科目 近代物理 科號 2904 共 2 頁第 1 頁 *請在試卷【答案卷】內作答

 Suppose two reference frames are moving with a relative speed ν along the x direction, where the origins of the two frames are supposed to coincide at the instant t = 0. A space-time transformation is given in a symmetric way by

$$\begin{cases} x_2 = \gamma(x_1 - \tau_1 v/c) \\ \tau_2 = \gamma(\tau_1 - x_1 v/c) \end{cases}$$

where $\tau = ct$. The inverse transformation is then given by $x_1 = \gamma(x_2 + \tau_2 v/c)$, and $\tau_1 = \gamma(\tau_2 + x_2 v/c)$. Suppose the transformation is self-consistent, find the factor γ in terms of v and c.

The commutator between two operators A and B is given by

$$[A, B] = AB - BA$$

Show that $\left[x, \frac{d^2}{dx^2}\right] = c_1 \frac{d}{dx}$, and $\left[\frac{d}{dx}, f\right] = c_2 \frac{df}{dx}$, and find the constants c_1 and c_2 , where f is an arbitrary scalar function of space. (16%)

Show that the de Broglie wavelength of a particle of rest mass m and kinetic energy KE is given by

$$\lambda = \frac{hc}{\sqrt{\text{KE}(\text{KE} + 2mc^2)}},$$

where h is the Planck constant, c is the speed of light.

- (7%)
- A photon of energy hv collides with a stationary electron of rest mass m. Show that it is not physically possible for the photon to impart all its energy to the electron. (8%)
- 5. The frequency of oscillation of a harmonic oscillator of mass m and spring constant C is $v = \frac{1}{2\pi} \sqrt{\frac{C}{m}}$. The energy of the oscillator is $E = p^2/2m + Cx^2/2$, where p is its momentum when its displacement from the equilibrium position is x. In classical physics the minimum energy of the oscillator is $E_{min} = 0$. Use the uncertainty principle to show that the minimum energy is actually $E_{min} = h \sqrt{2}$.

九十三學年度 電子工程研究所 系 (所) 組碩士班入學考試	
科目 近代物理 科號 2904 共 2 頁第 2 頁 *請在試卷【答案者	入作答
6. Consider the operator \hat{C} , $\hat{C}\varphi(x) = \varphi^*(x)$.	
$\varphi^*(x)$ is the complex conjugate of $\varphi(x)$.	
(a) What are the eigenvalues of \hat{C} ? (b) What are the eigenfunctions of \hat{C} ?	(6%) (6%)
7. A one dimensional infinite potential well extends from $x = -L$ to $x = +L$ and is of three sections by rigid wall of infinite potential at $x = -x_0$ to $x = +x_0$, where $x_0 < L$ each section contains one particle with mass m in its ground state.	
(a) Draw the potential diagram of this potential well and draw the wavefunction of	
particle in ground state clearly. (b) Write down the expression of the total energy of this three particle system in terms.	(4%)
(b) Write down the expression of the total energy of this three particle system in ter and L.	(4%)
(c) Determine the value of x_0 and for which the total energy (found in part (c)) is n	ninimized.
	(4%)
(d) What is the value of this total energy?	(4%)
 Eight identical noninteracting Fermions (each with mass m) are placed in a cub size L. 	ical box of
(a) Find the lowest energy of the system.	(4%)
(b) List the quantum number of the occupied states.	(3%)
(c) List the quantum number of the occupied states if the particles are Boson and the is in the ground state.	e system (3%)
9. An electron in an atom is in $4F_{5/2}$ state.	
(a) Find the value of quantum number n , ℓ , and j .	(3%)
(b) What is the magnitude of the electron's total angular momentum?	(3%)
(c) What are the possible values for the z component of the electron's total angular momentum?	