spawn. At that point, the simulation will terminate and record the
final share of agents playing X.

4 Design concepts

4.1 Basic principles

We study the attainment of equilibria in lattice based coordination games. As an
example of a coordination game, consider the following 2x2 normal form game:

Player 2
X Y

Player 1 X a, a b, c
Y c, b d, d

We assume a > c, d > b such that there exist two pure strategy Nash
Equilibria, X,X and Y, Y . Further, we assume that a > d such that X,X is the
Pareto dominant Nash equilibrium. Harsanyi and Selton [1] define equilibrium
Y, Y to be a risk dominant Nash equilibrium if (a − c)(a − c) < (d − b)(d − b)
which is equivalent to a + b < c + d. Our primary interest in this paper will
be with payoffs assigned such that Y, Y qualifies as risk dominant. We use the
following payoff matrix in our simulations:

There exists a large literature on the long run selection of equilibria in these
coordination games. As examples, Ellison [2]; Kandori, Mailath, and Rob [3]; and
Young [4], study equilibrium selection in an evolutionary framework where agents
are randomly matched with game partners. They find that the risk dominant
Nash equilibrium is the unique stochastically stable equilibrium when agents
have a small probability of making mistakes in strategy selection. Morris [5]
studies the spread of a Pareto dominant Nash equilibrium where agents play a
spatial coordination game on various topologies. He finds that a Pareto dominant
equilibrium may be favored in some network based coordination games if the
number of neighbors in the network expands at an intermediate rate (quickly,
but not too quickly). In recent research, Hagmann and Tassier [6] add the ability
of agents to move in these coordination games. They find that allowing agents
to move greatly increases the likelihood of attaining the Pareto dominant Nash
equilibrium.

In this paper, we introduce agent turnover in two ways. In the first, we allow
agent to be born onto the lattice that we study. We begin with one agent and
introduce new agents at various rates. We do this while also controlling the
agents’ ability to move and investigate how the interaction of new agent arrival
rates and the ability to move affects equilibrium selection. In the second set of
experiments, once new agents are introduced onto the lattice, we begin allowing



some agents to “die” and new agents are born to replace them. We then study
how this turnover process influences equilibrium selection results.

4.2 Emergence

The emergent behavior in the model is coordination on the Pareto-dominant
Nash equilibrium. Intuitively, allowing agents to move to new locations could
allow agents playing strategy Y to intrude in neighborhoods where agents have
coordinated on X. Such an agent could then destabilize the equilibrium and lead
to other agents playing Y as well. Alternatively, movement could allow agents to
form pockets where sufficiently many agents play X to convert other agents. The
effect of the spawn rate is also not predictable a priori. More agents decrease
the length of the simulation, as the world fills up quicker, but introducing many
cooperating agents at once against a single non-cooperator could quickly lead to
all cooperation after the initial round. Finally, replacing agents at random could
both promote or destabilize an existing equilibria.

4.3 Adaptation

Agents choose their strategy to be the best response to their neighbors’ play in
the previous round. When movement is enabled, they move if they could have
achieved a higher payoff at the other location using either available strategy.

4.4 Objectives

Agents seek to maximize the payoff described in the coordination game. This
payoff represents some utility to them and is identical for all agents.

4.5 Prediction

When movement is allowed, agents attempt to predict their payoff at some new
location. They do this by “playing” both strategies against all the neighbors of
that location. If one of these strategies leads to a higher payoff than what they
received at their current spot, they predict that the new location will be more
rewarding and move there.

4.6 Sensing

Agents know who their neighbors are and what strategy they played last. When
agents are mobile, they also know the strategies played by the neighbors at their
randomly chosen new location, so that they can calculate what payoff they would
have received, had they been there.



4.7 Interaction

Agents interact directly with each other when they play their strategy against
their neighbors. An agent’s payoff is, in turn, determined by the strategy chosen
by all her neighbors. These interactions involve no communication.

4.8 Stochasticity

Agents’ location is determined randomly, using a uniform distribution over all
open grid cells. With the exception of the first agent, who always plays strategy
Y, agents are assigned an initial strategy stochastically. The probability of being
initialized with strategy X is one of the parameters varied between experiments.
With mobile agents, agents sample a new location at random, with all open grid
cells equally likely to be chosen. Finally, when replacement is enabled, k agents
are selected at random to be removed.

4.9 Observation

At the end of the simulation, the total number of agents as well as the number
of agents playing strategy X are collected. Each parameter is simulated 1,000
times (for the scenario with replacement) or 5,000 times (others). The results
from all simulations are used.

5 Initialization

The model always begins with one agent who is set to play strategy Y. The
agent’s location is determined stochastically with a uniform distribution over all
grid cells. Of interest is how this agent influences overall coordination on X,X,
for example if all following agents begin by playing strategy X. The first agent
selecting an inferior option is also at the heart of information cascades. We hope
to expand on our findings and apply them to this field.

6 Submodels

We use the following coordination payoff matrix:

Player 2
X Y

Player 1 X 2, 2 −2, 0
Y 0,−2 1, 1

The penalty to playing X if the other player chooses Y was set such that
X,X is a Pareto dominant and Y, Y is a risk dominant Nash equilibrium. If
this penalty is too great, cooperation does not occur. We set the parameter such
that we can observe some cooperation over all probabilities of new agents playing



strategy X. This allows us to separate the effects of increasing that probability
as well as of increasing the birth rate.

When allowing agents to die, we do so once at least 100 agents have been
created. We observed in our previous work (Hagmann and Tassier [6]) that the
number of agents on the lattice influences the rate of cooperation with move-
ment. When the lattice gets crowded, the effect of movement decreases as agents
find it difficult to locate suitable free spots. We found a significant decrease in
cooperation going from 100 agents (94.2%) to 115 agents (79.5%). Thus, we set
the values such that the lattice will not be sufficiently crowded to distort our
findings.





Source Code

1 t u r t l e s −own
2 [ s c o r e ; ; temporary
3 score−br ; ; p lay ing best re sponse
4 score−a l t−br ; ; p lay ing the a l t e r n a t i v e s t r a t e g y
5 score−hyp ; ; hypo the t i c a l s c o r e at a new l o c a t i o n
6 hyp−s t r a t ; ; best−re sponse s t r a t e g y at new l o c a t i o n
7 o ldxcor ; ; temporary
8 o ldycor ; ; temporary
9 ]

10

11 to setup
12 c l ea r−a l l
13 r e s e t−t i c k s
14 setup−patches
15 setup−t u r t l e s
16 end
17

18 to go
19 ; ; k i l l and spawn t u r t l e s ; ;
20 i f k i l l ?
21 [ i f count t u r t l e s > 100 [ k i l l −t u r t l e s ]
22 i f t i c k s >= 300 [ stop ]
23 ]
24 i f e l s e count t u r t l e s <= ( world−width ∗ world−he ight −

agents−to−spawn )
25 [ spawn−t u r t l e s ]
26 [ s top ]
27 ; ; / k i l l and spawn t u r t l e s ; ;
28

29 ask t u r t l e s
30 [ play−br ; ; play best re sponse to prev ious

round ( or i n i t i a l s t r a t e g y in round 1)
31 play−a l t−br ; ; t e s t other s t r a t e g y
32 update−s t r a t e g y ; ; adopt best per forming s t r a t e g y f o r

next round
33 i f move? ; ; I f true , look at random open patch

, c a l c u l a t e payo f f there , and move i f i t ’ s g r e a t e r
34 [ move ]
35 ]
36 t i c k
37 end
38

39 to setup−patches
40 ask patches
41 [ s e t pco l o r b lack ]
42 end
43



44 to setup−t u r t l e s
45 set−de fau l t−shape t u r t l e s ” person ”
46 ask n−o f ( number−of−agents ) patches
47 [ sprout 1 ]
48 ask t u r t l e s
49 [ s e t c o l o r red ]
50 ask n−o f ( i n i t i a l −s t ra tegy −1 / 100 ∗ number−of−agents )

t u r t l e s
51 [ s e t c o l o r green ]
52 end
53

54 to move
55 save−current−p o s i t i o n
56 f ind−new−spot ; ; s e l e c t a random patch
57 play−hyp−br ; ; play br at new loca t i on , a s s i g n

s co r e to score−hyp−br
58 decide−move ; ; i f hyp−br > br : move , o therw i se

stay
59 end
60

61 to play−br
62 i f e l s e c o l o r = green ; ; green = cooperate ( s t r a t e g y 1) ,

red = d e f e c t ( s t r a t e g y 2)
63 [ play−s t ra tegy −1 ]
64 [ play−s t ra tegy −2 ]
65 s e t score−br s co r e ; ; a s s i g n average payo f f to score−

br
66 s e t s co r e 0 ; ; r e s e t the s co r e
67 end
68

69 to play−a l t−br ; ; play the other s t r a t e g y and
a s s i g n payo f f to score−a l t−br

70 i f e l s e c o l o r = green
71 [ play−s t ra tegy −2 ]
72 [ play−s t ra tegy −1 ]
73 s e t score−a l t−br s co r e
74 s e t s co r e 0
75 end
76

77 to play−s t ra tegy −1 ; ; play aga in s t a l l ne ighbors ,
average p a yo f f s

78 l e t n ne ighbors count t u r t l e s −on ne ighbors
79 i f e l s e n ne ighbors != 0
80 [ l e t ne ighbors− l i s t [ s e l f ] o f t u r t l e s −on ne ighbors
81 f o r each neighbors− l i s t
82 [ l e t opponent ?
83 l e t my−c o l o r green
84 l e t opponent−c o l o r [ c o l o r ] o f opponent
85 i f e l s e my−c o l o r = opponent−c o l o r



86 [ s e t s c o r e ( s co r e + a ) ] ; ; I
cooperate , opponent coope ra te s

87 [ s e t s c o r e ( s co r e + b) ] ; ; I
cooperate , opponent d e f e c t s

88 ]
89 s e t s co r e ( s co r e / n ne ighbors ) ; ; take the

average payo f f
90 ]
91 [ s e t s c o r e 0 ] ; ; i f no neighbors , the s co r e i s 0
92 end
93

94 to play−s t ra tegy −2
95 l e t n ne ighbors count t u r t l e s −on ne ighbors
96 i f e l s e n ne ighbors != 0
97 [ l e t ne ighbors− l i s t [ s e l f ] o f t u r t l e s −on ne ighbors
98 f o r each neighbors− l i s t
99 [ l e t opponent ?

100 l e t my−c o l o r red
101 l e t opponent−c o l o r [ c o l o r ] o f opponent
102 i f e l s e my−c o l o r = opponent−c o l o r
103 [ s e t s c o r e ( s co r e + d) ] ; ; I de f ec t ,

opponent d e f e c t s
104 [ s e t s c o r e ( s co r e + c ) ] ; ; I de f ec t ,

opponent coopera te s
105 ]
106 s e t s co r e ( s co r e / n ne ighbors )
107 ]
108 [ s e t s c o r e 0 ]
109 end
110

111 to update−s t r a t e g y
112 play−a l t−br
113 i f e l s e c o l o r = green
114 [ i f score−a l t−br > score−br [ s e t c o l o r red ] ] ; ;

i f d e f e c t i o n i s bet te r , change to d e f e c t i o n f o r
next round

115 [ i f score−a l t−br > score−br [ s e t c o l o r green ] ] ; ;
i f cooperat i on i s bet te r , change to cooperat i on
f o r next round

116 end
117

118 to save−current−p o s i t i o n
119 s e t o ldxcor xcor
120 s e t o ldycor ycor
121 end
122

123 to f ind−new−spot ; ; p ick a random empty patch
124 setxy random world−width random world−he ight
125 move−to patch−here
126 whi le [ any? other t u r t l e s −here ]



127 [ f ind−new−spot ]
128 end
129

130 to play−hyp−br ; ; play both s t r a t e g i e s , c a l c u l a t e
r e s p e c t i v e score , and save s t r a t e g y o f b e t t e r s c o r i n g
response

131 s e t hyp−s t r a t 0 ; ; r e s e t va lue . I f both s t r a t e g i e s perform
equa l l y wel l , then t h i s remains 0

132 play−s t ra tegy −1
133 l e t score−hyp1 s co r e
134 play−s t ra tegy −2
135 l e t score−hyp2 s co r e
136 i f s core−hyp1 > score−hyp2
137 [ s e t score−hyp score−hyp1
138 s e t hyp−s t r a t 1
139 ]
140 i f s core−hyp2 > score−hyp1
141 [ s e t score−hyp score−hyp2
142 s e t hyp−s t r a t 2
143 ]
144 s e t s co r e 0
145 end
146

147 to decide−move
148 i f e l s e score−hyp <= score−br ; ; i f the new spot i s not

bet ter , move back to the o ld spot , o the rw i se adopt BR
f o r new spot

149 [ s e txy o ldxcor o ldycor
150 move−to patch−here
151 ]
152 [ i f hyp−s t r a t = 1
153 [ s e t c o l o r green ]
154 i f hyp−s t r a t = 2
155 [ s e t c o l o r red ]
156 ] ; ; i f hyp−s t r a t = 0 , then the

agent does not change c o l o r .
157 end
158

159 to k i l l −t u r t l e s
160 ask n−o f agents−to−spawn t u r t l e s
161 [ d i e ]
162 end
163

164 to spawn−t u r t l e s
165 ask n−o f agents−to−spawn patches with [ not any? t u r t l e s −

here ]
166 [ sprout 1
167 [ i f e l s e random 100 < probGreen
168 [ s e t c o l o r green ]
169 [ s e t c o l o r red ]



170 ]
171 ]
172 end


