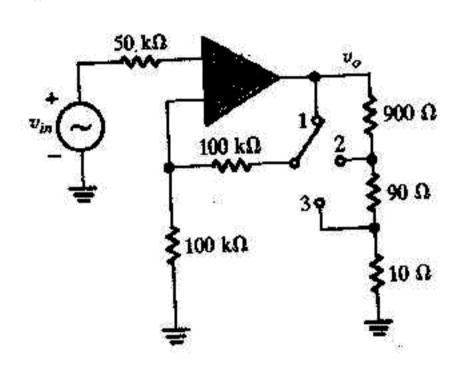
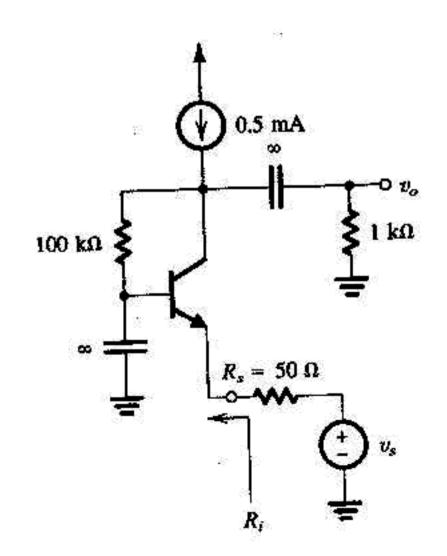

八十八學年度<u>愛子子科</u> (所) 組碩士班研究生招生考試 程子學 科號 4702 共 ^多 頁第 ¹ 頁 *請在試祭【答案祭】內作2

1.A signal source V_2 with output resistance R_3 is connected in the circuit as shown. It is known that the voltage V_2 is induced by the voltage V_1 such that $V_2=kV_1$.

- (1) Derive an expression for the transfer function V_1/V_s .
- (2) Find the expression for pole frequency f_H .
- (3) If $R_1=R_s=1k\Omega$, $C_1=20pF$, $C_2=2pF$, and k=-9, sketch the Bode plot for $|V_1/V_s|$ (15%)

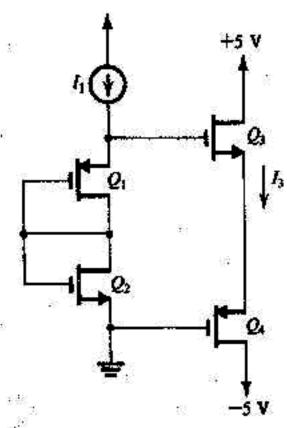


- 2.(1) Sketch the circuit of a cascode amplifier using two identical BJTs.
 - (2) What are the input resistance, output resistance, and voltage gain of your circuit?
 - (3) What is the advantage of this amplifier as compared to a common emitter amplifier? (10%)
- 3.In the BiCMOS differential amplifier as shown, $I_Q=0.6\text{mA}$, $k_a=0.3\text{mA/V}^2$, $\lambda=0.01\text{V}^{-1}$ for the MOSFETs; $V_A=80\text{V}$ for the BJTs. Find the output resistance R_m the differential input resistance, and the voltage gain $A_d=v_o/(v_2-v_1)$. (10%)

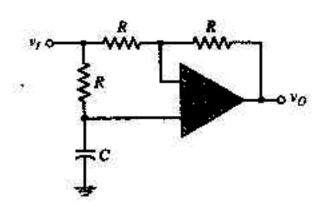


八十八學年度 多了了移 系 (所) 組碩士班研究生招生考試 科眼 4702 共 3 頁第 2 頁 * 請在試卷【答案卷】內作答

4. Find the voltage gain of the following circuit with the switch in positions 1, 2, and 3. (15%)



- 5.An amplifier with inverting circuit intended for very-high-frequency operation, yet characterized by a single-pole roll-off, has f_i=100MHz and A_o=20V/V. For a design in which the actual (rather than the nominal) closed-loop gain is -10V/V, what 3dB frequency results? (10%)
- 6. For the circuit shown, find the input resistance R_i , and the voltage gain v_i/v_s . Assume that the source provides a small signal v_s and that β is high. Note that a transistor remains in the active region even if the collector voltage falls below that of the base by 0.4V or so. (10%)



國 立 清 華 大 學 命 題 紙

7. Assuming the threshold voltage of all devices to be equal in magnitude and k denotes $(1/2)(\mu C_{\infty}W/L)$. If $k_1=k_2$, and $k_3=k_4=16k_1$, find the required value of 1, such that $l_3=1.6mA$. (15%)

8. Find the transfer function V_a(s)/V_i(s) of the following circuit. Sketch the Bode plot for both gain and phase angle. (15%)

