河北科技大学试卷

河北科技大学 2006——2007 学年第二学期 《化学反应工程》考试试卷

学院	班级				
题号	_	=	三	四	总分
得分					

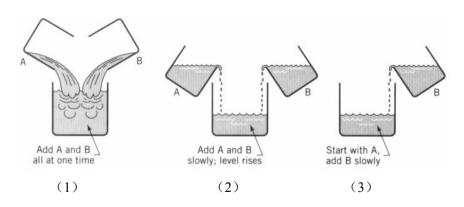
一、计算题(40分)

1、英文题(用英文答题,15 分)A liquid reactant stream (1mol/liter) passes through two mixed flow reactors in a series. The concentration of A in the exit of the first reactor is 0.5mol/liter. Find the concentration in the exit stream of the second reactor. The reaction is second-order with respect to A and $V_2/V_1=2$.

2、(10 分)以 NaOH 溶液吸收 CO₂,NaOH 溶液浓度为 0.5kmol/m³,界面上 CO₂浓度为 0.001kmol/m³,液相传质分系数 $k_L=10^{-4}$ m/s,反应速率常数 $k_2=10^4$ m³/ (kmol $^{\bullet}$ s), $D_{AL}=1.8\times10^{-9}$ m²/s, D_{BL} / $D_{AL}=1.7$,计算吸收速率。

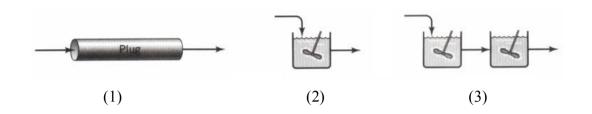
3、(15分)在实验室采用两种颗粒度催化剂,在同样条件下进行研究,颗粒 B 半径是颗粒 A 的一半,两者的宏观速率分别为 R_{Az} 和 R_{Bz} ,当(1) R_{Bz} =1.5 R_{Az} 、(2) R_{Bz} =2 R_{Az} 、(3) R_{Bz} = R_{Az} 时,试推导采用两种颗粒催化剂时的 Thiele 模数 ϕ_A 、 ϕ_B 之间的关系式以及内扩散有效因子 ζ_A 、 ζ_B 之间的关系式。

二、填空: (20分,每个空2分)


1、反应器的设计放大方法主要有()()().
2、返混是指().
3、空速是指().
4、宏观混合是指().
5、徽观混合是指().
6、化学吸收增强因子的物理意义是().
7、本征动力学是指().
8、宏观动力学是指().

三、分析题(30分)

1、(10分)对于平行反应:


$$A + B \to L$$
$$A + B \to M$$

其中 L 为目的产物,其动力学方程分别为: $r_{A+B-L}=k_{01}e^{-14000/RT}C_A^2C_B$ $r_{A+B-M}=k_{02}e^{-22000/RT}C_AC_B^2$,为使 L 的选择性最大,如果在间歇反应器中进行,下图中哪种操作方式最好?为什么?

B卷 共 (3) 页第 (2) 页

2、(10 分) 对于不可逆一级连串反应 $A \xrightarrow{k} L \xrightarrow{k_2} M$ 其中 L 为目的产物,对于下列反应器及操作形式,请给出选择的顺序,并说明理由。

3、(10分)生成硫酸钡的化学反应过程:

$$BaCl_2 + Na_2SO_4 \longrightarrow BaSO_4 \downarrow +2NaCl$$

是一个快速的沉淀反应,为了获得均匀的硫酸钡沉淀颗粒粒度,拟选用微反应器,请根据混合对反应影响的原理分析这种选择的合理性。

四、简答题(10分,任选2题,每题5分)

- 1、简述工业生产对气-液反应器的要求。
- 2、简述固定床和流化床反应器的特点,并分别举出应用实例。
- 3、简述平推流反应器的特点