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Generalized master equations provide a concise formalism for studying reduced population dynam-
ics. Usually, these master equations require a perturbative expansion of the memory kernels gov-
erning the dynamics; in order to prevent divergences, these expansions must be resummed. Resum-
mation techniques of perturbation series are ubiquitous in physics, but they have not been readily
studied for the time-dependent memory kernels used in generalized master equations. In this pa-
per, we present a comparison of different resummation techniques for such memory kernels up to
fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamilto-
nian, treating the diabatic coupling between the two states as a perturbation. A novel derivation
of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and
fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We
find that resumming the kernels through fourth order using a Padé approximant results in divergent
populations in the strong electronic coupling regime due to a singularity introduced by the nature
of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-
Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-
resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance
over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick
convergence on the exact answer. The results suggest that including higher-order contributions to the
memory kernel of a generalized master equation and performing an appropriate resummation can
provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening
the way to a new class of methods for treating system-bath dynamics. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4891669]

I. INTRODUCTION

Generalized master equations are useful constructs in
chemical physics for solving problems that involve a few
“system” degrees of freedom interacting with a large num-
ber of “bath” degrees of freedom, like when considering elec-
tron transfer in solution. When used to monitor time evolu-
tion of system populations, these equations generally have the
form

Ṗ(t)=
∫ t

0
K(t − s)P(s)ds, (1)

where P is a vector containing the populations of the var-
ious system states and K is a matrix controlling the (non-
Markovian) flow of populations among states without ex-
plicitly referencing the bath degrees of freedom; this time-
nonlocal matrix K is often referred to as the memory kernel.
Such equations allow us to solve explicitly for system observ-
ables while only taking into account aspects of the bath that
directly influence the system. Formally equivalent to gener-
alized Langevin equations and path integral methods, gener-
alized master equations allow for a somewhat phenomeno-
logical description of the bath and are thus useful when
detailed statistical information about the bath is not known
a priori.

a)Electronic mail: tvan@mit.edu

Many different methods have been proposed that solve
the system-bath dynamics problem to varying extents; unfor-
tunately, none are both robust and general. Due to the exis-
tence of the influence functional for harmonic baths,1 path-
integral-based numerical methods have been quite success-
ful for this problem.2, 3 Additionally, there are also formula-
tions of this problem that are not fully quantum-mechanical.
The simplest formulation is a mixed quantum-classical set-up
where the system (and perhaps a few important bath degrees
of freedom) are treated quantum-mechanically and (the rest
of) the bath is treated classically. There are several detailed
reviews of these methods including their successes and short-
comings in the literature.4–6

In recent years, several alternative methods not based
on generalized master equations have been proposed that
successfully solve the quantum dynamics problem for cer-
tain classes of system-bath Hamiltonians. One method of
particular merit is the multi-configuration time-dependent
Hartree approach,7–9 which in and of itself is limited to
treating only a few degrees of freedom exactly but can be
quite powerful when coupled with other degrees of free-
dom semiclassically.10, 11 Even more recently, hierarchical
equation of motion (HEOM) approaches to this problem
have been proposed which in principle give numerically ex-
act results.12, 13 Unfortunately, these state-of-the-art numeri-
cal methods are not general in that they require very specific

0021-9606/2014/141(5)/054112/10/$30.00 © 2014 AIP Publishing LLC141, 054112-1
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assumptions about the nature of the bath. They can also
often be extremely slow to converge, especially at low
temperatures.14

In the general case of a generalized master equation of
the form of Eq. (1), K(t) cannot be obtained; often, we must
resort to using perturbation theory to gain information about
K(t). In cases when the system-bath coupling is weak, one
can expand the Hamiltonian perturbatively in the system-bath
coupling and utilize the tools of Redfield theory to obtain a
solution.15, 16 In the opposite regime, when the strength of the
system-bath coupling is much stronger than the strength of
the intrasystem electronic couplings, one can first apply a po-
laron transform and then expand the kernels perturbatively
in the system-bath coupling. The original polaron transform
was proposed for application in solid state physics,17, 18 but
can be particularly effective for system-bath dynamics prob-
lems in the special case of a harmonic bath.19–23 Recently, for
particular classes of harmonic bath models, polaron transfor-
mations have been used effectively to solve the quantum dy-
namics problem in an effectively nonperturbative fashion.24, 25

In other treatments, the memory kernel is expanded in a
power series in the electronic coupling V . A truncation of this
series at second order results in the famous non-interacting
blip approximation (NIBA),19, 26, 27 which gives a second-
order approximation of the dynamics and Fermi’s Golden
Rule rate constants.

Additionally, many groups have worked with this expan-
sion out to fourth order in certain limits. The Cao group has
worked extensively with fourth order rate constants (given
by k = K(ω = 0)),28–30 inspired by the analytical work of
Mukamel31 and Silbey.32 Reichman, working with Silbey
and Neu, derived analytical results for dynamics in the low-
temperature limit for certain classes of baths.33–35 Finally, a
fourth-order correction to Redfield theory that is guaranteed
to obey detailed balance has been derived;36 however, it re-
quires making additional assumptions about the system-bath
coupling. Despite this work, no one has studied detailed short-
time two-state dynamics for a system-bath Hamiltonian gov-
erned by a generalized master equation.

In this work, we examine for the first time the dynamics
generated by a resummed memory kernel correct to fourth-
order. We consider in detail the spin-boson Hamiltonian,26

for which it is possible to derive analytical expressions for
K(2), K(4), and (in principle) all higher-order coefficients. We
present what we believe to be a novel derivation of K(4) for
this problem that can be easily generalized to derive both
higher-order terms and non-Condon versions of K(2), K(4), etc.
with electronic coupling linear in the bath coordinate. We then
present numerical results where we evaluate our analytical
memory kernels using a model spectral density. In our nu-
merical results, we compare several methods to resum K(2)

and K(4) into a kernel K containing all orders of the electronic
coupling—a necessary procedure to prevent long-time diver-
gence of the populations. Finally, we show how we can almost
trivially force our resummed kernels to obey detailed bal-
ance, giving the correct infinite-time equilibrium populations.
Our aim is to build towards a general, robust, systematically-
improvable system-bath approximation for molecular systems
in condensed phases.

II. THEORY

A. Generalized master equation formalism

Despite its simplicity, the brute-force numerical propa-
gation of a density matrix under the influence of a system-
bath Hamiltonian is not possible, as the computational cost
of such a propagation scales exponentially with the number
of bath modes represented; hence, generalized master equa-
tion approaches become useful. Unfortunately, the memory
kernels of Eq. (1) are as computationally intractable as the
propagator.

To approach this problem, we can use time-dependent
perturbation theory. For simplicity, we shall restrict our dis-
cussion to the special case where our system contains only
two (diabatically-coupled) states; however, all of the results
in this section can be generalized to the general problem of
many interacting system states. For any two-level system, we
can suggestively write the Hamiltonian as

Ĥ =
(

ĥ1 0
0 ĥ2

)
+ λ

(
0 V̂

V̂ 0

)
≡ Ĥ0 + Ĥ1, (2)

where ĥ1 and ĥ2 represent all diagonal elements of the Hamil-
tonian related to both system and bath, V̂ represents all off-
diagonal elements of the Hamiltonian related to both system
and bath, and we have introduced an ordering parameter λ.
The physical Hamiltonian is recovered for λ = 1.

To study the quantum dynamics generated by memory
kernel resummations, we adopt the generalized master equa-
tion for the populations of a two-level system interacting with
a general bath first derived by Sparpaglione and Mukamel31

using projection operator methods37–39

ṗ1(t) = −
∫ t

0
K11(t − s)p1(s)ds +

∫ t

0
K22(t − s)p2(s)ds,

ṗ2(t) =
∫ t

0
K11(t − s)p1(s)ds −

∫ t

0
K22(t − s)p2(s)ds,

(3)

where p1(t) and p2(t) are the populations of the two states as
functions of time, and K11 and K22 are the time-dependent
memory kernels for the forward (1 → 2) and backward (2
→ 1) transitions. We use this formalism primarily because it
can be trivially generalized to include many states.

We will work explicitly with populations differences. It
can be shown using the normalization condition p1(t) + p2(t)
= 1 that Eq. (3) can be rewritten in terms of P(t) ≡ p1(t)
− p2(t) as

Ṗ (t) = −
∫ t

0
K+(t − s)P (s)ds −

∫ t

0
K−(s)ds, (4)

where K±(t) ≡ K11(t) ± K22(t). Note that Eq. (4) has the form
of a generalized Langevin equation, with K+ acting as a fric-
tion kernel and the integral of K− acting as a random noise
term.

Using this formalism allows us to expand the memory
kernels perturbatively, using λ to collect terms of similar order

K11/22(t) = λ2K
(2)
11/22(t) + λ4K

(4)
11/22(t) + · · · , (5)
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where K
(2n)
11/22(t) is the 2nth-order contribution to the memory

kernel. Note that in the special case where V̂ is a constant, V ,
this is equivalent to expanding the memory kernels in a power
series in V . For the remainder of this paper and in order to
simplify our discussion, we shall assume that V̂ is a constant.

B. The spin-boson model

In order to examine the dynamics generated by these
memory kernels in detail, we restrict ourselves to specifi-
cally to the spin-boson Hamiltonian. This form of system-bath
Hamiltonian is used widely in elementary studies of chemi-
cal dynamics because of its moderate assumptions and over-
all simplicity. The spin-boson Hamiltonian (also known as the
Caldeira-Leggett model)26 can be written as

Ĥ = ĤS + ĤB + ĤSB

=
(

ε
2 V̂

V̂ − ε
2

)
+

∑
j

⎛
⎝ p2

j

2m
j

+ 1
2mjω

2
j x

2
j 0

0
p2

j

2m
j

+ 1
2mjω

2
j x

2
j

⎞
⎠

+
∑

j

(
cjxj 0

0 −cjxj

)
, (6)

where the pj and xj describe normal mode harmonic bath coor-
dinates and momenta described by mass mj and frequency ωj,
and the cj are coefficients determining the strength that each
harmonic bath mode couples to the system. The spin-boson
model thus describes a two-level system coupled to a bath of
harmonic oscillators, where the system-bath coupling is linear
in the bath coordinate.

In practice, knowing the minute details of the bath modes
is irrelevant: by invoking system-bath models, we are im-
plicitly only interested in the detailed dynamics of the sys-
tem, so we only need to know about the bath insomuch as
it affects system dynamics. For a harmonic bath, population
dynamics are completely characterized by the bath spectral
density,27, 40, 41

J (ω) = π

2

∑
j

c2
j

mjωj

δ
(
ω − ωj

)
. (7)

In principle, a particular spectral density can generally be
obtained by Fourier transforming a corresponding bath time
correlation function;41 these time correlation functions can,
in turn, be obtained from experiment or from molecular dy-
namics simulations. In practice, an analytical form is usually
assumed for the spectral density.

C. Derivation of K(4) for the spin-boson model

Because the spin-boson Hamiltonian comprises a two-
level system linearly coupled to a bath of harmonic oscilla-
tors, it should come as no surprise that analytical expressions
can be derived for K(2)(t), K(4)(t), and all K(2n)(t). We present
here the main analytical result of this paper: a novel, gener-
alizable derivation of K(4)(t) that does not invoke Liouville
space. For the spin-boson problem, the memory kernels can

be written as

K
(2)
11/22(t) = 2Re

[
f ±

2 (t)
]
, (8)

K
(4)
11/22(t) =

∫ t

0
ds1

∫ s1

0
ds2K

(2)
+ (t − s1)K (2)

11/22(s2)

−2
∫ t

0
ds1

∫ t−s1

0
ds2Re

[
f ±

4 (t − s1 − s2, s1, s2)
]

+2
∫ t

0
ds1

∫ −t

0
ds2Re

[
f ±

4 (−t − s2, t − s1, s1)
]

−2
∫ t

0
ds1

∫ t−s1

0
ds2Re

[
f ±

4 (−t, t−s1−s2, s1)
]
,

(9)

where K
(2)
+ (t) = K

(2)
11 (t) + K

(2)
22 (t) and the top sign is for K11

/ the bottom sign is for K22. The ubiquitous functions f ±
2 and

f ±
4 can be represented analytically as

f ±
2 (t) = V 2 exp[−iεt − (Q′(t) ± iQ′′(t))], (10)

f ±
4 (s1, s2, s3) = V 4 exp[−iε(s1 + s3)

−(S ′(s1, s2, s3) ± iS ′′(s1, s2, s3))], (11)

where

S ′(s1, s2, s3) = Q′ (s1

) + Q′ (s2

) + Q′ (s3

) − Q′ (s1 + s2

)
−Q′ (s2 + s3

) + Q′ (s1 + s2 + s3

)
S ′′(s1, s2, s3) = Q′′ (s1

) + Q′′ (s2

) + Q′′ (s3

)
−Q′′ (s1 + s2

) − Q′′ (s2 + s3

)
+Q′′ (s1 + s2 + s3

)
(12)

and

Q′(t) = 4

π

∫ ∞

0
dω

J (ω)

ω2
(1 − cos (ωt)) coth

(
βω

2

)
, (13)

Q′′(t) = 4

π

∫ ∞

0
dω

J (ω)

ω2
sin (ωt) . (14)

A detailed derivation of Eqs. (8)–(13) can be found in the sup-
plementary material.42

D. Resummation schemes

It is well-known that series generated from perturba-
tion theory are not always convergent, especially when
truncated.43 Resummation techniques are ubiquitous in many
areas of physics, including quantum electrodynamics,44, 45

renormalization group theory,46, 47 and quantum chemistry.48

Resummations have also been used in the context of system-
bath models to compute rate constants,30–32 but to our knowl-
edge have never been applied to time-dependent rate kernels
in order to study dynamics.

We will focus our attention in particular to resummations
of memory kernels for generalized master equations. Resum-
ming at the level of the memory kernels is preferable to re-
summing at the level of the populations for many reasons,
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summarized concisely in Refs. 49 and 50. These resumma-
tions are historically performed in the frequency domain, de-
fined through the Fourier transform

K(ω) =
∫ ∞

−∞
eiωtK(t)dt. (15)

As such, we will be focusing in particular on ways to resum
K(2)(ω) and K(4)(ω) into a K(ω) containing all orders of the
electronic coupling V .

For the particular problem at hand, two resummation
schemes have been proposed,31 dubbed the “Padé resum-
mation” and the “Landau-Zener resummation.” The Padé
resummation is a rational resummation based off of Padé
approximants,51 which have been very successful in sev-
eral areas of physics related to the present problem. Partic-
ularly relevant is the result of Cho and Silbey, who showed32

that in the subspace composed of N perturbatively-expanded
states, the Fourier transform of the memory kernel K(ω)
can best be represented by an [N/N − 1]-Padé approximant.
The authors proved that this particular resummation choice
obeys Schwinger’s stationary variational principle for scatter-
ing processes.52 The consequence of this result is that rates
obtained from these memory kernels will obey detailed bal-
ance as best as possible, a desirable feature that suggests that
Padé resummation is the optimal resummation choice for this
problem.

For the case N = 1 (our present scenario), the Padé ap-
proximant, to fourth order, is

KPadé(ω) = V 2
[
K (2)(ω)

]2

K (2)(ω) − V 2K (4)(ω)
. (16)

This form of resummation has been recently employed by
Wu and Cao30 to study kinetics (the t → ∞ limit of
Eq. (1)). Using the ω → 0 limit of Eq. (16), the authors
showed that the Padé resummation gives very good agreement
with numerically-exact results for a model problem. The au-
thors also pointed out that part of this agreement can be at-
tributed to the fact that the Padé resummation recovers the
Zusman result53 in the limit of weak system-bath and weak
electronic coupling.

The Padé resummation scheme has been previously in-
vestigated in the context of certain classes generalized mas-
ter equations,54, 55 with the conclusion that a Padé-resummed
memory kernel leads to dynamics that converge for all times.
Later work by Shi and Geva49 pointed out that the quality of
the dynamics generated by a Padé-resummed memory kernel
for arbitrary regimes of Hamiltonian parameter space is still
unknown.67 The general applicability of the Padé resumma-
tion for dynamics is one of the central questions this work
sets out to answer.

An alternative resummation scheme proposed56 has been
dubbed the Landau-Zener resummation due to its similarity in
form to the famous Landau-Zener equation. To fourth order,
the Landau-Zener resummation is given by

KLZ(ω) = −
[
K (2)(ω)

]2

2K (4)(ω)

[
1 − exp

(
2V 2K (4)(ω)

K (2)(ω)

)]
. (17)

It has been shown31 that this resummation scheme agrees with
the Padé scheme in the nonadiabatic limit, but differs from the
Padé scheme by a factor of 2 in the adiabatic limit. This flaw
prevents the Landau-Zener scheme from being applicable to
study dynamics in the adiabatic regime. Fortunately, mixed
quantum-classical and semiclassical schemes have great suc-
cess when the dynamics evolve strictly on one adiabat, so we
shall focus our attention on the nonadiabatic regime.

E. Populations at equilibrium

For the case of a system with electronic bias, resumma-
tion is rather arbitrary: Do we resum the forward rate kernel
K11 and the backward rate kernel K22 and then add and sub-
tract them to form K±? Or do we resum K± directly? Stat-
ing this another way, we can define a resummation function
that takes a second-order kernel and a fourth-order kernel and
returns a resummed kernel (through, for instance, a Padé
resummation),

K = R
[
K (2),K (4)

]
, (18)

we can then imagine that we can form K±through a number
of different schemes; for instance,

K± = R
[
K

(2)
11 ,K

(4)
11

]
± R

[
K

(2)
22 ,K

(4)
22

]
(19)

or

K± = R
[
K

(2)
11 ± K

(2)
22 ,K

(4)
11 ± K

(4)
22

]
. (20)

Both of these schemes give the exact perturbation series to
fourth order, but differ at higher orders. Selecting one over
the other is an arbitrary choice.

We can reduce this arbitrariness by introducing a param-
eter α that interpolates smoothly between these two limits:

K± = R
[
(1 − α)K (2)

11 ± αK
(2)
22 , (1 − α)K (4)

11 ± αK
(4)
22

]
+R

[
αK

(2)
11 ± (1 − α)K (2)

22 , αK
(4)
11 ± (1 − α)K (4)

22

]
.

(21)

As long as the resummation is first-order homogeneous (as
is the case for both the Padé scheme and the Landau-Zener
scheme), we can recover Eq. (19) if α = 0 and Eq. (20) if
α = 1

2 .
Adding in this additional degree of freedom allows us to

ensure that the dynamics created by the resummed memory
kernel will obey detailed balance. It is well-known that using
master equations with second-order kernels does not guaran-
tee that the dynamics settle on the correct equilibrium popu-
lations in the case of a system with electronic bias.11, 57 Intro-
ducing α allows us to choose from an infinitely large number
of arbitrary choices the optimal manner of resummation that
gets equilibrium populations correct. Namely, if the equilib-
rium populations are known (e.g., from a path integral Monte
Carlo simulation58, 59), we can tune α by enforcing the de-
tailed balance condition

k11(α)

k22(α)
= p

eq

2

p
eq

1

(22)
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by tuning α over the interval
[
0, 1

2

]
, where k11 ≡ K11(ω

= 0) and k22 ≡ K22(ω = 0) are the forward and backward rate
constants, and p

eq

1 and p
eq

2 are the equilibrium populations.

III. RESULTS AND DISCUSSION

A. Implementation details

For each set of spin-boson parameters studied, K
(2)
11 and

K
(4)
11 (and, in cases where an electronic bias is present, K

(2)
22

and K
(4)
22 ) were calculated using a FORTRAN95 implemen-

tation of Eqs. (8) and (9). All integrals were computed using
an adaptive Gauss-Legendre quadrature until an integral tol-
erance of 10−6 was reached. The frequency integrals over the
spectral density were computed with a hard upper frequency
cutoff of ω = 30, which was found to be enough to give stable
and convergent results for the short propagation time ranges
studied.

Once the kernels were computed, they were resummed
according to Eq. (16) (Padé resummation) and Eq. (17)
(Landau-Zener resummation). Then, a standard algorithm for
solving Volterra integrodifferential equations of the second
kind60 was used to solve Eq. (4) for P(t) ≡ p1(t) − p2(t), the
difference in population between states 1 and 2 as a function
of time. Propagating population dynamics using only K

(2)
11 and

K
(2)
22 , i.e., applying the non-interacting blip approximation or

NIBA,40 is also considered for comparison.
In order to benchmark our fourth-order resummations,

we use an Ohmic spectral density with a Drude-Lorentz cut-
off, often referred to as a Debye spectral density

J (ω) = ηωωc

ω2
c + ω2

, (23)

where η and ωc are parameters that control the strength of the
system-bath coupling the upper cutoff frequency of the bath,
respectively. A benefit of using this spectral density is that
numerical results for this problem have been presented in the
past11, 57 using various approximate methods.

Additionally, a HEOM technique has recently been
presented12, 13 that obtains (in principle) numerically-exact re-
sults for the spin-boson problem. The HEOM technique is
a path-integral-based technique which replaces the Vernon-
Feynman influence functional with a set of time-nonlocal
auxiliary density matrices which account for non-Markovian
system-bath coherences. These density matrices are related to
one another via hierarchical equations; truncating this hierar-
chy at order M is equivalent to order 2M in perturbation theory
in the system-bath coupling.61 As such, the hierarchy is often
very quickly convergent, provided the system-bath coupling
is not strong. If changing the depth of the hierarchy does not
change the resulting population dynamics, the approximation
is equivalent to infinite-order perturbation theory and is thus
exact.

While the HEOM has the potential to give numerically-
exact results, it has some shortcomings. The most glaring is
that it can only be used for spectral densities of the form given
in Eq. (23). Additionally, the HEOM requires evaluation of
many depths of a hierarchy of increasing computational com-
plexity; a deeper hierarchy is needed for strong system-bath

coupling or low temperature. However, despite the breakdown
of the standard HEOM technique in the strong system-bath
coupling regime and the low-temperature regime (the latter
problem which can be solved using a stochastic HEOM14),
for many parameter regimes of the Debye spectral density,
the HEOM gives extremely accurate results. In this work, we
consider results from a sufficiently deep HEOM truncation (a
hierarchy depth of 11 with a maximum Matsubara frequency
of 6) to be numerically exact for this problem. For all calcula-
tions, the cutoff frequency ωc was normalized to 1, and other
parameters adjusted with relation to ωc.

B. Stability with increasing electronic coupling

As noted previously, NIBA fails with increasing elec-
tronic coupling. The reason is quite obvious: we are do-
ing a perturbative expansion in the electronic coupling, so a
second-order truncation will not capture any quantum events
that involve more than two hops between energy surfaces.57

Figure 1 shows clearly that this is indeed the case. For the
case of small electronic coupling (panel (a)), NIBA is good
enough to reproduce the HEOM result, and, as higher-order
terms in the perturbation series are small, any fourth-order re-
summation does not significantly change this result.

Going to higher and higher values of the electronic cou-
pling (panels (b) through (d)), NIBA breaks down: two-hop
events are no longer sufficient to accurately describe the short-
time quantum dynamics of the spin-boson model. Specifi-
cally, oscillations in population die out much too fast. Com-
paring the two fourth-order resummation schemes presented
in this work with the HEOM result, however, shows that there
is hope: higher-order terms recover these oscillations with
nearly the correct frequency and a relatively correct damping
rate.

In the case of very strong electronic coupling, it is in-
teresting to note that recovering qualitatively correct dynam-
ics depends on the nature of the fourth-order resummation. In
particular, using a Padé approximant to resum the second- and
fourth-order memory kernels gives a memory kernel which
leads to populations that oscillate wildly in time and at the in-
correct frequency; by contrast, the Landau-Zener-resummed
kernel produces populations which are well-behaved for all
times.

This is a notable result, as the Padé approximant is
the resummation method of choice for rate constants, the
zero-frequency limit of the frequency-dependent memory
kernel.30, 32 It can easily be shown that in the small electronic,
slow bath limit, the Padé-resummed rate is exactly the rate
derived by Zusman connecting the nonadiabatic regime to the
adiabatic regime.32, 53

For short-time dynamics in the large electronic coupling
limit, however, the dynamics generated by a Padé resumma-
tion are qualitatively incorrect. The reason why this approxi-
mate resummation is good for rate constants but bad for dy-
namics can be seen by examining Eq. (16): When K (2)(ω)
≈ V 2K (4)(ω), the Padé-resummed kernel diverges. It is very
unlikely that this equality will occur at ω = 0; however,
as V grows, the chance that this divergence will occur for
some larger value of ω also grows. This introduces a spurious
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FIG. 1. Population dynamics of the spin-boson Hamiltonian for various strengths of the electronic coupling. The HEOM (exact) result and the NIBA result
are plotted to compare with the two different fourth-order resummations presented in this work: the Padé resummation (Eq. (16)) and the Landau-Zener
resummation (Eq. (17)). Values of the Hamiltonian parameters are ωc = 1.0, η = 2.0, β = 0.125, and (a) V = 0.5, (b) V = 1.0, (c) V = 2.0, and (d) V = 4.0.

high-frequency component to the memory kernel in the time
domain, which translates into populations that oscillate indef-
initely, rather than settling down to equilibrium at the desired
rate.

C. Temperature dependence

The low-temperature regime has often proved problem-
atic for quantum dynamics studies, as many systems are “very
quantum” at extremely low temperatures. This problem was
studied (and to some extent solved for Ohmic baths) in detail
by Reichman,34 but the general case remains an open problem
in quantum dynamics. Even the HEOM approach to solving
the spin-boson problem breaks down as the temperature ap-
proaches 0: while still in principle exact, computation of the
exact answer requires inclusion of many Matsubara frequen-
cies and a very deep hierarchy, which very quickly becomes
computationally intractable. Other formulations of the HEOM
have been designed to fix this problem,14 but a solution still
does not exist for general spectral densities.

While our approach is robust in the strong electronic cou-
pling regime, the same cannot be said for the low-temperature
regime. Short-time dynamics of the spin-boson Hamiltonian
to fourth order in V are shown in figure 2 for moderate values
of the system-bath coupling and the electronic coupling. As
can be seen in the figure, for high temperature (small values
of β ≡ 1/kBT), even NIBA gets qualitatively correct dynam-
ics. This makes sense, as the Marcus rate for electron transfer

can be formulated as the high-temperature, slow-bath, long-
time limit of NIBA,31, 41 and the Marcus rate is a quite good
description of the kinetics of many experimental systems.62

At low temperatures, both NIBA and any fourth-order
resummations give qualitatively incorrect description of the
dynamics: NIBA dephases too quickly, and the fourth-order
resummations do not decay to equilibrium quickly enough.
Both the lack of low-frequency oscillations and the incorrect
zero-frequency component of the population dynamics can be
traced to the presence of a large number of low-frequency bath
modes at low temperatures, which have a large contribution to
the memory kernels. The fourth-order resummations studied
in this work assume a “small” V 4K (4), which may not neces-
sarily be the case at low temperatures; this observation may
lend to the development of alternative resummation schemes
for fourth-order perturbation series and beyond.

We note in passing that for regimes where NIBA does not
give good dynamics, adding in fourth-order effects tends to
overcorrect. This result has been observed for rates,30 and is
seen very clearly in Figure 2 to also be the case for dynamics.

D. Systems with electronic bias

A systematic problem with NIBA arises in systems with
an electronic bias: NIBA memory kernels generate popula-
tion dynamics that do not decay to the correct equilibrium,
meaning these memory kernels disobey detailed balance. Dis-
obedience of detailed balance implies a fictitious breaking of
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FIG. 2. Population dynamics of the spin-boson Hamiltonian for various tem-
peratures at moderate electronic coupling. Values of the Hamiltonian param-
eters are ωc = 1.0, η = 1.0, V = 0.5, and (a) β = 0.5 (high temperature); or
(b) β = 10.0 (low temperature).

time-reversal symmetry, which may cause systemic problems
with short-time dynamics. This issue should be addressed, at
least to some extent, by including higher-order contributions
to the memory kernel; indeed, it has previously been shown
that fourth-order corrections to Redfield theory obey detailed
balance exactly.36 We now turn our attention to the dynamics
of a system with an electronic bias, particularly to the question
of how including fourth-order effects in the memory kernels
affects the obedience of detailed balance.

Figure 3 shows our main result for the biased case: going
to fourth order helps, but does not guarantee, the satisfaction
of the detailed balance condition (and, in some cases, con-
servation of probability!). As expected, for small values of
the electronic coupling (when effects fourth-order in the cou-
pling are small), the equilibrium populations are more-or-less
exactly correct; for larger values, the equilibrium populations
deviate more from their correct values. For reasons discussed
in cases without bias, using a Padé resummation can exacer-
bate this problem; as such, a Landau-Zener resummation is
again recommended for cases with bias.

FIG. 3. Population dynamics of the spin-boson Hamiltonian for various
strengths of the electronic bias. All resummations were conducted using
Eq. (21) for the reasons discussed in Sec. II E; the value of the parameter
α was fixed by enforcing detailed balance, Eq. (22). Values of the Hamilto-
nian parameters are (a) ωc = 1.0, η = 0.1, β = 5.0, V = 0.2, and ε = 0.4 (α
= 0.19 for both resummations; note the different scale on the time axis); (b)
ωc = 1.0, η = 0.665, β = 0.376, V = 1.33, and ε = 1.33 (α = 0.37 for both
resummations); and (c) ωc = 1.0, η = 0.5, β = 5.0, V = 1.0, and ε = −2.0
(α = 0.16 for Padé, α = 0.5 for Landau-Zener).
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FIG. 4. As stated in the text, there is an arbitrary choice of which mem-
ory kernels to resum: the forward and backwards rate kernels K11 and K22,
or some linear combination of these kernels. Plotted here are three specific
choices of which memory kernels to resum in a Landau-Zener fashion (i.e.,
according to Eq. (17)): resummation according to Eqs. (19)–(21). (a) For
most choices of Hamiltonian parameters, it is possible to satisfy the detailed
balance condition exactly using an intermediate value of α. For the set of
Hamiltonian parameters in Figure 3(a) (ωc = 1.0, η = 0.1, β = 5.0, V = 0.2,
and ε = 0.4), using α = 0.19 causes detailed balance to be satisfied. (b) For
other sets of Hamiltonian parameters, it is only possible to satisfy detailed
balance in a least-squares sense. For example, with ωc = 1.0, η = 1.0, β

= 0.25, V = 2.0, and ε = −4.0, using α = 0.26 will give dynamics with
the “best” long-time asymptotics allowed. Note that the time axes on the two
panels have different ranges.

Including memory effects up to infinite order in V is one
way to guarantee the obedience of detailed balance. Since this
is not computationally feasible, we present an alternative ap-
proach that guarantees that any kernel resummed to fourth or-
der (or higher) will generate dynamics that decay to the cor-
rect equilibrium populations.

Following the discussion in Sec. II E, we have tried re-
summations of the form of Eq. (21), enforcing the detailed
balance relation in Eq. (22) to optimize a parameter α. This
scheme exploits a choice we have when deciding how to per-
form a resummation in order to guarantee the correct equilib-
rium. We will note that in general, it is also possible to know

a priori the correct equilibrium populations, either by know-
ing the long-time limit of a numerically exact solution (as is
the case in this present work), or, more generally, by doing
path integral Monte Carlo or molecular dynamics simulations
in order to explore the energy landscape of the two states as
they interact with a bath.58, 59

Figure 4 shows the dynamics generated by a Hamilto-
nian in the moderate electronic coupling, moderate system-
bath coupling, moderate temperature regime with strong elec-
tronic bias. In each panel, four dynamics runs are plotted:
the HEOM run, and runs generated by resumming the mem-
ory kernels in a Landau-Zener fashion according to Eqs.
(19)–(21). For most sets of Hamiltonian parameters, like those
in Figure 4(a), the detailed balance condition can be met ex-
actly with some 0 ≤ α ≤ 1

2 . For some sets of Hamiltonian pa-
rameters, like those in Figure 4(b), the detailed balance con-
dition can only be satisfied in a least-squares sense.

As can be seen in the figure, the different choices for how
to resum the forward and backward memory kernels can give
very different trajectories. The different trajectories are en-
tirely artifactual: were we to know all of the K(2n) out to in-
finite order, we would not need to perform an approximate
resummation and the discrepancy in how we choose to resum
kernels disappears. Nevertheless, if we wish to compute mem-
ory kernels to finite order, we must make an arbitrary choice.
Figure 4 shows that the best value for this choice is the par-
ticular interpolation between Eqs. (19) and (20) that satisfies
Eq. (22) (either exactly or in a least-square manner)—i.e., the
particular resummation where the long-time limit of the re-
summed kernels best obeys detailed balance.

It is worth noting that for some parameter regimes, one
of the two resummations in Eqs. (19) and (20) diverges. A
set of parameters where this occurs is the set of parame-
ters used in Figure 3(c): the kernel resummed according to
Eq. (19) diverges but the kernel resummed according to Eq.
(20) does not. Using Eq. (21) to resum and optimizing α gives
a value α = 0.5. For this value of α, Eq. (21) reduces exactly
to Eq. (20). Thus, using Eq. (21) and optimizing α to enforce
detailed balance not only gives qualitatively better dynamics
for some parameter regimes, but prevents divergences in other
parameter regimes. Doing the resummation in this manner is
not just a bonus; it is imperative.

IV. CONCLUSIONS

In this paper, we have shown for the first time numer-
ical results for a generalized system-bath master equation
that uses rate kernels resummed from a fourth-order pertur-
bation series in the electronic coupling. We have shown that
for the case of a two-level system interacting with a har-
monic bath that an exponential resummation (the “Landau-
Zener form”) is recommended for computing short-time dy-
namics, as the previously-recommended Padé resummation
diverges for even moderate values of the electronic coupling.
The current resummation techniques robustly describe the dy-
namics for a wide range of Hamiltonian parameters, including
cases with an electronic bias—cases which have historically
troubled system-bath methods. The low-temperature regime,
a regime which has plagued system-bath models for decades,
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remains problematic. We have lastly shown that by using a
fourth-order resummation, one can always guarantee that the
dynamics reach the correct equilibrium by exploiting a free-
dom inherent in the structure of the problem.

One of our goals when beginning this work was to de-
velop a general, systematically improvable scheme to study
system-bath dynamics. We have noted that the scheme that
we have presented gets close to the exact answer for a model
spectral density in most parameter regimes, but does not re-
cover the exact result for regimes of very strong electronic
coupling or low temperature.

To address the former issue, we need to include higher
orders in the perturbation series. The simplest approach is to
generalize our derivation in Sec. II C to arrive at an expression
for K(6); unfortunately, the computational scaling becomes
limiting when going out to such high orders of perturbation
theory. Perhaps a more promising approach is to enforce both
good short-time behavior and good strong-coupling behav-
ior. The Landau-Zener resummation scheme succeeds at the
former, but disagrees with the adiabatic (V → ∞) limit by a
factor of two.31 Correct behavior in the adiabatic limit can be
built into a more sophisticated resummation scheme. To im-
prove even more on behavior in the strong-coupling (but not
adiabatic) regime, we can derive expressions for the lowest-
order non-adiabatic correction to adiabatic behavior and in-
corporate it into our resummed memory kernels.

To address the latter issue, new resummation schemes
are required that correctly capture the low-temperature limit.
Other resummation schemes, such as a generalized high-order
resummation,31 the noncrossing cumulant scheme,35 and con-
volution resummation with auxiliary kernels49, 63 have the po-
tential to capture this limit. Exploration into the numerical
results of kernels generated by these resummation schemes to
fourth order is ongoing.

Finally, and perhaps most excitingly, we have limited the
discussion in this work to one particular form of the spec-
tral density J(ω)—namely, the Debye spectral density. Our
method makes no assumptions as to the form of the spectral
density; as such, we should be able to investigate system-bath
dynamics using arbitrary spectral densities. Many procedures
have been suggested in the literature for sampling numerical
spectral densities from classical molecular dynamics trajec-
tories and applying a post hoc quantum-mechanical correc-
tion to the classical trajectories to extract a semiclassical spec-
tral density.2, 62, 64–66 We are currently investigating the fourth-
order dynamics for the case of a general spectral density, with
the hope that approximate dynamics for a large number of
chemically-relevant problems may become accessible in the
near future.
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