

基于 XFEM 的垂直于双材料界面的 裂纹扩展问题

师访,高峰,高亚楠

中国矿业大学深部岩土力学与地下工程国家重点实验室,徐州 221116

摘要 基于扩展有限元法,提出了双材料界面上垂向裂纹应力强度因子的计算方案。导出由6项组成的新型裂纹尖端位移增强 函数,基于裂尖应力场和位移场的解析解,建立路径无关 J₆积分与应力强度因子 K₅K₆的关系式,利用扩展有限元法计算 J₆积分, 通过上述关系式求得应力强度因子,用最大周向应力准则确定裂纹扩展角 θ₆。数值计算表明, J₆积分与 XFEM 结合可有效解决 垂直于双材料界面的裂纹扩展问题;当裂纹由弹模较小材料朝着弹模较大材料扩展时,裂纹扩展角 θ₆较小,而由弹模较大材料朝 着弹模较小材料扩展时, θ₆较大;4点弯曲试验结果表明,裂纹扩展角 θ₆与界面两侧材料的泊松比比值 v₁/v₂无关,而与弹性模量比 值的对数lg(*E*₁/*E*₂)成指数关系。

关键词 扩展有限元法;断裂力学;J积分;双材料界面;裂纹扩展 中图分类号 O302 文献标志码 A

doi 10.3981/j.issn.1000-7857.2014.23.001

Crack Propagation Terminating at a Bimaterial Interface Studied Using Extended Finite Element Method

SHI Fang, GAO Feng, GAO Yanan

State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou 221116, China

Abstract A numerical method is presented for obtaining the stress intensity factors of cracks terminating at a bimaterial interface based on extended finite element method (XFEM). A new 6-term crack tip displacement enrichment function is derived. Based on the analytical solution of the stress and displacement fields around the crack tip, the expression of the path independent integral J_{kx} and the stress intensity factors K_1 and K_{11} , is established. The XFEM numerical solution is used to calculate the integral J_{kx} , and the stress intensity factors are obtained by using the above expression. Finally, the maximum circumferential stress criterion is used to request the crack propagation angle θ_p . Results of the numerical simulations show that propagation problems of vertical crack at the bimaterial interface can be solved efficiently by the combination of the integral J_{kx} method and the XFEM. The crack propagation angle θ_p is smaller when the crack propagates from a softer material into a harder material, but θ_p is larger when the crack propagates from a harder material into a softer material. In the case of the four-point bending test, the crack propagation angle θ_p is independent of the ratio of the Poisson's ratios (v_1/v_2) of materials on both sides of the interface, but θ_p and the logarithm of the ratio of elasticity modulus $lg(E_1/E_2)$ meet an exponential relation.

Keywords XFEM; fracture mechanics; J integral; bimaterial interface; crack propagation

近年来,金属-陶瓷、复合金属以及层状陶瓷等复合材料 被广泛应用于工程实践^[1,2]。通常,复合材料生产工序多,造 成了其内部存在不同形式的缺陷。复合材料的服役环境一般都较为恶劣,材料内部缺陷易形成初始裂纹,尤其是在材

收稿日期:2014-04-27;修回日期:2014-07-11

作者简介:师访,博士研究生,研究方向为扩展有限元方法,电子信箱:fshi@cumt.edu.cn;高峰(通信作者),教授,研究方向为非线性岩石力学,电子信箱: fgao@cumt.edu.cn

引用格式:师访,高峰,高亚楠.基于XFEM的垂直于双材料界面的裂纹扩展问题[J].科技导报,2014,32(23):15-21.

基金项目:国家重点基础研究发展计划(973计划)项目(2011CB201205);江苏省普通高校研究生科研创新计划项目(CXZZ13_0922)

料界面处,裂纹扩展导致材料断裂破坏¹³。为了防止复合材 料发生断裂失效,延长使用寿命,需要研究材料界面处裂纹 的扩展过程,为复合材料的设计提供依据。在这些裂纹扩展 问题中,常遇到垂直且终止于双材料界面的裂纹。精确计算 双材料界面处垂直裂纹尖端的应力强度因子,并获知裂纹扩 展方向具有重要意义。

扩展有限元方法(extended finite element method, XFEM) 是一种基于单位分解思想的数值计算方法^[4],该方法在传统 有限元法(finite element method, FEM)的基础上进行了重要 改进,基本思想是用扩充的带有不连续性质的形函数基来表 示计算域内的强、间断,自1999年由美国西北大学 Belytschko 团队^[5-8]提出以来得到了飞速发展,其最大的特点是裂缝扩展 路径不受有限元网格划分的影响,可直观再现裂缝扩展过 程。在双材料界面裂纹 XFEM 研究方面,Sukumar 等^[9]和 Huang 等^[10]给出了由4项组成的垂直并终止于双材料界面的 裂纹的增强函数,而后 Sukumar 等^[11]又给出了沿着双材料界 面裂纹的增强函数,该增强函数由12项构成。Bouhala 等^[12]用 Airy 应力函数导出了双材料界面处任意倾角裂纹的裂尖位移 增强函数,并用体积力方法计算了应力强度因子,但是以上 研究均没有考虑裂纹的扩展问题。

求解双材料界面裂纹应力强度因子常用的方法有体积 力法^[13,14]、插值法^[15,16]和等参有限元法(isoparametric finite elements)^[17]。Chang等^[18]提出了修正的双材料界面裂纹路径 无关积分*J*_{ke},该积分克服了常规*J*_k积分在处理双材料界面裂 纹时物理意义消失的困难,通过计算*J*_{ke}积分可以求得应力强 度因子。

本文首先导出XFEM裂尖增强函数,然后通过裂纹尖端 应力场和位移场的解析解,建立路径无关J_{ke}积分与应力强度 因子K₁、K₁的方程式,并确定方程参数。进而利用XFEM数值 解计算J_{ke}积分,求得应力强度因子,用最大周向应力准则确 定裂纹扩展方向。最后对编写的程序Betaxfem 2D进行检 验,并模拟复合材料试件的4点弯曲试验。

1 裂纹端部场

如图1所示,裂纹垂直并终止于双材料界面。若两种材料 属性相同,则裂纹端部场奇异性指数 λ 为0.5。在交汇点O处建 立局部直角坐标系(x, y)和局部极坐标系 (r, θ) ,整个区域被划 分为3个子区域,即 $\Omega_1(-\pi \le \theta \le -\pi/2)$ 、 $\Omega_2(-\pi/2 \le \theta \le \pi/2)$ 和 $\Omega_3(\pi/2 \le \theta \le \pi)$ 。由弹性力学复变函数理论可知,极坐标系 下应力场、位移场与复变函数 $\phi(z)$ 、 $\psi(z)满足:$

$$\begin{cases} \sigma_{rr} + \sigma_{\theta\theta} = 2\left[\phi'(z) + \overline{\phi'(z)}\right] \\ \sigma_{\theta\theta} - \sigma_{rr} + 2i\sigma_{r\theta} = 2e^{2i\theta}\left[\overline{z}\phi''(z) + \psi'(z)\right] \\ 2G(u_{rr} + iu_{\theta\theta}) = e^{-i\theta}\left[\kappa\phi(z) - z\overline{\phi'(z)} - \overline{\psi(z)}\right] \end{cases}$$
(1)

式中, σ_{n} 、 σ_{00} 和 σ_{n} 为极坐标系下的应力场, u_{n} 和 u_{00} 为极 坐标系下的位移场, *G*是剪切模量。不考虑裂纹面上的牵引 力,裂纹面上应力自由边界条件为

$$\begin{cases} \sigma^{1}_{\theta\theta}(r,-\pi) = 0\\ \sigma^{1}_{\theta\theta}(r,-\pi) = 0\\ \sigma^{3}_{\theta\theta}(r,\pi) = 0\\ \sigma^{3}_{r\theta}(r,\pi) = 0 \end{cases}$$
(2)

式中, σ_{ij}^{k} 中的k表示子区域号。材料界面上的应力和位移连续条件为

$$\begin{cases} \sigma^{2}_{\theta\theta}(r,\pi/2) = \sigma^{3}_{\theta\theta}(r,\pi/2) \\ \sigma^{2}_{r\theta}(r,\pi/2) = \sigma^{3}_{r\theta}(r,\pi/2) \\ \sigma^{1}_{r\theta}(r,-\pi/2) = \sigma^{2}_{\theta\theta}(r,-\pi/2) \\ \sigma^{1}_{r\theta}(r,-\pi/2) = \sigma^{2}_{r\theta}(r,-\pi/2) \\ u^{2}_{\theta\theta}(r,\pi/2) = u^{3}_{\theta\theta}(r,\pi/2) \\ u^{2}_{rr}(r,\pi/2) = u^{3}_{rr}(r,\pi/2) \\ u^{2}_{\theta\theta}(r,-\pi/2) = u^{2}_{\theta\theta}(r,-\pi/2) \\ u^{2}_{rr}(r,-\pi/2) = u^{2}_{r\theta}(r,-\pi/2) \\ u^{2}_{rr}(r,-\pi/2) = u^{2}_{rr}(r,-\pi/2) \end{cases}$$
(3)

图1 双材料界面处垂直裂纹

Fig. 1 A crack terminates normally at the bimaterial interface

对于双材料界面裂纹问题,可假设3个子区域内的复变 函数 $\phi_k(z)$ 和 $\psi_k(z)$ (k=1, 2, 3)满足:

$$\begin{cases} \phi_{k}(z) = a_{1k}z^{\lambda} + a_{2k}z^{\bar{\lambda}} \\ \psi_{k}(z) = b_{1k}z^{\lambda} + b_{2k}z^{\bar{\lambda}} \end{cases} \quad (k = 1, 2, 3) \end{cases}$$
(4)

其中,λ是裂纹端部场奇异性指数。

将式(4)代入式(1),并将边界条件式(2)和式(3)用 a_{1k} 、 a_{2k} 、 b_{1k} 和 b_{2k} (k=1, 2, 3)表示,可得12个线性方程,写成矩阵形 式 Ra=0,其中 $a=[a_{11},a_{21},b_{11},b_{21},a_{12},a_{22},b_{12},b_{22},a_{13},a_{23},b_{13},b_{23}]^{\mathsf{T}}$ 。 若该齐次线性方程组有非零解,则R的行列式为零,即 |R|=0,可得:

 $[2\lambda^{2}(\alpha-\beta)(\beta+1)-\alpha+\beta^{2}+(1-\beta^{2})\cos(\lambda\pi)]^{2}=0$ (5) 求解式(5)得到 λ 。式(5)左边的2次方说明方程的根总是以 重根的形式存在, α 和 β 为Dundurs双材料参数,其表达式为

$$\begin{cases} \alpha = \frac{G_1(\kappa_2 + 1) - G_2(\kappa_1 + 1)}{G_1(\kappa_2 + 1) + G_2(\kappa_1 + 1)} \\ \beta = \frac{G_1(\kappa_2 - 1) - G_2(\kappa_1 - 1)}{G_1(\kappa_2 + 1) + G_2(\kappa_1 + 1)} \end{cases}$$
(6)

式中,G为剪切模量,对于平面应变问题 $\kappa=3-4v$,对于平面 应力问题 $\kappa=(3-v)/(1+v)$ 。若裂纹处于较软的材料内($\alpha<0$),

则λ>0.5;若裂纹处于较硬的材料内(α>0),则λ<0.5。Chen^[13] 采用复变函数法给出了材料界面处垂直裂纹问题端部场极 坐标系下位移场和应力场的解析表达式:

$$u_{ij} = K_{\mathrm{I}} r^{\lambda} g_{ij}^{\mathrm{I}}(\theta) + K_{\mathrm{II}} r^{\lambda} g_{ij}^{\mathrm{II}}(\theta)$$
(7)

$$\sigma_{ij} = \frac{K_{\rm I}}{r^{1-\lambda}} f_{ij}^{\rm I}(\theta) + \frac{K_{\rm II}}{r^{1-\lambda}} f_{ij}^{\rm II}(\theta) \tag{8}$$

2 扩展有限元方法

1999年,Belytschko等¹⁹提出用独立于网格划分的有限元 思想来解决裂纹扩展问题,在传统有限单元法的基础上采用 裂纹近场位移解对裂纹面及裂纹尖端的节点进行增强。随 后,Moës等¹⁷引入阶跃函数和裂尖增强函数分别对裂纹面和 裂纹尖端进行描述,并将该方法称为扩展有限元方法。

2.1 基本格式

对于由n个节点构成的有限元模型内的点x,假如该有限 元模型内包含一不连续面,则点x的XFEM位移可表示成传 统有限元节点位移 u^{FE} 和增强节点位移 u^{eFE} 之和:

$$\boldsymbol{u}^{h}(\boldsymbol{x}) = \boldsymbol{u}^{\text{FE}} + \boldsymbol{u}^{\text{enr}}$$
$$= \sum_{k=1}^{n} N_{j}(\boldsymbol{x})\boldsymbol{u}_{j} + \sum_{k=1}^{m} N_{k}(\boldsymbol{x})\boldsymbol{\psi}(\boldsymbol{x})\boldsymbol{a}_{k}$$
(9)

其中, u_j 是传统有限元节点位移自由度向量, N_j 是与节点j对应的形函数; a_k 是附加位移自由度向量,m为增强节点数 目, $\psi(x)$ 是增强节点k形函数 N_k 的影响区域内的增强函数, N_k 是与节点k对应的形函数。

针对裂纹问题,式(9)可进一步写成

$$\boldsymbol{u}^{h}(\boldsymbol{x}) = \boldsymbol{u}^{\text{FE}}(\boldsymbol{x}) + \boldsymbol{u}^{\text{H}}(\boldsymbol{x}) + \boldsymbol{u}^{\text{HP}}(\boldsymbol{x})$$
(10)

式中, **u**^H(**x**) 表示裂纹面两边增强节点位移自由度向量; **u**^{iip}(**x**) 表示裂纹尖端增强节点位移自由度向量,其显式表达 式为

$$\boldsymbol{u}^{h}(\boldsymbol{x}) = \left[\sum_{j=1}^{n} N_{j}(\boldsymbol{x})\boldsymbol{u}_{j}\right] + \left[\sum_{h=1}^{m_{h}} N_{h}(\boldsymbol{x})H(\boldsymbol{x})\boldsymbol{a}_{h}\right] + \left[\sum_{k=1}^{m_{i}} N_{k}(\boldsymbol{x})\left(\sum_{l=1}^{n_{i}} F_{l}(\boldsymbol{x})\boldsymbol{b}_{k}^{l}\right)\right]$$
(11)

其中, m_h 为裂纹面两边增强节点数, $H(\mathbf{x})$ 是 Heaviside 增强函数, a_h 为裂纹面两边增强节点自由度向量; m_i 为裂尖增强节 点数, $F_l(\mathbf{x})$ 是裂尖增强函数, $\pm n_l$ 个, b_h^l 为裂尖增强节点自 由度向量。对于各向同性材料, $F_l(\mathbf{x})$ 共有4项,表达式为

$$\left\{F_{l}(r,\theta)\right\}_{l=1}^{4} = \left\{\sqrt{r}\sin\frac{\theta}{2}, \sqrt{r}\cos\frac{\theta}{2}, \sqrt{r}\sin\theta\sin\frac{\theta}{2}, \sqrt{r}\sin\theta\cos\frac{\theta}{2}\right\}$$
(12)

其中, $r = \sqrt{(x - x_{tip})^2 + (y - y_{tip})^2}$; $\theta = \arctan[(y - y_{tip})/(x - x_{tip})] - \gamma$, (x, y)为高斯点 x 的坐标, (x_{tip}, y_{tip}) 为裂纹尖端的坐标, γ 为裂纹 与 x 轴的夹角。Heaviside 增强函数 H本质是符号距离函数, 其表达式为

$$H(\xi) = \begin{cases} 1 & \forall \xi > 0 \\ -1 & \forall \xi \leqslant 0 \end{cases}$$
(13)

2.2 裂尖位移增强函数

利用式(7),将 u_n 和 u_m 表示为

$$\begin{cases} u_{rr}^{k} = r^{\lambda} [(A_{1})_{rr}^{k} \cos(\lambda + 1)\theta + (A_{2})_{rr}^{k} \sin(\lambda + 1)\theta + (A_{3})_{rr}^{k} \cos(\lambda - 1)\theta + (A_{4})_{rr}^{k} \sin(\lambda - 1)\theta] \\ u_{\theta\theta}^{k} = r^{\lambda} [(A_{1})_{\theta\theta}^{k} \cos(\lambda + 1)\theta + (A_{2})_{\theta\theta}^{k} \sin(\lambda + 1)\theta + (A_{3})_{\theta\theta}^{k} \cos(\lambda - 1)\theta + (A_{4})_{\theta\theta}^{k} \sin(\lambda - 1)\theta] \end{cases}$$
(14)

其中, $(A_i)_{\pi}^k$ 和 $(A_i)_{\theta\theta}^k$ (*i*=1, 2, 3, 4)是未知系数。由于式(9)定 义于直角坐标系下, 故利用位移分量极坐标和直角坐标转换 关系式

$$\begin{cases} u_x = u_{rr} \cos \theta - u_{\theta\theta} \sin \theta \\ u_y = u_{rr} \sin \theta + u_{\theta\theta} \cos \theta \end{cases}$$
(15)

可得:

$$\begin{cases} u_x^k = r^{\lambda} [(A_1)_{n}^k \cos(\lambda + 1)\theta\cos\theta + (A_2)_{n}^k \sin(\lambda + 1)\theta\cos\theta + (A_3)_{n}^k \cos(\lambda - 1)\theta\cos\theta + (A_4)_{n}^k \sin(\lambda - 1)\theta\cos\theta - (A_1)_{\theta\theta}^k \cos(\lambda - 1)\theta\sin\theta - (A_2)_{\theta\theta}^k \sin(\lambda - 1)\theta\sin\theta - (A_3)_{\theta\theta}^k \cos(\lambda - 1)\theta\sin\theta - (A_4)_{\theta\theta}^k \sin(\lambda - 1)\theta\sin\theta] \\ u_y^k = r^{\lambda} [(A_1)_{n}^k \cos(\lambda + 1)\theta\sin\theta + (A_2)_{n}^k \sin(\lambda - 1)\theta\sin\theta + (A_3)_{n}^k \cos(\lambda - 1)\theta\sin\theta + (A_4)_{n}^k \sin(\lambda - 1)\theta\sin\theta + (A_4)_{\theta\theta}^k \sin(\lambda + 1)\theta\cos\theta + (A_3)_{\theta\theta}^k \cos(\lambda + 1)\theta\cos\theta + (A_4)_{\theta\theta}^k \sin(\lambda - 1)\theta\cos\theta + (A_3)_{\theta\theta}^k \cos(\lambda - 1)\theta\cos\theta + (A_4)_{\theta\theta}^k \sin(\lambda - 1)\theta\cos\theta] \\] \mathring{R} R \vec{\chi} (16) \ddot{T} \ddot{m} \dot{n} \dot{\xi} t dt \dot{\xi} \vec{\Pi}, \ddot{R} \ddot{S} \chi \dot{t}^{\dagger} \vec{R} \vec{S} \vec{M} \dot{\xi} t dt \dot{\xi} \vec{\Pi}, \ddot{R} \ddot{S} \chi \dot{t}^{\dagger} \vec{R} \vec{S} \vec{M} \dot{\xi} \vec{M}$$

$$\{F_{l}(r,\theta), l = 1, 2, \dots, 6\} =$$

$$\{r^{\lambda}\cos(\lambda + 1)\theta\cos\theta, r^{\lambda}\sin(\lambda + 1)\theta\cos\theta,$$

$$r^{\lambda}\cos(\lambda - 1)\theta\cos\theta, r^{\lambda}\sin(\lambda - 1)\theta\cos\theta,$$

$$r^{\lambda}\cos(\lambda + 1)\theta\cos\theta, r^{\lambda}\sin(\lambda + 1)\theta\sin\theta\}$$
(17)

其中,λ为裂尖场奇异性指数,其值由式(5)确定。对于各向 同性材料,λ=0.5,将λ代入式(17)并消除其中的线性相关项 之后,式(17)退化为各向同性材料对应的裂尖增强函数,见 式(12)。而Sukumar等^[0]和Huang等^[10]给出的由4项组成的垂 直并终止于双材料界面的裂纹的增强函数为

$$\left\{F_{i}(r,\theta)\right\}_{i=1}^{4} = \left\{r^{1-\lambda}\sin\lambda\theta, r^{1-\lambda}\cos\lambda\theta, r^{1-\lambda}\sin(\lambda-2)\theta, r^{1-\lambda}\cos(\lambda-2)\theta\right\}$$
(18)

当λ=0.5时,该增强函数不同于式(12),故不适用于各向同性 材料。

3 J_k和分

Chang¹¹⁸提出了J₄。积分,并用该积分计算了双材料界面处 垂直裂纹的应力强度因子。如图2所示,经典J₄积分定义 式为:

$$J_{k} = \lim_{\Gamma \to 0} \int_{\Gamma} \left[W n_{k} - \sigma_{ij} n_{j} \left(\frac{\partial u_{i}}{\partial x_{k}} \right) \right] ds \quad k = 1, 2$$
(19)

式中,W为应变能密度,n_i为积分路径**Г**的单位外法线向量在 i方向上的分量,假设**Г**是以O点为圆心,r为半径的圆,则式 (19)可写成¹⁸:

$$J_{1} = \lim_{r \to 0} \frac{1}{E_{1}} r^{2\lambda - 1} \left(p K_{1}^{2} + q K_{11}^{2} \right)$$
(20)

www.kjdb.org

$$J_{2} = -\lim_{r \to 0} \frac{2}{E_{1}} r^{2\lambda - 1} w K_{1} K_{11}$$
(21)

式(20)和式(21)中,p,q和w是与材料属性相关的参数。r趋于0时,若0< λ <0.5,则 J_k 趋于无穷大,而若0.5< λ <1,则 J_k 趋于0,这两种情况下J积分均失去物理意义。选用一小量 ε 替代r,并定义 J_k 积分,该积分与应力强度因子的关系^[18]为

$$J_{1s} = \frac{1}{E_1} \varepsilon^{2\lambda - 1} \left(p K_1^2 + q K_{11}^2 \right)$$
(22)

$$J_{2\varepsilon} = -\frac{2}{E_{\star}} \varepsilon^{2\lambda - 1} w K_1 K_{II}$$
(23)

如图2所示, Chang等[18]给出了路径无关Jke积分的表达式

$$J_{1s} = \int_{\Gamma_{s}} \left[W n_{1} - \sigma_{ij} n_{j} \left(\frac{\partial u_{i}}{\partial x} \right) \right] ds + \int_{l_{1} + l_{2} + l_{3} + l_{4}} \left[W n_{1} - \sigma_{ij} n_{j} \left(\frac{\partial u_{i}}{\partial x} \right) \right] ds$$

$$(24)$$

$$J_{2s} = \int_{\Gamma_{s}} \left[Wn_{2} - \sigma_{ij} n_{j} \left(\frac{\partial u_{i}}{\partial y} \right) \right] ds + \int_{s_{1} + s_{2}} Wn_{2} ds$$
(25)

图 2 J_{ke}积分路径 Fig. 2 Integral paths of J_{ke}

4 数值实施

4.1 参数 *p*、*q*和 *w* 的计算

Chang等^[18]用数值解计算得到参数p、q和w,尝试直接用 双材料界面处垂直裂纹端部场的解析解计算参数p、q和w。 首先用式(15)对位移分量 u_n和 u₀₀进行转换,得到 u_x、u_y,并 用式(26)对端部应力场进行转换得到直角坐标系下的应力 分量:

$$\begin{cases} \sigma_{xx} = \sigma_{rx} \cos^{2}\theta + \sigma_{\theta\theta} \sin^{2}\theta - 2\sigma_{r\theta} \sin\theta \cos\theta \\ \sigma_{yy} = \sigma_{rx} \sin^{2}\theta + \sigma_{\theta\theta} \cos^{2}\theta + 2\sigma_{r\theta} \sin\theta \cos\theta \\ \sigma_{xy} = (\sigma_{rr} - \sigma_{\theta\theta}) \sin\theta \cos\theta + \sigma_{r\theta} (\cos^{2}\theta - \sin^{2}\theta) \end{cases}$$
(26)

如图3所示,构建半径为 ε 的圆,其上均匀分布着N个计 算节点,任意相邻节点间的圆心角为 $2\pi/N$ 。由于 $\varepsilon = \sqrt{x^2 + y^2}$ 且 $\theta = \arctan(y/x)$,所以 $\partial \varepsilon/\partial x = \cos \theta$, $\partial \varepsilon/\partial y = \sin \theta$, $\partial \theta/\partial x = -\sin \theta/\varepsilon$, $\partial \theta/\partial y = \cos \theta/\varepsilon$,于是可得

图 3 计算 p、q和 wFig. 3 Calculation of p, q and w

应变能密度W的表达式为

$$W = \frac{1}{2} \left[\sigma_{xx} \frac{\partial u_x}{\partial x} + \sigma_{xy} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) + \sigma_{yy} \frac{\partial u_y}{\partial y} \right]$$
(28)

由式(22)可得

$$J_{1s} = \int_{\Gamma} W dy - \int_{\Gamma} \mathcal{E} \left[\left(\sigma_{xx} n_1 + \sigma_{xy} n_2 \right) \frac{\partial u_x}{\partial x} + \left(\sigma_{xy} n_1 + \sigma_{yy} n_2 \right) \frac{\partial u_y}{\partial x} \right] d\theta \quad (29)$$
$$J_{2s} = \int_{\Gamma} W dx - \int_{\Gamma} \mathcal{E} \left[\left(\sigma_{xx} n_1 + \sigma_{xy} n_2 \right) \frac{\partial u_x}{\partial y} + \left(\sigma_{xy} n_1 + \sigma_{yy} n_2 \right) \frac{\partial u_y}{\partial y} \right] d\theta \quad (30)$$

分别令 $K_1 = 1$ 、 $K_n = 0$ 和 $K_1 = 0$ 、 $K_n = 1$,则由式(29)和式 (22)可求得p和q;令 $K_1 = 1$ 、 $K_n = 1$,则由(30)式和(23)式可 求得 w_{\circ}

4.2 J_k数值积分

采用高斯积分法计算 J_{ke},此处以 J_{ke}的计算过程为例说 明。式(24)和式(25)中 J_{ke}积分与积分路径无关,为方便计算, 选择穿过单元高斯积分点的矩形积分路径Γ,如图4所示。

	* *	*6		* *	**	* *	* 6	* *	
×	××	××	x x	××	ŧ ×	× ×	××	х х	××
×				××	V /×				××
×				× /	¥ ×				××
/×		0		×ŧ	+ ×				××
×		203		× *	* ×				××
×			/						× *
×						\land			××
×			/			[c)			×
: ×					1	c			×
: x							0.		×/
×			\backslash				382		× *
×									××
×									××
/×		O1		×¥	‡ ×				×
×		221		××	* ×				××
×				××	¥⁄×				×
×				× /	¥ ×				××
×	××	××	×х	××	* ×	××	××	×х	×
- 14	* *	**			**	* *	≫ *		

图 4 经过高斯点的矩形 J_t积分路径 Fig. 4 Rectangular J_t integral path passes through gauss points

www.kjdb.org

用XFEM求得各单元高斯积分点位移和应力后,可求得J_{1e}:

$$J_{1s} = \sum_{g=1}^{n_g} \delta(\xi_g, \eta_g) I(\xi_g, \eta_g)$$
(31)

式中, n_{ε} 是路径 Γ 上的积分点数, $(\xi_{\varepsilon},\eta_{\varepsilon})$ 是单元高斯点的局部 坐标, $\delta(\xi_{\varepsilon},\eta_{\varepsilon})$ 是高斯点的权重, $I(\xi_{\varepsilon},\eta_{\varepsilon})$ 是每个高斯点对应 的被积函数值,I表达式为

$$I(\xi_{g},\eta_{g}) = \frac{1}{2} \left[\sigma_{xx} \varepsilon_{xx} + 2\sigma_{xy} \varepsilon_{xy} + \sigma_{yy} \varepsilon_{yy} \right] \frac{\partial y}{\partial \eta} - \left[(\sigma_{xx} n_{1} + \sigma_{xy} n_{2}) \frac{\partial u_{x}}{\partial x} + (\sigma_{xy} n_{1} + \sigma_{yy} n_{2}) \frac{\partial u_{y}}{\partial x} \right] \sqrt{\left(\frac{\partial x}{\partial \eta}\right)^{2} + \left(\frac{\partial y}{\partial \eta}\right)^{2}} \quad (32)$$

采用相同积分方案可求得J2。。

4.3 裂纹扩展准则

在求得参数p,q,w以及 J_{1e},J_{2e} 后,联立式(22)和式(23) 即可解得 K_1 和 K_{11o} 最后用最大周向应力准则¹¹⁹确定裂纹扩展 方向,该准则认为 σ_{00} 达到极值时,裂纹沿着垂直于 σ_{00} 的方 向扩展,即裂纹面扩展角 θ_i 满足:

$$\frac{\partial \sigma_{\theta\theta}}{\partial \theta} = 0, \, \frac{\partial^2 \sigma_{\theta\theta}}{\partial \theta^2} < 0 \tag{33}$$

 σ_{θ} 表达式为式(8)。

5 算例分析

5.1 程序验证:单轴拉伸模拟

基于 Matlab 平台编写了扩展有限元计算程序 Beatxfem 2D(www.betaxfem.com)。为检验程序的可靠性,以单轴拉伸 平面应力板为例进行测试。如图5所示,板左右两边宽度相 同,裂纹宽度 2a = 0.25 m,板的高度 2b = 1 m。模型共划分800 个单元,如图6所示。本问题为1型断裂问题,故 K_{II} 为0。首 先求得p,再通过 XFEM 求得 J_{Ie} ,最后利用式(22)求得 K_{Io}

代入 $\bar{K}_1 = \frac{\sqrt{2}K_1}{\sigma \sigma^{1-\lambda}}$ 进行归一化处理,得到不同材料参数组合下

对应的应力强度因子如表1所示。本文计算方案所得结果与 Chen^[13]采用复变函数法和Lin等^[21]采用有限元法得到的结果 吻合得很好,验证了程序应力强度因子求解的可靠性。利用 式(33)计算可得,当 $\theta=0^{\circ}$ 时 σ_{ω} 取得最大值,即 $\theta_{\rho}=0^{\circ}$,这与实际情况一致。

图6 双材料板扩展有限元网格

Fig. 6 Extended finite element mesh of the bimaterial plate

表1 归一化应力强度因子

Table 1 Normalized stress intensity factors

G_2/G_1	v_1	v_2	λ	р	K_{I}	K_1	K_1
					(本文)	$(Chen)^{[13]}$	$(Lin)^{[21]}$
0.00722	0.30	0.35	0.0749	1238.93	0.0195	0.0192	0.0196
0.0433	0.30	0.35	0.1758	212.36	0.0946	0.0950	0.0950
23.08	0.35	0.30	0.7110	0.7415	4.2360	4.2310	4.2410
138.46	0.35	0.30	0.7335	0.6078	4.9820	5.0010	4.9780

5.2 4点弯曲试验裂纹扩展模拟

图7为双材料梁4点弯曲试验示意图,梁宽*l*=15 cm,*a*₁=2 cm,*a*₂=3 cm,*b*=0.5 cm,*F*=25 kN,*θ*,为裂纹扩展角。

图7 4点弯曲双材料梁几何模型及载荷 Fig. 7 Geometry and loads of a 4-point bending bimaterial beam

保持上层材料弹性模量 $E_2=200$ GPa以及 $v_1=v_2=0.3$ 不变, 取不同 E_1 值计算,考察裂纹扩展角的变化情况。单元数目为 1220个,每个计算步裂纹扩展增量 $\Delta a = 3\sqrt{A_{elem}}$,其中 A_{elem} 表示单元面积。一旦裂纹发生扩展,裂尖即不再处于双材料界 面上,此后程序进入常规扩展有限元计算¹⁵⁻⁷¹过程。若 $E_1=E_2$,则原问题简化为各向同性介质中的裂纹扩展问题,此时式 (33)可写成

$$\theta_{p} = 2 \arctan\left(\frac{K_{1} - \sqrt{K_{1}^{2} + 8K_{11}^{2}}}{4K_{11}}\right)$$
 (34)

数值模拟结果: $E_3/E_1=0.1$ 时,裂纹扩展路径及扩展有限 元网格如图8所示,此时 $\theta_p=28^\circ$ 。可见,裂纹扩展过程完全不 依赖于网格,网格一旦划分完毕,后续迭代过程中网格无需 任何变动,这与传统有限元法有很大的不同,XFEM具有明显 优势。随着梁材料参数 E_2/E_1 的变化,裂纹扩展角的变化情况 如图9数据点所示,在 E_2/E_1 从0.01增加到100的过程中, θ_p 从 76°逐渐减小,最后稳定在2°左右。当裂纹由弹模较小材料 朝着弹模较大材料扩展时,裂纹扩展角较小;而裂纹由弹模 较大材料朝着弹模较小材料扩展时,裂纹扩展角较大。数据 拟合发现,裂纹扩展角与材料弹性模量比的对数($lg(E_2/E_1)$) 满足指数函数关系 $\theta_p=10.45e^{-x}$,其中 $x=lg(E_2/E_1)$,如图9 所示。

图 8 扩展有限元网格和裂纹扩展路径 Fig. 8 Extended finite element mesh and crack propagation path

裂纹扩展 2 个增量步后, $E_2/E_1=0.1$ 以及 $E_2/E_1=10$ 时的 σ_{xx} 、 σ_{yy} 和x方向位移分布规律见图 10~图 12。从图 10 和图 11可见裂纹尖端应力集中效应明显(图 11 试件上边缘的两处 应力集中是由载荷 F 引起,下边缘的两处应力集中由位移约 束引起)。图 12裂纹两侧位移不连续,显示了位移的强间断 特征。保持 $E_1=E_2=200$ GPa, $v_2=0.3$ 不变,取不同 v_1 的值计算, 计算结果见表 2,可见上下层材料泊松比对裂纹扩展方向影 响甚微。

F. F. B. 200										
v_{i}	0.2	0.25	0.3	0.35	0.4					
$ heta_{\scriptscriptstyle p}/(^{\circ})$	10.02	10.04	10.02	10.09	10.05					

・ や よ い Eleve a technology ref

6 结论

XFEM 近年来蓬勃发展,尤其是用于处理裂纹问题时具 有明显的优点。J_k积分的物理意义是裂纹沿着原方向(k=1) 或垂直于原方向(k=2)扩展单位长度时的能量释放率,而对 于双材料界面处的裂纹,J_k将变成趋于无穷大或0,失去物理 意义,因而无法用J_k积分计算应力强度因子。本文的主要思 想是用双材料界面处裂纹尖端区域(半径为ε的圆)的解析解 来建立J_{ke}积分与应力强度因子的关系式,而J_{ke}可利用XFEM 计算得到。此外,本文给出的由6项组成的双材料界面垂直 裂纹裂尖增强函数在λ=0.5时将退化为各向同性材料裂尖增 强函数,而Sukumar等¹⁰¹和Huang等¹⁰¹给出的由4项组成的双 材料界面垂直裂纹裂尖增强函数不适用于各向同性材料。

通过理论和数值计算可知:1) XFEM 与 J₄。积分思想相结 合可以有效地解决垂直于双材料界面裂纹的扩展问题,为复 合材料断裂力学问题研究提供了新思路;2) 当裂纹由弹性模 量较小的材料朝着弹性模量较大的材料扩展时,裂纹扩展角 较小,而由弹性模量较大的材料朝着弹性模量较小的材料扩 展时,裂纹扩展角较大;3) 4 点弯曲试验模拟结果表明,裂纹 扩展角θ_p与界面两侧材料的泊松比比值 v₁/v₂无关,而与弹性 模量比值的对数 lg(E₁/E₂)满足指数关系 y=ae⁻⁻。

参考文献(References)

 姚战军, 倪新华, 郑坚, 等. 陶瓷颗粒增强金属基复合材料的细观强度 分析[J]. 应用力学学报, 2007, 24(3): 443-446.

Yao Zhanjun, Ni Xinhua, Zheng Jian, et al. Micro-strength of particle reinforced metal matrix composites[J]. Chinese Journal of Applied Mechanics, 2007, 24(3): 443-446.

[2] 王扬卫, 王富耻, 于晓东, 等. 梯度陶瓷金属装甲复合材料研究进展
 [J]. 兵工学报, 2007, 28(2): 209-214.
 Wang Yangwei, Wang Fuchi, Yu Xiaodong, et al. Research

advancement on graded ceramic-metal armor composites[J]. Acta Armamentarii, 2007, 28(2): 209–214.

- [3] 杨福树, 孙志刚, 李龙彪, 等. 正交铺设陶瓷基复合材料基体裂纹演化研究[J]. 南京航空航天大学学报: 英文版, 2011, 28(1): 111-119. Yang Fushu, Sun Zhigang, Li Longbiao, et al. Research on matrix crack evolution of cross-ply ceramicmatrix composite[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011, 28(1): 111-119.
- [4] Abdelaziz Y, Hamouine A. A survey of the extended finite element[J]. Computers and Structures, 2008, 86(11): 1141-1151.
- [5] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620.
- [6] Belytschko T, Moës N, Usui S, et al. Arbitrary discontinuities in finite elements[J]. International Journal for Numerical Methods in Engineering, 2001, 50(4): 993–1013.
- [7] Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150.
- [8] Moës N, Gravouil A, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets part I: Mechanical model[J]. International Journal for Numerical Methods in Engineering, 2002, 53

(11): 2549-2568

- [9] Sukumar N, Prévost J H. Modeling quasi static crack growth with the extended finite element method part I: Computer implementation[J]. International Journal of Solids and Structures, 2003, 40(26): 7513– 7537.
- [10] Huang R, Prévost J H, Huang Z Y, et al. Channel cracking of thin films with the extended finite element method[J]. Engineering Fracture Mechanics, 2003, 70(18): 513–2526.
- [11] Sukumar N, Huang Z Y, Prévost J H, et al. Partition of unity enrichment for bimaterial interface cracks[J]. International Journal for Numerical Methods in Engineering, 2004, 59(8): 1075–1102.
- [12] Bouhala L, Shao Q, Koutsawa Y, et al. An XFEM crack-tip enrichment for a crack terminating at a bi-material interface[J]. Engineering Fracture Mechanics, 2013, 102: 51-64.
- [13] Chen D H. A crack normal to and terminating at a bimaterial interface[J]. Engineering Fracture Mechanics, 1994, 49(4): 517–532.
- [14] Chen D H, Nisitani H. Body force method[J]. International Journal of Fracture, 1997, 86(1): 161-189.
- [15] Cook T S, Erdogan F. Stress in bounded material with a crack perpendicular to the interface[J]. International Journal of Engineering Science, 1972, 10: 677–697.
- [16] Wang T C. Stress state in front of a crack perpendicular to bi-material interface[J]. Engineering Fracture Mechanics, 1998, 59(4): 471–485.
- [17] Lim W, Lee C. Evaluation of stress intensity factors for a crack normal to bi-material interface using isoparametric finite elements[J]. Engineering Fracture Mechanics, 1995, 52(1): 65–70.
- [18] Chang J H, Wu D J. Calculation of mixed-mode stress intensity factors for a crack normal to a bimaterial interface using contour integrals[J]. Engineering Fracture Mechanics, 2003, 70(13): 1675-1695.
- [19] Erdogan F, Sih G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering, 1963, 85 (4): 519–527.
- [20] Chang J, Xu J Q. The singular stress field and stress intensity factors of a crack terminating at a bimaterial interface[J]. International Journal of Mechanical Science, 2007, 49(7): 888–897.
- [21] Lin K Y, Mar J W. Finite element analysis of stress intensity factors for cracks at a bi-material interface[J]. International Journal of Fracture, 1976, 12(4): 521–531.

(责任编辑 吴晓丽)

《科技导报》"卷首语"栏目征稿

"卷首语"栏目每期邀请一位中国科学院院士和中 国工程院院士就重大科技现象、事件,以及学科发展趋势、科学研究热点和前沿问题等,撰文发表个人的见 解、意见和评论。本栏目欢迎院士投稿,每篇文章约 2000字,同时请提供作者学术简历、工作照和签名电子 文档。投稿信箱;kjdbbjb@cast.org.cn。